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Abstract

Fine-tuning large-scale pre-trained vision models to
downstream tasks is a standard technique for achieving
state-of-the-art performance on computer vision bench-
marks. However, fine-tuning the whole model with millions
of parameters is inefficient as it requires storing a same-
sized new model copy for each task. In this work, we pro-
pose LoRand, a method for fine-tuning large-scale vision
models with a better trade-off between task performance
and the number of trainable parameters. LoRand gener-
ates tiny adapter structures with low-rank synthesis while
keeping the original backbone parameters fixed, resulting
in high parameter sharing. To demonstrate LoRand’s ef-
fectiveness, we implement extensive experiments on object
detection, semantic segmentation, and instance segmenta-
tion tasks. By only training a small percentage (1% to 3%)
of the pre-trained backbone parameters, LoRand achieves
comparable performance to standard fine-tuning on COCO
and ADE20K and outperforms fine-tuning in low-resource
PASCAL VOC dataset.

1. Introduction
With the rapid development of computer vision, pa-

rameters in deep models are surging. Giant models need
to be trained with massive resources to achieve superior
performance [3, 17, 47, 58], which is often unavailable to
many academics and institutions. “Pretrain & Finetun-
ing” paradigm is widely used to alleviate this dilemma.
Teams with sufficient computation resources utilise enor-
mous datasets [2, 9, 40, 50] to train superior backbones
[4, 32, 40, 48] and optimise the models with ideal perfor-
mances. Models pretrained in this way usually have a su-
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Figure 1. Comparisons of trainable backbone parameters between
our methods (red) and fine-tuning (black). In COCO, we achieve
advanced performances and outperform most existing backbones
with only 0.9∼2.5M new backbone parameters (Cascade-RCNN
is employed as the detector). The fine-tuning paradigm produces
massive redundant backbone parameters, whereas our approach
saves over 97% of hardware resources with competitive perfor-
mances. The sizes of the circles intuitively compare the number of
trainable parameters.

perior understanding of homogeneous data. After that, re-
searchers with limited computational resources can trans-
fer the understanding capabilities of the pre-trained models
to downstream tasks with promising performances by fine-
tuning [1, 26, 46, 53].

However, the fine-tuned model will produce a new set
of parameters as large as the pre-trained model. New pa-
rameters are independent of the pre-trained models and un-
shareable, which are very hardware intensive for cloud ser-
vice providers [23, 49]. Figure 1 compares the parameter
quantities of some remarkable backbones and their perfor-
mances on the COCO [28] dataset. Recent advances in
natural language processing (NLP) [30, 38] show that large
pre-trained models trained with rich data have strong gener-
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Figure 2. Architecture of the adapter module and its integration
with the Transformer. Left: We add two LoRand structures to
each SwinBlock located behind the W/SW-MSA and MLP struc-
tures respectively. Right: LoRand contains two Multi-branch low-
rank projections and nonlinearity. We include skip-connection to
LoRand to enhance its robustness.

alisability, which means most parameters in the pre-trained
models can be shared with the new tasks [22,36,37,44,59].
Moreover, recent literature demonstrates that the feature un-
derstanding of pre-trained models could be reduced when
they are fine-tuned in low-resource situations [12, 36]. To
tackle these issues, NLP researchers propose two new train-
ing paradigms based on pre-trained models: Adapter Tun-
ing [22] and Prompt Tuning [30], both of which tune the
new models by fixing the pre-trained parameters and adding
a few trainable structures (less than 10% of the backbone).
These paradigms create a new buzz in NLP and achieve im-
pressive performances which can be competitive with fine-
tuning [12, 22, 30, 36–38, 44, 59]. Advances in NLP also
shed new light on computer vision. Jia et al. [24] propose
Visual Prompt Tuning (VPT) and demonstrate that VPT
can outperform fine-tuning on image classification tasks by
training a small number of trainable parameters. Never-
theless, VPT shows weakness on more challenging dense
predictions like semantic segmentation compared with fine-
tuning [24].

To find a parameter-efficient paradigm with promising
performance in computer vision, we explore the poten-
tial of Adapter Tuning for visual dense predictions. We
employ the advanced Swin Transformer [32] trained with
ImageNet-22K [9] as the pre-trained model. After that, we
add bottleneck adapter structures [22] behind each Swin-
Block and freeze the original backbone parameters when
training, but this approach cannot achieve comparable per-
formance to fine-tuning as mentioned in [24]. In the exper-

iments, we find that the models perform better with sparser
adapter structures. To improve the performance of Adapter
Tuning, we propose Low-Rank Adapter (LoRand) to re-
duce the adapter parameters, as shown in Figure 2. LoRand
sparsely parameterizes the matrices in adapters by low-rank
synthesis. Specifically, the projection matrix of the fully-
connected layer (FC) in LoRand is a product of multiple
low-rank matrices, which reduces FC parameters by more
than 80%. We implement extensive experiments on ob-
ject detection (PASCAL VOC [14]), semantic segmentation
(ADE20K [62]), and instance segmentation (MS COCO
[28]) to verify the capability of LoRand. Experimental re-
sults show that LoRand-Tuning is comparable to fine-tuning
on multiple tasks with only 1.8% to 2.8% new backbone
parameters, which suggests that the pre-trained backbone
parameters can be fully shared. More interestingly, our
method completely outperforms fine-tuning on the PAS-
CAL VOC dataset, illustrating that LoRand-Tuning can re-
duce the impairment of fine-tuning on pre-trained models in
low-resource configurations. Our method demonstrates that
the LoRand-Tuning paradigm can substantially save storage
resources and achieve competitive performances on most
dense prediction tasks. In summary, our contributions are
three-fold:

• We demonstrate that visual pre-trained models are
highly generalisable and shareable. With our training
methods, new tasks require only a few trainable pa-
rameters to achieve performances comparable to fine-
tuning, which can save massive hardware resources.

• We propose the LoRand structure for sparser adapters
based on low-rank synthesis. We demonstrate that the
backbone parameters in fine-tuning are highly redun-
dant, which can be replaced by 1.8% to 2.8% addi-
tional parameters in LoRand.

• Extensive experiments on object detection, semantic
segmentation, and instance segmentation show that
LoRand-Tuning can achieve remarkable performances
and reduce massive new parameters in challenging
dense prediction tasks.

2. Related Work
2.1. Training Paradigms in NLP

Computer vision has been continuously inspired by NLP
in recent years, including the visual transformer series
[5,13,29,32] and self-supervised MAE series [15,19,60]. In
fact, NLP is leading new training trends different from fine-
tuning. Fine-tuning produces a new parameter set for each
new task, which is parametrically inefficient for plenty of
linguistic tasks [22,30]. To solve this problem, [30] and [22]
have proposed “Prompt Tuning” and “Adapter Tuning” re-
spectively, both of which fix all parameters of the backbone
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and plug a few tiny trainable structures (less than 10% of the
backbone) to adapt the pre-trained model to the new tasks.
“Prompt tuning” adds learnable parameters (also known
as prompts) to the input or intermediate layers to change
the input space of the new tasks. “Prompts” can motivate
the model to remember knowledge learned in the previous
tasks. “Adapter tuning” adds learnable bottleneck structures
after each block to connect the pre-trained model with new
tasks. Adapter and prompt demonstrate the coexistence of
parameter efficiency and high performances in NLP, stim-
ulating studies in CV. [24] proposes Visual Prompt Tuning
(VPT) for image classification and semantic segmentation,
but the performance of VPT on semantic segmentation is
still far from fine-tuning. This phenomenon motivates us to
explore whether adapter tuning can bring a new paradigm
in computer vision with fewer parameters and better perfor-
mances. In this work, we try to explore parameter-efficient
and high-performance adapter structures.

2.2. Adapter Tuning

Adapters have been widely studied in NLP. Houlsby
et al. [22] first add a bottleneck adapter structure to the
transformer blocks and fix the original backbone, which
achieves comparable performances to fine-tuning. Figure 3
illustrates the differences between fine-tuning and adapter-
tuning. [37, 44, 59] further reduce parameters in the adapter
with closer performances to fine-tuning. [18,34,39] outper-
form fine-tuning on low-resource tasks, demonstrating that
more parameters may not improve performance when fine-
tuning pre-trained models [36]. In computer vision, [41]
add convolutional adapters to the ResNet [20] and obtain
competitive results in image classification. Adapter con-
cept has also been applied in multimodal [33], vision-and-
language [51], and domain adaptation [56], but these meth-
ods are only applicable under specific conditions. [7, 21,
25, 31] investigate the potential of adapter-tuning for visual
classification. [8] apply the adapter structure to visual dense
predictions without fixing any original parameters, which
indeed trades more parameters for better performances.

2.3. Low-rank Approximation

The low-rank approximation uses multiple low-
dimensional tensors to approximate a larger tensor with
higher dimensions. Tensor dimensions and sizes in ma-
chine learning are very large, so low-rank approximations
are widely used in face recognition [61], distributed
training [54], transfer learning [11], and cross-domain [10].
A b × c matrix M can be approximated with N low-rank
matrices Q by the following equation:

Mb×c =

N∏
i=1

Qri×si , (1)
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Figure 3. Comparision between Adapter-Tuning and Fine-Tuning
paradigms. Fine-Tuning tunes ( ) all parameters delivered by
the pre-trained model. Adapter-Tuning freezes ( ) all structures
and parameters in the pre-trained model and only trains ( ) the
additional parameters in adapters. Parameters in the decoder and
head are trainable in both paradigms.

where N has different values depending on the approxima-
tion methods, we implement low-rank approximation of the
adapter matrices by heuristic learning.

3. Method
In this section, we will elaborate on the proposed

low-rank adapter (LoRand) in three parts: adapter tuning
paradigm, LoRand, and parameter analysis.

3.1. Adapter Tuning Paradigm

For datasetD = {(xi, yi)}Ni=1, fine-tuning calculates the
loss between inference results and labels according to the
formula:

L (D, θ) =

N∑
i=1

loss(fθ (xi) , yi), (2)

where fθ denotes the network forward function and loss
represents the loss function. After that, θ is optimized
through

θ ← arg minL(D, θ)
θ

. (3)

In adapter tuning paradigm, parameters consist of two
parts, including parameters in adapter θA and parameters
in the original architecture θ. Here, θ is further divided into
frozen part θF and trainable part θT , noted as θ = {θF , θT }.
Let Ω be all the trainable parameters, then Ω = {θA, θT }.
The loss function and optimization formula in adapter can
be written as:

L (D, θF ,Ω) =

N∑
i=1

loss(fθF ,Ω (xi) , yi), (4)
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Figure 4. Left: Multi-branch projection in LoRand. The down-projection WD and up-projection WU matrices are the summation of α
branches WD

1 (WU
1 )...WD

α (WU
α ). Ki in i-th branch is shared between WD

i and WU
i . All the P , Q, and K are trainable, while all the W

matrices are calculated. Right: Comparisons of the same-sized projection matrices between LoRand and Adapter. (m,n) in the table are
typical values in SwinBlocks. LoRand has far fewer parameters than Adapter. With the same projection dimension, LoRand saves over
80% parameters of the Adapter in Swin Transformers. (α, β) here are (2,8), the same as the experiments.

Ω← arg minL(D, θF ,Ω).
Ω

(5)

3.2. LoRand

Before introducing LoRand, we first review the exist-
ing adapter structure. Conventional adapters are bottleneck
structures containing a down-projection, an up-projection,
and a non-linear activation function. Besides, adapters en-
sure the robustness of the model by adding residual [20]
structures. Adapter layer can be formulated as follows:

Al = U l
(
GeLU

(
Dl (x)

))
+ x, (6)

where U l and Dl represent the up and down projections in
the l-th adapter layer, and GeLU is the activation function.
It is clear that the parameters in adapter come from the pro-
jections. The projection process can be written as:

y = Wx+ b, (7)

which means most adapter parameters are in W .
To reduce the adapter parameters, we propose a low-rank

adapter (LoRand) structure to replace the W in the projec-
tion structures. Figure 2 shows the simplified structure of
LoRand. Here we approximate not a specific matrix W but
an ideal matrixWbest that can transform the feature space of
the pre-trained model into new tasks by heuristic learning.
The approximation matrix Ŵ has the same size as W , but
the low-rank design makes Ŵ have far fewer free degrees
than a common W .

Specifically, we synthesize each W by multiplying three
low-rank matrices P ∈ Rβ×m,K ∈ Rβ×β , Q ∈ Rβ×n,

that is:
W = PTKQ, (8)

where β � min(m,n) ensuring that P and Q are low-rank
matrices. K can be regarded as a kernel matrix that controls
the parameter size of LoRand.

After that, we add multi-branch structures to LoRand to
increase the robustness and stability of low-rank matrices,
which is inspired by MoE [43] and adaboost [45,52]. Every
W consists of α branches, that is:

W =

α∑
i=1

Wi =

α∑
i=1

PTi KiQi. (9)

In addition, we share the kernel matrix K of the two
projection layers within each branch. We hope the sharing
mechanism can promote the coherence of two projection
layers during training process. Besides, the shared K also
slightly reduces the number of LoRand parameters. Up to
now, the WU and WD in a complete LoRand structure can
be represented as:

WU =

α∑
i=1

WU
i =

α∑
i=1

(P
U
i )

T
KiQ

U
i , (10)

WD =

α∑
i=1

WD
i =

α∑
i=1

(P
D
i )

T
KiQ

D
i , (11)

where Ki is shared in WU and WD. Figure 4 presents the
detailed designs of the multi-branch projection.
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3.3. Parameter Analysis

In this section, we will compare the parameters of Lo-
Rand and typical adapter [22] with the same size of projec-
tion matrix.

Adapter Let m be the input dimension of the adapter
and n be the middle layer dimension after down projection.
Then the number of parameters in each adapter is 2mn (ig-
noring the few biases). In general, adapter tuning places
two adapter modules in each block, so the space complexity
of all adapter parameters in γ blocks can be written as:

O(4γmn). (12)

LoRand According to section 3.2, eachW contains α sets
of {P,Q,K}, that is:

α(mβ + β2 + nβ). (13)

Each LoRand consists of two W and α shared K, so the
parameter quantity of each LoRand is:

2α
(
mβ + β2 + nβ

)
− αβ2 = 2αβ(m+ n+ β/2). (14)

Each block has two LoRand structures, so the number of
parameters in γ blocks is:

4αβγ (m+ n) + 2αβ2γ. (15)

As α, β, γ � min(m,n), the space complexity here can be
written as:

O (4αβγ (m+ n)) . (16)

Comparison between Formulas 12 and 16 can be simplified
as:

O(mn), (17)

and
O(αβ(m+ n)). (18)

Given that α, β � min(m,n), the space complexity of Lo-
Rand is far lower than the typical adapter. The table in Fig-
ure 4 illustrates that LoRand saves most Adapter parameters
with the same projecting dimension.

4. Experiments
We evaluate LoRand on multiple dense prediction tasks,

including object detection, semantic segmentation, and in-
stance segmentation. We also evaluate LoRand under low-
resource conditions. We first describe our experimental
setup in Section 4.1, including pre-trained backbones, base-
lines, LoRand settings, and downstream tasks. Then we
present the main results of three benchmarks in Section 4.2.
We also implement ablation study in Section 4.3 to investi-
gate the impact of structural settings in LoRand.

4.1. Experimental Setup

Pretrained Backbones We conduct experiments on the
advanced Swin Transformer [32] architectures. All back-
bones in this section are pre-trained by ImageNet-22k [9].
Pre-trained models are provided by OpenMMLab [6].

Baselines We compare LoRand with three other common
training methods:

(a) FULL: update all parameters in the architecture.

(b) FIXED: fix pre-trained parameters in Swin and train
other parts of the architecture (neck, head).

(c) ADAPTER: add two trainable adapter structures in
each SwinBlock following [22], and freeze other parts
of the backbone. We evaluate two forms of adapter
with different middle layer dimensions (DML):

- ADAPTER-B: DML is a half of input dimension.

- ADAPTER-T: DML is a quarter of input dimension.

LoRand Settings We conducted experiments on three Lo-
Rand variants, which have different branch numbers α and
kernel matrix dimensions β.

- LoRand: α = 2, β = 8 (Standard).

- LoRand+: α = 4, β = 8.

- LoRand++: α = 4, β = 16.

Downstream Tasks We conducted experiments on COCO
[28], ADE20K [62], and PASCAL VOC [14] benchmarks
to widely evaluate LoRand’s performance on main dense
prediction tasks.

COCO 2017 [28] is the most commonly used dataset for
object detection and instance segmentation, which contains
118K training and 5K validation images. We perform ex-
periments on the validation set. For a fair comparison, all
experiments performed on COCO employ Cascade MASK
R-CNN [32] as the detector.

ADE20K [62] is the most widely used semantic segmen-
tation dataset, which contains 20K training and 2K valida-
tion images. We also conduct experiments on the ADE20K
validation set and utilise UperNet [57] as the framework.

PASCAL VOC 0712 [14] is also widely used in object
detection, which contains about 16K training and 5K val-
idation images. VOC 0712 is much smaller than the latest
benchmarks, so we treat it as a low-resource case. We adopt
Faster RCNN [42] as the detector for VOC 0712.

All our experiments are conducted with 8x NVIDIA
Tesla V100 GPUs. The experiments on PASCAL VOC and
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Swin-L
(198M)

Trained∗
Params % ∆Full

Extra
Structure

Pascal VOC
(Faster RCNN)

ADE20K
(UperNet)

APBox ∆LoRand mIoU ∆LoRand

Baselines

FULL 198.58 M 100.00 % - 7 84.43 % - 2.69 % 53.25 % + 1.34 %
FIXED 0.00 M 0.00 % - 100.00 % 7 85.19 % - 1.93 % 32.21 % - 19.70 %

ADAPTER-B 32.04 M 16.13 % - 83.87 % 3 80.93 % - 6.19 % 46.23 % - 5.68 %
ADAPTER-T 16.04 M 8.08 % - 91.92 % 3 78.10 % - 9.02 % 43.51 % - 8.40 %

Our Methods

LORAND 3.59 M 1.84 % - 98.16 % 3 87.12 % - 50.67 % -
LORAND+ 7.19 M 3.62 % - 96.38 % 3 87.63 % + 0.51 % 51.13 % + 0.46 %
LORAND++ 14.24 M 7.17 % - 92.83 % 3 88.11 % + 0.99 % 51.87 % + 1.20 %

Table 1. Results of baselines and our methods on Pascal VOC and ADE20K benchmarks. Swin-L is employed as the pre-trained model
here. We present the numbers and percentages of trainable backbone parameters on the left and all the performences on the right. ∗ denotes
the trainable parameters in backbones.

Swin-B
(89M)

Trained∗
Params % ∆Full

Extra
Structure

COCO
(Cascade Mask R-CNN)

APBox ∆LoRand APMask ∆LoRand

Baselines

FULL 89.14 M 100.00 % - 7 51.90 % + 0.80 % 45.00 % + 0.90 %
FIXED 0.00 M 0.00 % - 100.00 % 7 15.30 % - 35.80 % 10.80 % - 33.8 %

ADAPTER-B 14.38 M 16.13 % - 83.87 % 3 46.50 % - 4.60 % 40.20 % - 3.90 %
ADAPTER-T 7.20 M 8.08 % - 91.92 % 3 43.20 % - 7.90 % 38.70 % - 5.40 %

Our Methods

LORAND 2.39 M 2.76 % - 97.24 % 3 51.10 % - 44.10 % -
LORAND+ 4.73 M 5.31 % - 94.69 % 3 51.20 % + 0.10 % 44.30 % + 0.20 %
LORAND++ 9.32 M 10.46 % - 89.54 % 3 51.50 % + 0.40 % 44.40 % + 0.30 %

Table 2. Results of baselines and our methods on COCO benchmarks. Swin-B is employed as the pre-trained model here. We present
the numbers and percentages of trainable backbone parameters on the left and all the performences on the right. ∗ denotes the trainable
parameters in backbones.

ADE20K are based on Swin-S, Swin-B, and Swin-L pre-
trained models. Limited by GPU memory, the COCO ex-
periments are based on Swin-T, Swin-S, and Swin-B.

4.2. Main Results

We first compare the trainable backbone parameters and
performance of these methods on three benchmarks in Ta-
bles 1 and 2. Table 1 shows the results of PASCAL VOC
and ADE20K datasets based on Swin-L, and Table 2 shows
the results of COCO based on Swin-B. From Tables 1 and
2, we can see that:
1) LoRand can effectively address the dilemma of fine-
tuning in low-resource situations. Table 1 shows that
FIXED outperforms FULL on the PASCAL VOC dataset,
which implies that the powerful generalization ability of
pre-trained model is severely weakened during fine-tuning.
Fine-tuning with low-resource data reduces the feature un-
derstanding of pre-trained models, which leads to the poor
performance on downstream tasks. LoRand avoids this dis-

advantage by fixing the original parameters. More impor-
tantly, LoRand can absorb features from the new data by
its smaller trainable structures. Table 1 indicates that Lo-
Rand outperforms FULL and FIXED by 2.69% and 1.93%
on the low-resource dataset with only 1.84% trainable back-
bone parameters. LoRand+ and LoRand++ also outperform
FULL by 3.2% and 3.68% with 3.62% and 7.17% backbone
parameters. In fact, there are many other common computer
vision datasets with similar volumes to the PASCAL VOC,
including CUB-200-2011 [55], Oxford 102 Flowers [35],
Stanford Cars [27], and Caltech-256 [16]. The prevalence
of “Pretrained & Finetuning” leads us to focus more on gi-
ant benchmarks, but Table 1 suggests we need a better train-
ing paradigm to cope with many low-resource situations in
industrial applications. LoRand-Tuning proves to be a com-
petitive candidate who brings promising performance and
parameter-efficient approaches to low-resource cases.

2) LoRand effectively balances the number of train-
able backbone parameters and downstream task per-
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formance. Tables 1 and 2 demonstrate that LoRand (stan-
dard) performs very closely to FULL on large benchmarks
with only 1.84% to 2.76% trainable parameters. By tun-
ing less than 3.6M backbone parameters, LoRand (stan-
dard) achieves 50.67% (mIOU) on ADE20K, and 51.10%
(APBox) / 44.10% (APMask) on COCO, which is only
about 1.5% off on average compared to FULL. LoRand+
and LoRand++ further reduce the gap between these two
paradigms to approximately 1% with slight parameter in-
creases. For Swin-L, LoRand saves about 195M parameters
per copy compared to FULL. For Swin-B, LoRand saves
about 86 M. These results are interesting, which means we
do not have to spend plenty of hardware resources to store
these redundant parameters. Industrial service providers de-
liver thousands of model training tasks every day. With
LoRand-Tuning, millions of gigabytes per year for model
storage could be saved.
3) LoRand effectively broadens the potential of conven-
tional parameter-efficient adapter structures in dense
predictions. From the results, we can draw similar conclu-
sions to [24] that the standard adapter [22] performs worse
than fine-tuning on dense predictions. Tables 1 and 2 il-
lustrate that the ADAPTER’s performance is far from FULL,
although it reduces 80% of trainable backbone parameters.
Also adding new structures, LoRand achieves comparable
performance to FULL by training fewer parameters than the
ADAPTER. Overall, Tables 1 and 2 demonstrate the feasi-
bility of parameter-efficient tuning paradigm in visual dense
prediction tasks.
Comparisons with other fine-tuned backbone. We then
show the comparisons of LoRand with some other remark-
able fine-tuned backbones in Table 3. Table 3a shows the
results based on UperNet and ADE20K, and 3b shows the
results based on Cascade MASK R-CNN and COCO. Table
3 shows that LoRand (based on Swin-Transformer) can out-
perform most existing fine-tuned backbones with less than
2M parameters. Compared to these backbones, LoRand not
only presents more robust and superior results but also saves
massive hardware resources in this era of parameter explo-
sion. Specifically, LoRand (Swin-T) exceeds COCO by
1.9% (APBox) and 1.2% (APMask) with 80.12M fewer new
backbone parameters than ResNeXt-101-64. Similarly, Lo-
Rand (Swin-L) surpasses 5.82% (mIoU) on ADE20K with
40.41M fewer trainable backbone parameters than ResNet-
101.
Comparisons on different backbone scales. In addition
to Swin-L and Swin-B, we also conduct extensive experi-
ments on Swin-S and Swin-T. We illustrate the performance
of baselines and LoRand on multiple backbones. Figure
5 shows the performance of the six methods on different
backbone scales, which includes three Swin variants for
each benchmark. As FIXED’s performance on COCO and
ADE20K is too low to display, we only show FIXED’s re-

(a) Comparisons between LoRand-Tuning and Fine-Tuning on COCO.

Backbone Trained
Params∗ APBox APMask

Fine-Tuning Paradigm

ResNet-101 44 M 47.9 % 41.5 %

ResNeXt-101-32 40 M 48.1 % 41.6 %

ResNeXt-101-64 81 M 48.3 % 41.7 %

DeiT-S 22 M 48.0 % 41.4 %

Swin-T 29 M 50.5 % 43.7 %

Swin-S 50 M 51.8 % 44.7 %

Swin-B 88 M 51.9 % 45.0 %

LoRand-Tuning

LoRand (Swin-T) 0.88 M 50.2 % 42.9 %

LoRand (Swin-S) 1.80 M 50.7 % 43.8 %

LoRand (Swin-B) 2.39 M 51.1 % 44.3 %
(b) Comparisons between LoRand-Tuning and Fine-Tuning on ADE20K.

Backbone Trained Params∗ APMask

Fine-Tuning

ResNet-18 12 M 39.97 %

ResNet-50 25 M 42.78 %

ResNet-101 44 M 44.85 %

DeiT-S 22 M 44.01 %

Swin-S 50 M 49.30 %

Swin-B 88 M 51.60 %

Swin-L 197 M 53.25 %

LoRand-Tuning

LoRand (Swin-S) 1.80 M 47.33 %

LoRand (Swin-B) 2.39 M 49.62 %

LoRand (Swin-L) 3.59 M 50.67 %

Table 3. Comparisons between LoRand-Tuning and Fine-Tuning
on ADE20K and COCO. We fine-tune multiple backbones and
compare their performances with LoRand series. Architectures
in (a) and (b) are Cascade Mask R-CNN and UperNet. Parameters
in decoder and head are updated in both paradigms. ∗ denotes the
trainable parameters in backbones.

sults in the PASCAL VOC. Figure 5 indicates that the per-
formance of most methods improves as the backbone scale
gets larger. For the LoRand series, more parameters bring
better performance, but it is still challenging to outperform
FULL on large datasets. For the ADAPTER, ADAPTER-B
performs better than ADAPTER-T, suggesting that adding
extra parameters does help improve adapter-tuning per-
formance. Experiments on Swin variants systematically
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values of APBox and APMask in COCO.

demonstrate that LoRand can outperform both FULL and
traditional adapter structures in low-resource cases and per-
form very closely to FULL in large benchmarks.

4.3. Ablation Study

In this section, we ablate two key hyperparameters in Lo-
Rand: the LoRand branch number α and the kernel matrix
dimension β. α affects the distributed decision-making of
LoRand, while β focuses on a single branch’s learning ca-
pability and consistency.

Several sets of ablation experiments are designed and
implemented to investigate the effect of α and β on the per-
formance of LoRand. The ablation experiments were con-
ducted on the same three benchmarks. In order to improve
the upper limit of LoRand, our experiments are conducted
on the largest backbone of each dataset (ADE20K/PASCAL
VOC: Swin-L, COCO: Swin-B). The value sets of α and β
are {2, 4, 6} and {4, 8, 16}. Figure 6 shows the results of
ablation studies on three datasets. In most cases, LoRand’s
performance increases slightly as α and β become larger but
hardly outperforms fine-tuning on large benchmarks. Be-
sides, exponentially increasing the size of the LoRand does

not result in an equivalent performance improvement and
even leads to a reduction (α=6 in VOC and COCO). Ab-
lation studies demonstrate that larger LoRands have fewer
gains both in parameter efficiency and performance. We
have considered this trade-off when designing the LoRand
standard, LoRand+, and LoRand++.

5. Conclusion

This paper presents LoRand, a parameter-efficient low-
rank adapter for dense predictions, which completely shares
the feature understanding of advanced pre-trained mod-
els and effectively transfers it to downstream tasks. Lo-
Rand performs on par with fine-tuning in COCO instance
segmentation, ADE20K semantic segmentation, and PAS-
CAL VOC object detection with only 1% to 3% train-
able backbone parameters. Moreover, LoRand effectively
avoids the disadvantages of the fine-tuning paradigm and
delivers better performance in low-resource situations. We
hope that parameter-efficient LoRand can save massive re-
dundant storage resources and facilitate a unified training
paradigm for vision and language.

20123



References
[1] Caisse Amisse, Mario Ernesto Jijón-Palma, and Jorge An-

tonio Silva Centeno. Fine-tuning deep learning models for
pedestrian detection. Boletim de Ciências Geodésicas, 27,
2021. 1

[2] Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke Zettle-
moyer, and Michael Auli. Cloze-driven pretraining of self-
attention networks. arXiv preprint arXiv:1903.07785, 2019.
1

[3] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Alt-
man, Simran Arora, Sydney von Arx, Michael S Bernstein,
Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al.
On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258, 2021. 1

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877–1901, 2020. 1

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213–229. Springer, 2020. 2

[6] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, et al. Mmdetection: Open mmlab detection tool-
box and benchmark. arXiv preprint arXiv:1906.07155, 2019.
5

[7] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang,
Yibing Song, Jue Wang, and Ping Luo. Adaptformer: Adapt-
ing vision transformers for scalable visual recognition. arXiv
preprint arXiv:2205.13535, 2022. 3

[8] Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong
Lu, Jifeng Dai, and Yu Qiao. Vision transformer adapter for
dense predictions. arXiv preprint arXiv:2205.08534, 2022.
3

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 1, 2, 5

[10] Zhengming Ding and Yun Fu. Deep transfer low-rank cod-
ing for cross-domain learning. IEEE transactions on neural
networks and learning systems, 30(6):1768–1779, 2018. 3

[11] Zhengming Ding, Ming Shao, and Yun Fu. Deep low-rank
coding for transfer learning. In Twenty-Fourth International
Joint Conference on Artificial Intelligence, 2015. 3

[12] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi,
Hannaneh Hajishirzi, and Noah Smith. Fine-tuning pre-
trained language models: Weight initializations, data orders,
and early stopping. arXiv preprint arXiv:2002.06305, 2020.
2

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International Con-
ference on Learning Representations, 2020. 2

[14] Mark Everingham, SM Eslami, Luc Van Gool, Christo-
pher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes challenge: A retrospective. Inter-
national journal of computer vision, 111(1):98–136, 2015. 2,
5

[15] Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, and Kaim-
ing He. Masked autoencoders as spatiotemporal learners.
arXiv preprint arXiv:2205.09113, 2022. 2

[16] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256
object category dataset. 2007. 6

[17] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu,
Yuqi Huo, Jiezhong Qiu, Yuan Yao, Ao Zhang, Liang Zhang,
et al. Pre-trained models: Past, present and future. AI Open,
2:225–250, 2021. 1

[18] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. Towards a unified view of
parameter-efficient transfer learning. In International Con-
ference on Learning Representations, 2021. 3

[19] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16000–
16009, 2022. 2

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3, 4

[21] Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei Yang,
and Xin Eric Wang. Parameter-efficient fine-tuning for vi-
sion transformers. arXiv preprint arXiv:2203.16329, 2022.
3

[22] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In International Conference on Machine
Learning, pages 2790–2799. PMLR, 2019. 2, 3, 5, 7

[23] Fatsuma Jauro, Haruna Chiroma, Abdulsalam Y Gital,
Mubarak Almutairi, M Abdulhamid Shafi’i, and Jemal H
Abawajy. Deep learning architectures in emerging cloud
computing architectures: Recent development, challenges
and next research trend. Applied Soft Computing, 96:106582,
2020. 1

[24] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. arXiv preprint arXiv:2203.12119, 2022.
2, 3, 7

[25] Shibo Jie and Zhi-Hong Deng. Convolutional bypasses
are better vision transformer adapters. arXiv preprint
arXiv:2207.07039, 2022. 3
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