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Abstract

Recently, a surge of high-quality 3D-aware GANs have

been proposed, which leverage the generative power of neu-

ral rendering. It is natural to associate 3D GANs with GAN

inversion methods to project a real image into the gener-

ator’s latent space, allowing free-view consistent synthesis

and editing, referred as 3D GAN inversion. Although with

the facial prior preserved in pre-trained 3D GANs, recon-

structing a 3D portrait with only one monocular image is

still an ill-pose problem. The straightforward application

of 2D GAN inversion methods focuses on texture similarity

only while ignoring the correctness of 3D geometry shapes.

It may raise geometry collapse effects, especially when re-

constructing a side face under an extreme pose. Besides,

the synthetic results in novel views are prone to be blurry.

In this work, we propose a novel method to promote 3D

GAN inversion by introducing facial symmetry prior. We

design a pipeline and constraints to make full use of the

pseudo auxiliary view obtained via image flipping, which

helps obtain a view-consistent and well-structured geome-

try shape during the inversion process. To enhance texture

fidelity in unobserved viewpoints, pseudo labels from depth-

guided 3D warping can provide extra supervision. We de-

sign constraints to filter out conflict areas for optimization

in asymmetric situations. Comprehensive quantitative and

qualitative evaluations on image reconstruction and editing

demonstrate the superiority of our method.

1. Introduction

Recent 3D-aware generative adversarial networks (3D

GANs) have seen immense progress. By incorporating

a neural rendering engine into the generator network ar-

chitecture, 3D GANs can synthesize view-consistent im-

ages. To increase the generation resolution, existing meth-

ods [5, 12, 25, 30, 31, 36±38, 41] boost the 3D inductive bias
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Figure 1. Visual examples of our inversion method. Direct apply-

ing 2D GAN inversion methods (PTI [28]) to the 3D GAN suffers

from inaccurate geometry in novel views. Our method excels in

synthesizing consistent geometry and high-fidelity texture in dif-

ferent views, even reconstructing a face under an extreme pose.

with an additional 2D CNN-based upsampler or an efficient

3D representation modeling method. With tremendous ef-

fort, 3D GANs can produce photorealistic images while en-

forcing strong 3D consistency across different views.

We are interested in the task of reconstructing a human

face with 3D geometry and texture given only one monocu-

lar image. It is an ill-posed problem and close to the harsh

condition of real scenarios. With the power of 3D GANs,

it seems achievable via projecting a target image onto the

manifold of a pre-trained generator. The process is referred

as 3D GAN inversion. A straightforward path is to follow

the 2D GAN inversion method [28], i.e., optimizing the la-

tent code and the network parameters of the generator to

overfit the specific portrait.
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the final published version of the proceedings is available on IEEE Xplore.
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However, since the ground truth 3D geometry is absent

given one monocular image, the inversion result is far from

satisfactory. The process of fitting a 3D GAN to one im-

age would sacrifice geometric correctness in order to make

the synthetic texture as close as possible to the input, even

destroying the original semantic-rich latent space. As the

optimization process goes, the face geometry tends to de-

generate into a flattened shape, due to the absence of geom-

etry supervision, e.g., images from other views. Besides,

there exist quality issues in texture synthesis under novel

views. The rendered images of unseen views tend to be

blurry and inconsistent with the original image, especially

when reconstructing a side face under an extreme pose. Be-

cause there is no texture supervision for unseen views given

only one monocular image. The failure cases of directly

applying [28] are illustrated in Fig. 1.

In this work, to alleviate the issue caused by missing ge-

ometry and texture supervision under multiple views, we

propose a novel 3D GAN inversion approach by taking full

advantage of facial symmetry prior to construct pseudo su-

pervision of different views. Intuitively, we note that human

faces are almost symmetric. Assuming the given portrait is

symmetric, we can obtain an additional perspective of the

portrait by simply mirroring the image. The images of two

distinct views can provide geometric relations between the

3D points and their 2D projections based on epipolar geom-

etry. Motivated by this, we seek to leverage facial symmetry

as the geometric prior constraining the inversion. The sym-

metry prior is also employed in a traditional 3D reconstruc-

tion work [35]. We leverage the mirrored image as extra

supervision of another view when performing the inversion,

which prevents the geometry collapse. A rough geometry

can be obtained by the inversion with the original and mir-

ror images.

To further enhance texture quality and geometry in novel

views, we employ depth-guided 3D warping to generate the

pseudo images of the views surrounding the input and sym-

metric camera pose. The depth is inferred from the rough

3D volume. The original image along with the pseudo im-

ages are used to fine-tune the generator’s parameters for the

joint promotion of texture and geometry. To prevent the op-

timized geometry from deviating too much from the rough

geometry, we design a geometry regularization term as a

constraint. However, human faces are never fully symmet-

ric in practice, neither in shape nor appearance. Therefore,

we design several constraints to extract meaningful infor-

mation adaptively from the mirror image without compro-

mising the original reconstruction quality.

Our main contributions are as follows:

• We propose a novel 3D GAN inversion method by in-

corporating facial symmetry prior. It enables a high-

quality reconstruction while preserving the multi-view

consistency in geometry and texture.

• We conduct comprehensive experiments to demon-

strate the effectiveness of our method and compare it

with many state-of-the-art inversion methods. We also

apply our method to various downstream applications.

2. Related Work

2.1. 3D-Aware GANs

Recently, neural scene representations have incorpo-

rated 3D prior into image synthesis with explicit cam-

era control. Inspired by the success of Neural Radiance

Fields (NeRF) [22], [6,24] employ implicit volumetric neu-

ral rendering structure for consistent novel view synthesis,

required only unconstrained monocular images training. To

overcome the computational cost and lift the generation res-

olution, the following methods adopt a two-stage rendering

process [5, 12, 21, 25, 30, 31, 37, 38, 41, 42]. Since 2D up-

samplers may introduce view-inconsistent artifacts, NeRF

path regularization [12] and dual discriminators [5] are pro-

posed. Different 3D modeling representations are further

designed for scalable and fast rendering. EG3D [5] intro-

duces tri-plane representation, and GRAM-HD [36] pro-

poses to render radiance manifolds first for efficient sam-

pling. Boosting with the powerful high-fidelity uncondi-

tioned 3D GANs, we can achieve real image 3D reconstruc-

tion and editing. Specifically, we select the state-of-the-art

EG3D [5] as our backbone.

2.2. GAN Inversion

To edit a real image [29, 39], GAN inversion is applied

first to discover a corresponding latent code from which the

generator can synthesize the real image. Existing 2D GAN

inversion approaches can be categorized into optimization-

based, learning-based, and hybrid methods. [1, 16] directly

minimize the reconstruction distance via optimizing the la-

tent codes. Learning-based methods [2, 3, 32, 34] exploit a

general encoder network to map the input image into latent

space in real-time. Hybrid methods would apply the latent

code predicted from the encoder as initialization in the later

optimization process. Beyond the original inversion latent

space, PTI [28] further optimizes the parameters of the gen-

erator to enhance the visual fidelity.

As for the 3D GAN inversion task, most methods di-

rectly transfer the 2D methods, e.g., PTI [28] and e4e [32],

which may suffer from the poor results in novel views.

Pix2NeRF [4] introduced a joint distillation strategy for

training a 3D inversion encoder. A concurrent work [18]

proposes to perform camera pose optimization simultane-

ously to ensure view consistency. However, none of the

above methods take geometry shape into consideration.
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Figure 2. The proposed framework. A) Our method first performs inversion with the help of the symmetry view to achieve the latent code

w
+ with a roughly correct geometry. B) The original image and the mirror one, along with adjacent warping pseudos, are used for joint

optimization to enhance the geometry and texture of rendered images in novel views. C) Depth-guided 3D warping are used to generate

pseudo images in novel views to provide extra supervision. Unfaithful regions are filtered out with the authentic mask.

2.3. Few-shot NeRF

Few-shot NeRF aims at reconstructing general 3D sce-

narios where only a few observed views are available, which

shares a similar setting with 3D GAN inversion. MVS-

NeRF [7] leverages plane-swept cost volumes in multi-view

stereo for geometry-aware scene reasoning to improve per-

formance. DietNeRF [13] enforces semantic consistency

between rendered images from unseen view and seen im-

ages via a CLIP encoder [27]. RegNeRF [23] regularizes

the texture of patches rendered from unobserved viewpoints

without relying on additional training modules. Since it is

hard to find a common prior for general scenes, these meth-

ods investigate how to ensure the geometry consistency of

different views, which gives us inspiration.

3. Definition of 3D GAN Inversion

Similar to 2D GAN inversion, 3D GAN inversion aims

to project an input image I onto the manifold of a pre-

trained unconditional 3D GAN model G3D(·; θ) parameter-

ized by weight θ. After inversion, G3D can reconstruct the

image faithfully given the corresponding camera pose, syn-

thesize content-consistent images in novel views, and facil-

itate downstream tasks like face editing. One formulation

of the 3D GAN inversion problem is defined as follows:

w∗ = argmax
w

= L(G3D(w, π; θ), I), (1)

where w is the latent representation in W+ space and π is

the corresponding camera matrix of input image. The loss

function L(·, ·) is usually defined as pixel-wise reconstruc-

tion loss or perceptual loss. In our settings, camera matrix

π is known, which is extracted by a pre-trained detector [9].

This formulation cares about the W+ space. However, the

inversion in the W+ space is always not enough to capture

local facial details, resulting in inaccurate reconstruction.

Following the recent optimization-based 2D GAN inversion

method [28], we perform the inversion in the extended la-

tent space for more accurate reconstruction, i.e., the com-

bination of the W+ space and the parameter space. The

formulation is defined as:

w∗, θ∗ = argmax
w,θ

= L(G3D(w, π; θ), I). (2)

Note that w and θ are optimized alternatively, i.e., w is op-

timized using Eq. (1) first and then θ is optimized with the

fixed w∗.

4. The Proposed Approach

Our goal is to reconstruct a human face through a pre-

trained 3D GAN given a single monocular image. The re-

construction is supposed to preserve authentic appearance

texture and geometry shape in novel views. Due to the lim-

ited information about geometry and texture from a single

image, overfitting a single view tends to be trapped in ge-

ometry collapse, get the blurry texture and miss details in

unseen views, especially when reconstructing a side face

under an extreme pose. To overcome the issue of lacking

information about other views, we introduce facial symme-

try prior to promote inversion. We propose a two-stage in-

version pipeline, i.e., inversion for rough geometry and joint

optimization of geometry and texture. In the first stage, we

obtain a rough geometry by optimizing the latent code w us-

ing the original and mirror images in Sec. 4.1. In the second

stage, we refine the geometry and texture by optimizing the

parameter θ with the depth-guided 3D warping and a set of

designed constraints in Sec 4.2. An overview of our method

is shown in Fig. 2.

4.1. Inversion with Symmetry for Rough Geometry

The purpose of this stage is to learn a rough geometry as

a pivot for further tuning. To compensate for the missing
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Figure 3. Visualization of warped pseudos. The red bounding box contains the range of employed pseudos, depending on the yaw angle of

the input image. A frontal face can be warped by a wider range of yaw angles than a side face to get authentic pseudos.
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Figure 4. Visualization of authentic mask and warped pseudo.

information of unseen views, we resort to facial symmetry

prior, i.e., the left face is almost the same as the right one.

We simply flip the input image Is horizontally to get the

mirror image Im whose corresponding camera pose πm can

be calculated by multiplying a fixed matrix by the camera

extrinsic parameters of πs. The intrinsic parameters are un-

changed. The mirror image serves as the pseudo-projected

image under a novel view.

Since human faces are not always perfectly symmetric,

the mirror image is just an approximation under the novel

view. There exists inconsistent content between the original

image and the mirror one if they have an overlapping face

region, i.e., different colors in the position, referred as con-

flict content. The inversion should depend more on the orig-

inal image and take partial useful information from the mir-

ror one. Furthermore, we observe that a frontal face can pro-

vide more effective information than a side face. A nearly

frontal face provides plenty of facial information, and we

should trust less on its mirror image to avoid conflict in the

overlapping region. While a side face provides information

for only half one face, it has only a small overlapping con-

flict region with its mirror image. Hence, we should trust

more on the mirror image. We exploit an adaptive weight-

ing strategy for the importance of the mirror image accord-

ing to its yaw angle αyaw. We use a Gaussian function with

respect to αyaw to approximate the importance of different

views. The weight λm of the mirror image is defined as:

E(x) = 1

σ
√
2π

e−
(x−µ)2

2σ2 , (3)

λm =

{

1− E(αyaw), if E(αyaw) ≤ k;

0, if E(αyaw) > k;
(4)

where σ, µ and k are hyper-parameters. As a nearly frontal

mirror face can compensate for very limited extra informa-

tion for the original image, its weight λm is clamped to 0.

To optimize the latent code in W+ space, the Perceptual

loss [40] is used to minimize the distance between the gen-

erated results and the original and mirror images. Follow-

ing [17, 28], a noise regularization term Ln(n) is employed

to prevent the noise vector from containing vital informa-

tion. The objective in this stage is defined as follows:

Linv = LLPIPS(G3D(w, πs; θ), Is)+

λmLLPIPS(G3D(w, πm; θ), Im) + λnLn(n),
(5)

where n is the noise vector and λn is a trade-off parame-

ter. The generator is kept frozen at this stage. Visual il-

lustrations in Fig. 8 show that the geometry can be greatly

improved with the facial symmetry prior.

4.2. Joint Optimization of Geometry and Texture

Though we obtain the rough geometry via the optimiza-

tion of w in the first stage, there is a distinct gap between

the texture of the rendered face and that of the original

one, even under the same camera pose. The rendered face

shares a similar face geometry with the original one, but

it becomes a different identity. In this stage, we optimize

the generator’s parameters θ to bridge the texture gap for

identity preservation and refine the rough geometry as well.

We design a geometry regularization constraint to avoid the

model degrading to generate flattened geometry. Moreover,

we construct a set of pseudo images in different views to

provide supervision via depth-guided 3D warping.

Geometry Regularization. We observe that optimizing the

generator without any constraint on the geometry will cause

the deviation of the geometry from the rough one, resulting

in a flattened geometry similar to the case of inversion with

a single image. To avoid the geometry drift during over-

fitting the texture, we regularize the optimized density ob-

tained from the 3D volume of 3D GAN to be similar to that

from the rough volume obtained in the first stage. Specifi-

cally, with the fixed w, we generate depth maps D from 3D

GAN under different sampled views and calculate L2 dis-

tance between them with the corresponding depth maps D0

generated from the un-tuned generator in the first stage:

Ldepth =
∑

i∈S

∥Di −Di
0∥2, (6)
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where S is the sampled camera pose set.

Depth-guided 3D Warping for Pseudo Supervision. Op-

timizing the generator with only two images is still not

enough to capture the facial details, resulting in blurry ef-

fects around facial components such as eyes (see Fig. 11).

Hence, we propose to construct pseudo images of differ-

ent views for extra supervision using the rough geometry

and the original and mirror images. Specifically, given the

original image (source view) and the rough geometry, we

can synthesize an image under a novel view (target view)

by warping with 3D guidance. A coordinate pixel pt of the

synthesized image in the target view can be obtained by pro-

jecting back onto the source view with the relative camera

pose πt→s and the camera intrinsic parameters K:

pt→s = Kπt→sDt(pt)K
−1pt, (7)

where Dt(·) is the depth map of the target view. Since

the projected coordinate pt→s are continuous values, we

can extract the color values from the original image with

a differentiable bilinear sampling mechanism, i.e., Is→t =
Is(pt→s). The low-resolution depth map will be upsampled

to match the dimension of the image.

Authentic Mask. Without distinguishing the foreground

pixels from the background, the background pixels in the

original image may be projected onto the foreground plane,

leading to erroneous results. To overcome this issue, we

form a mask to indicate the visibility of pixels to filter invis-

ible areas using the rendered depth values. Specifically, we

can get the projected depth value Ds(pt→s) via sampling

from the depth map in the source view. Here we employ the

euclidean distance between Ds(pt→s) and the depth map

Dt(pt) in the target view to calculate the mask. A large

distance indicates the pixel pt is invisible. To ensure the

projected pixels are located on the front visible surface, we

only preserve the area where the distance is under a thresh-

old τ :

M(pt) = ∥Dt(pt)−Ds(pt→s)∥ < τ. (8)

Furthermore, due to the poor depth estimation of the back-

ground, only the facial part would be warped. We warp the

facial mask of the source view to the target view and mul-

tiply it with the visibility mask M(pt) to get the authentic

mask Mt. An example is shown in Fig. 4. After multiply-

ing the mask Mt with the warped image Is→t, the resulting

image can be used for supervision.

Adjacent View Warping. Fig. 3 illustrates the warping re-

sults of two examples. When the yaw angle between the

source and target views increases, the warping results have

more distortions and become less authentic. Therefore, it is

intuitive to abandon the pseudo images of the target views

that deviate a lot from the source view. Empirically, a

frontal face can be warped by a wider range of yaw an-

gles than a side face to get authentic pseudo images. The

variance of sampling yaw angles for constructing pseudo

images is set to a fixed ratio of λm that depends on the view-

point mentioned in Sec. 4.1. The LPIPS loss [14] is used to

compute the multi-view pixel-wise distance as follows:

Ladj = LLPIPS(Mt ·G3D(w, πt; θ),Mt · Is→t). (9)

Although the pseudo images of several unseen adjacent

views around the source view have been constructed, it

brings marginal improvements on remote views. Especially

for a side face, the pseudo images of the remote views are

blurry and have incomplete texture (see Fig. 3). There-

fore, we also construct pseudo images of the adjacent views

around the view of the mirror image.

Since the conflict region between the original and mirror

images has a side effect on the generator optimization pro-

cess, resulting in blurry effects on rendered images, even re-

constructing the source view (see Fig. 9), we propose to take

partial meaningful information from the symmetric views

without harming the original inversion quality. We com-

pute the similarities only for facial components, rather than

the whole face region. Besides, instead of using a pixel-

wise loss, we exploit the contextual loss [20] to improve the

texture quality. The loss for symmetric views is defined as:

Lsym =
∑

c∈F

LCX(ROIc(G3D(w, πt; θ)),ROIc(Im→t)),

(10)

where Im→t is the pseudo image of the viewpoint πt

warped from the mirror image Im. ROIc(·) refers to the

region of interest component c from the collection F =
{eyes, nose,mouth}.

The reconstruction loss between the original image and

its corresponding rendered image is still in use to ensure the

quality of the initial perspective, which is defined as:

Lori = L2(G3D(w, πs; θ), Is) + LLPIPS(G3D(w, πs; θ), Is).
(11)

The overall objective of optimizing the generator’s parame-

ters is defined as:

Lopt = Lori + λadjLadj + λsymLsym + λdepthLdepth. (12)

The trade-off hyper-parameters are set as follows: λadj =
0.1, λsym = 0.05, and λdepth = 1.

5. Experiments

5.1. Experimental Settings

Datasets. We conduct the experiments on human faces

datasets. For all experiments, we select EG3D [5]

as our 3D GAN prior, which is pre-trained on FFHQ

dataset [15]. We verified quantitative metrics on CelebA-

HQ test dataset [19]. We further evaluated on MEAD [33], a
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Source Image
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Figure 5. Qualitative comparisons with state-of-the-art methods on novel view synthesis. The reconstruction quality of the original view

is presented in the first row. The texture and geometry in novel views are shown in the rest rows.

Method MSE ↓ LPIPS ↓ MS-SSIM ↓ ID ↑ Pose ↓ Depth ↓

SG2 [16] 0.0881 0.3231 0.3557 0.8209 0.043 0.0505

SG2 W+ [1] 0.0439 0.2261 0.2483 0.8735 0.040 0.0500

PTI [28] 0.0084 0.0920 0.0980 0.9432 0.037 0.0510

SPI (Ours) 0.0082 0.0865 0.0991 0.9470 0.036 0.0476

Table 1. Quantitative comparison on CelebA-HQ [19].

multi-view high-quality video dataset. The first frame from

each viewpoint video of 10 identities is extracted for testing.

Metrics. We evaluate image reconstruction quality and

similarity with the following metrics: mean squared er-

ror (MSE), perceptual similarity loss (LPIPS) [40], struc-

tural similarity (MS-SSIM), and identity similarity (ID) by

employing a pre-trained face recognition network [8].

Baselines. We mainly compare our methods with

optimization-based 2D GAN inversion methods. SG2 [16]

directly inverts real images into W space with an optimiza-

tion scheme. [1] extends the inversion into W+ space, de-

noted by SG2 W+. PTI [28] would further tune generator

parameters in a second stage. For a fair comparison, both

PTI and ours first optimize the latent for 500 steps and then

fine-tune the generator for 1, 000 steps, while SG2 and SG2

W+ optimize the latent for 1, 500 steps.

5.2. Reconstruction and Novel View Synthesis

Qualitative Evaluation. Fig. 5 presents a qualitative com-

parison of texture and geometry quality of different views.

As for the original view, our method is able to inverse chal-

lenging details such as earrings, make-up, and wrinkles,

which demonstrates that we do not sacrifice the original

reconstruction performance. When the camera rotates to

0.55

0.6

0.65

0.7

0.75

0.8

0.85

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

ID Similarity

SG SGW+ PTI Ours

Figure 6. Comparison of identity preservation in novel views. The

x-axis represents the yaw angle of the input image. ‘0’ indicates

the frontal face.

novel views, images generated from 2D inversion meth-

ods present a twisted appearance, due to the nearly flat-

tened geometry shape. Since SG2 does not deviate too far

from the initial GAN space, it can generate a portrait with a

structured geometry, but fails to preserve the identity. Our

method is capable of maintaining authentic and consistent

geometry in novel views along with a sharp appearance,

even when rotated to an extreme pose.

Quantitative Evaluation. The reconstruction metrics of

the original view are shown in Table 1. As can be seen, the

results align with our qualitative evaluation as we achieved

comparable scores to the current 2D state-of-the-art inver-

sion methods [28]. The MSE, LPIPS, and ID similarities

of ours are further improved, which can be attributed to

the employment of W+ latent space. Following EG3D, we
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Figure 7. Qualitative comparisons with PTI [28] on MEAD [33].

Method View MSE ↓ LPIPS ↓ MS-SSIM ↓ ID ↑
PTI

F
0.03204 0.2971 0.2070 0.8445

Ours 0.03296 0.3088 0.2135 0.8388

PTI
L30

0.04355 0.2992 0.2274 0.8446

Ours 0.03399 0.2796 0.2025 0.8469

PTI
L60

0.08255 0.3902 0.3143 0.7568

Ours 0.04069 0.3113 0.2379 0.8272

PTI
R30

0.04574 0.3110 0.2393 0.8383

Ours 0.03203 0.2807 0.2057 0.8529

PTI
R60

0.07865 0.3829 0.3106 0.7995

Ours 0.04541 0.3160 0.2400 0.8335

Table 2. Quantitative comparison on MEAD [33]. View denotes

the yaw angle of the input image. F is frontal, L is left side, and R

is right side. 30 and 60 are the rotation degrees. Each time we use

one view as the inversion input and use all 5 views as ground truth

for evaluation. The average performance of 4 unseen views and 1

seen view is reported.

evaluate shape quality by calculating L2 for pseudo-ground-

truth depth-maps (Depth) generated from DECA [10], and

poses (Pose) estimated from synthesized images.

We also use identity similarity to evaluate the identity

preservation of the synthesized novel views. Given a por-

trait, we synthesize a novel view image under the symmet-

ric camera pose of the portrait. The similarity between the

synthesized image and the flipped image portrait is calcu-

lated. The results are shown in Fig. 6. It can be observed

that when the yaw angle of a portrait is small, all methods

can perform well with a high similarity score. But when

the yaw angle is large, only our method can maintain a high

score, while other methods encounter a sharp performance

drop due to the inaccurate geometry. As we employ the

symmetry prior and the adjacent pseudo supervision, the

rendered faces can better preserve the texture and geometry.

These results demonstrate that we can achieve an identity-

consistent 3D inversion.

Evaluation on MEAD. To get a comprehensive under-

standing of the performance of our method, we evaluate on

MEAD, a multi-view dataset. The quantitative comparison

between the reconstruction portraits and the ground truth in
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Figure 8. Ablation study of facial symmetry prior.
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Figure 9. Ablation study of authentic mask. Vanilla denotes sim-

ply using the full mirror image for supervision. While Ours filters

out conflict areas with the designed constraints.

different views is shown in Tab. 2. PTI [28] and our method

achieve comparable performance when given a frontal por-

trait. When the view of the input face has an offset from

the canonical one, our method surpasses PTI distinctly. Our

metrics remain stable as the yaw angle becomes larger while

the performance of PTI degrades significantly. The qualita-

tive results are shown in Fig. 7. The geometry shape of PTI

suffers from the flattening phenomenon. In contrast, our

method can generate a consistent geometry and texture in

novel views.

5.3. Evaluation of Symmetry Prior

To understand the importance of the symmetry prior, we

perform an ablation study by conducting the inversion with

or without using the prior. The visual results are shown in

Fig. 8. Both approaches can obtain good geometries in the

original view. However, in the first row, the geometry of

the woman with a thin face turns to be obese as the camera

gradually rotates, which aligns with its rendered image. The

second row shows that the geometry and the rendered image

maintain a better view consistency. We even find that, with

the auxiliary view, some expression details can be strength-

ened, such as the slightly opened mouth.

The symmetry prior cannot be directly employed in the

optimization stage because there exist asymmetric areas in a

human face. Optimizing the conflict areas will lead to poor

results. As shown in Fig. 9, the slanted hair and the single

earring in the source image mismatch those in the mirror

one. In the first row, when simply using both two images

to optimize the generator, the reconstruction quality suffers
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Figure 10. Editing results incorporated with [26] and [11].

from degradation. Novel views synthesized by the vanilla

version will encounter incorrect texture and blurry results in

the conflict areas. Our method can handle such asymmetric

cases without the quality worsening by filtering out conflict

areas with the designed constraints. Hair, teeth, and other

details are consistent in different views, which validates the

effectiveness of the proposed constraints.

5.4. View-consistent Face Editing

Editing a facial image should preserve the original iden-

tity while performing a meaningful and visually plausible

modification. We extend our methods to downstream edit-

ing tasks to validate that the 3D GAN inversion process

does not degrade the editability of the original generator.

We follow StyleCLIP [26] to achieve text-guided semantic

editing and StyleGAN-NADA [11] for stylization, shown

in Fig. 10. The editing operation not only influences the

original view but also changes the novel view’s appearance

consistently. It demonstrates that our inversion solution re-

tains the properties in the original space of the generator and

can be associated with other editing methods flexibly.

5.5. Ablation Study

Adjacent Warping. Recall that we employ depth-guided

warping to create pseudo supervision to improve the tex-

ture quality of novel views. In Fig. 11, we can find that

this operation can enhance facial component details such as

eyelashes and teeth, improving the overall visual quality.

Depth Regularization. Since supervision signals all come

from RGB images, there is no explicit geometry supervision

to ensure shape correctness. The shape is prone to drift to

overfit the single image. Unnatural distortions will appear

in novel views with the drifted shape. In the third column

of Fig. 11, the jaw and nose are elongated with no con-
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Figure 11. Ablation study of different designed modules.

straints. With depth regularization, geometry will be cali-

brated within reasonable limits.

Two-stage Optimization. The joint optimization stage via

utilizing a large parameter space can further improve tex-

ture, allowing to reconstruct the out-of-domain details, e.g.,

auspicious mole, as shown in the last column of Fig. 11.

6. Conclusion

We propose a novel 3D GAN inversion method with fa-

cial symmetry prior. As demonstrated in massive exper-

iments, our method can support 3D reconstruction at ex-

treme angles with robust geometry. With the designed con-

straints on texture and geometry, the reconstructed portraits

are high-fidelity and possess consistent identity across dif-

ferent views. Besides, the proposed method enables vari-

ous downstream applications without compromising faith-

fulness and photorealism.

Limitation and Future Works. Since the effect of illu-

mination is ignored in our assumption, the illumination is

modeled implicitly. During the fitting process of the given

image with symmetry prior, light sources sometimes be-

come perfectly symmetrical and distorted. We will attempt

to settle the problem via modeling illumination explicitly

with albedo and normal in future work.
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