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Figure 1. Scenarios around the world including festivals and weddings. Even the same scenarios have distinct visual characteristics across
regions (a.k.a. geographically diverse). Compared with prior Vision-Language Pre-trained Models (VLPs), GIVL achieves much better
performance on non-Western data in GD-VCR [49]. GIVL can also make the gap between Western and non-Western cases much closer.

Abstract

A key goal for the advancement of Al is to develop
technologies that serve the needs not just of one group
but of all communities regardless of their geographical re-
gion. In fact, a significant proportion of knowledge is lo-
cally shared by people from certain regions but may not
apply equally in other regions because of cultural dif-
ferences. If a model is unaware of regional character-
istics, it may lead to performance disparity across re-
gions and result in bias against underrepresented groups.
We propose GIVL, a Geographically Inclusive Vision-and-
Language Pre-trained model. There are two attributes of
geo-diverse visual concepts which can help to learn geo-
diverse knowledge: 1) concepts under similar categories
have unique knowledge and visual characteristics, 2) con-
cepts with similar visual features may fall in completely
different categories. Motivated by the attributes, we de-
sign new pre-training objectives Image-Knowledge Match-
ing (IKM) and Image Edit Checking (IEC) to pre-train
GIVL. Compared with similar-size models pre-trained with
similar scale of data, GIVL achieves state-of-the-art (SOTA)
and more balanced performance on geo-diverse V&L tasks.

Code and data are released at https://github.com/
WadeYin9712/GIVL.

1. Introduction

Vision-Language Pre-trained Models (VLPs) [9, 23, 24,
29, 53] have achieved remarkable performance on Vision-
Language (V&L) tasks including visual question answer-
ing [11, 12, 15], image-text retrieval [22], and image cap-
tioning [19,27]. Pre-trained with large-scale corpora of
image-text pairs, e.g. COCO [27], Openlmages [21]. VLPs
are capable of learning multi-modal representations and can
be effectively fine-tuned on downstream V&L tasks.

While VLPs can solve a broad range of V&L tasks, to
deploy VLPs in real-world applications, it is essential to
consider the geographical inclusivity' of VLPs. Because of
geographic differences, images from different regions em-
body a large amount of knowledge that is locally shared but
cannot be applied in other regions, i.e. geographically di-
verse. For example, in Figure 1, the festivals in different

'We use regions as a proxy to estimate inclusivity of V&L models.
People in the same regions may have different cultures and traditions.
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regions look different.

Ideally, a geographically inclusive VLP should be capa-
ble of achieving comparable performance over all the im-
ages, regardless of their origins. However, current VLPs
does not perform equally well on data from different re-
gions. For example, prior works [28,49] show that on geo-
diverse V&L tasks, there is nearly a 20% performance dis-
crepancy between Western and East Asian images when
current VLPs are applied. To combat such geographical
bias, we aim to design methods to make VLPs achieve more
balanced performance across regions.

One solution to mitigating bias is to obtain diverse task-
specific annotations for each region and fine-tune VLPs on
the new annotations. However, according to [17], most
Amazon MTurk annotators are from US and India, and may
be unfamiliar with the cultures of other regions. Thus, it
is unrealistic to obtain large-scale geo-diverse annotations
even in such a popular crowdsourcing platform.

Pre-training a unified VLP with large-scale unannotated
geo-diverse images and corresponding knowledge could
make the VLP a foundation to provide more generalizable
representations and help to transfer on comprehending im-
ages from various regions easier. In this paper, we propose
GIVL, a Geographically Inclusive Vision-and-Language
Pre-trained model. We focus on how to encourage GIVL
to better learn geo-diverse knowledge on images from
different regions during its pre-training stage.

We observe two attributes of geo-diverse visual concepts
that can contribute to learning geo-diverse knowledge:

Al: Concepts under similar categories have unique
knowledge and visual characteristics. For example, tra-
ditional Western and Chinese festivals, like Christmas and
Chinese New Year in Figure 1, are held with different rit-
uals and their decoration style differs as well. It is neces-
sary for GIVL to learn the difference between their corre-
sponding knowledge and precisely distinguish these visual
concepts. On the other hand, Christmas and Chinese New
Year are both festivals. Learning the commonalities of vi-
sual concepts (e.g., both images in Figure 1 belong to the
same category “festival”’) would help model connect West-
ern and non-Western concepts and contribute to more effec-
tive transfer on geo-diverse images.

A2: Concepts with similar visual features may lie in
completely different categories. In Figure 2, Chinese pa-
per cuttings share visual features (e.g., color, shape) with
red frisbee. Similarly. sugar cane and flute share visual fea-
tures. However, these concepts are not related to each other.
Since geo-diverse images cover a broader range of visual
concepts, differentiating visually similar concepts given vi-
sual contexts is also essential.

To this end, besides common objectives Masked Lan-
guage Modeling (MLM) and Image-Text Matching (ITM)
for pre-training VLPs, we propose two additional pre-

Figure 2. Example of Chinese paper cuttings and red frisbee (left),
sugar cane and flute (right). Different concepts may be visually
similar, but they may have completely different functionalities.

training objectives, Image-Knowledge Matching (IKM)
and Image Edit Checking (IEC). IKM is used to learn
the alignment between images and corresponding textual
knowledge in Wikipedia. It requires GIVL to not only judge
if the input textual knowledge matches input images, but
also identify whether the visual concepts described in input
knowledge falls into similar categories of the concepts in in-
put images. This encourages GIVL to learn corresponding
relationship between knowledge and images as well as rec-
ognize similarity among geo-diverse visual concepts. IEC
is proposed to identify whether a visual concept in input
image is replaced by another concept that is visually similar
but lies in an irrelevant category (see Fig.3 for an example).
It enables GIVL to capture nuances between visually simi-
lar concepts after the replacement given visual contexts.
Our contributions and empirical results are as follows:

* By considering the attributes of geo-diverse visual con-
cepts, we propose two novel V&L pre-training objec-
tives Image-Knowledge Matching (IKM) and Image
Edit Checking (IEC) that can greatly improve the geo-
graphical inclusivity of VLPs.

* Compared with similar-size VLPs pre-trained with
similar scale of data, GIVL achieves state-of-the-art
(SOTA) and more balanced performance over dif-
ferent regions on geo-diverse V&L tasks including
MaRVL [28], GD-VCR [49] and WIT Image-Text Re-
trieval [38]. For geo-diverse zero-shot image classi-
fication on Dollar Street dataset’, GIVL outperforms
VinVL [53] 26%.

2. Related Work

Vision-Language Pre-Trained Models (VLPs). VLPs
[4,9,22-24,26,29,36,42,53] are proposed to tackle tasks
that require understanding of both images and texts. Fol-
lowing the paradigm of pre-training language models [8,30,

], in common practice, VLPs use Transformer [43] as the
backbone and pre-train them with large-scale image-caption
pairs. The commonly used image-text parallel data are from
multiple sources including COCO [27], Flickr30K [50],
Conceptual Captions [35] and Openlmages [21] datasets.
Currently, VLPs have achieved remarkable performance

2Dollar street dataset is available at https://github.com/
greentfrapp/dollar-street-images.
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on various V&L tasks including visual question answer-
ing [12, 15], visual reasoning [40], image captioning [27],
and image-text retrieval [27,50]. Most recent works focus
on scaling up VLPs; this paper studies an orthogonal but
important concerns - how to leverage diverse knowledge to
improve inclusivity of VLPs.

Geographical Bias. Geographical bias [7, 31, 34,44, 48]
is a severe problem in that Al applications have. Previ-
ous works [28,49] reveal the fact that on geo-diverse V&L
tasks, the performance gap between non-Western and West-
ern images is significant when using VLPs. Similarly, ob-
ject recognition models’ performance greatly drops on non-
Western images [7, 34]. Researchers [7, 34, 44] find that
one factor of the geographical bias is introduced by an im-
balanced distribution of training data with respect to geo-
graphical location. They [7] observe that COCO and Open-
Images, two widely used pre-trained corpora for VLPs, are
amero-centric and euro-centric. We also find that VLPs can
understand basic visual information in images from differ-
ent regions, but are less able to leverage geo-diverse knowl-
edge and reason [49].

Geo-Diverse V&L Tasks. GD-VCR [49] studies whether
a model can understand commonsense on geo-diverse im-
ages. V&L models are required to select the correct an-
swer from four answer choices given textual questions in-
volving geo-diverse commonsense and the corresponding
images. MaRVL [28] is another V&L task that requires
visual reasoning with cultural knowledge of images from
non-Western regions. It is formulated as a binary classifica-
tion problem in which the model needs to judge whether a
sentence correctly describes two images from non-Western
regions. WIT image-text retrieval [3,38] is a standard mul-
timodal retrieval task on geo-diverse Wikipedia images.

3. Methods

In this section, we introduce the pre-training method
of GIVL in detail. Section 3.1 provides preliminary of
GIVL pre-training method including the definition of visual
concept and category. Section 3.2 describes GIVL'’s pre-
training objectives. Section 3.3 and 3.4 illustrate the process
of acquiring essential information used to construct input
contents for objectives Image-Knowledge Matching (IKM)
and Image Edit Checking (IEC). Specifically, Section 3.3
shows how to extract visual concept name from an image
caption and its category information from Wikipedia. Sec-
tion 3.4 shows how to locate visual concept to correspond-
ing detected objects in input image.

3.1. Preliminary

Definition of A Visual Concept and Category. Visual
concept is an object or scenario that an image mainly in-
volves. For example, Figure 3 shows the visual concept of

Chinese paper cuttings. Each specific visual concept cor-
responds to one general category. Each category covers
various visual concepts having particular shared character-
istics. For example, the category of visual concept Chinese
paper cuttings is art. The art category includes other vi-
sual concepts such as Jewish paper cuttings. The extraction
pipeline for visual concept and its category information will
be introduced in Section 3.3.

Pre-Training Corpus. To improve the geographical in-
clusivity of VLPs, we use Wikipedia Image-Text (WIT)
dataset [38] as a primary source of geo-diverse images.
WIT contains 2.95M images in total’. We also incorpo-
rate 0.22M commonly used V&L pre-training images from
COCO [27], Flickr30k [50], and GQA. Images in WIT
dataset come with the corresponding Wikipedia sections
that include the corresponding knowledge of WIT images.
This knowledge*, such as customs and history, is usually
culturally related and not explicitly described in the images.
Such knowledge plays a crucial role in helping VLPs un-
derstand visual concepts in geo-diverse images more com-
prehensively.

Input for Pre-Training. We organize the input for GIVL
pre-training as follows:

[CLS] ¢ [SEP] k [SEP] t [SEP] v, 1)

where c is either an image caption or a GQA question; k de-
notes the corresponding knowledge of the visual concept in
input image I; t is either tags of detected objects or a GQA
answer; Vv is a list of visual embeddings generated from in-
put image I by a ResNeXt-152 C4 detection model [53]. p,
is the name of the visual concept contained in image 1.

3.2. Pre-Training Objectives for GIVL

We pre-train GIVL with four objectives over pre-
trained BERT-base model [¢]: Masked Language Modeling
(MLM), Image-Text Matching (ITM), Image-Knowledge
Matching (IKM), Image Edit Checking (IEC). We intro-
duce each pre-training objective as follows.

3.2.1 MLM and ITM Objectives

Masked Language Modeling (MLM) is a learning objective
prevalently used in V&L pre-training. Given the context
of model inputs, GIVL needs to recover the tokens masked
by [MASK]. MLM loss L1, is the average of all cross-
entropy loss with respect to the probability of predicting the
correct masked tokens given a vocabulary.

Image-Text Matching (ITM) is another commonly ap-
plied objective that enables GIVL to learn the alignment

3GIVL focuses on English-only V&L tasks. We only consider images
with English captions, which only occupy 30% out of the entire WIT.

#The knowledge of COCO, Flickr30K and GQA images is the first sen-
tence in Wikipedia pages of the objects mentioned in captions.
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Figure 3. GIVL pre-training method with four pre-training objectives. The input image is about the visual concept Chinese paper cuttings.
The input knowledge is about Jewish paper cuttings rather than Chinese paper cuttings, but it is also the knowledge describing a visual

concept that shares a similar category with Chinese paper cuttings.

Hence, for Image-Knowledge Matching (IKM) objective, the input

contents belong to Type 3. Also, the visual concept Chinese paper cuttings is replaced with a visually similar concept red frisbee. Thus,
for Image Edit Checking (IEC) objective, the input contents belong to Type 2.

between texts and images. Following VinVL [53], given
an input image I, we construct three types of input contents
for c and t. It is formulated as a 3-way classification task,
y©! € {0,1,2}, where 0 represents that ¢ and t both match
the input image I; 1 means when t matches image I whereas
c mismatches the image I; 2 indicates ¢ matches I but t mis-
matches I. ITM loss is the cross-entropy loss with respect
to the probability of predicting the type of input contents
upon [CLS] representation.

3.2.2 Image-Knowledge Matching (IKM)

We propose Image-Knowledge Matching (IKM) to assist
GIVL in learning knowledge of geo-diverse visual con-
cepts. With the help of IKM, we encourage GIVL to learn
the corresponding knowledge of the visual concepts and dis-
cover connections between geo-diverse visual concepts.

Although the visual characteristics of the geo-diverse vi-
sual concepts in GIVL’s pre-training corpus may be poles
apart, they could be clustered in similar categories. For ex-
ample, in Figure 1, the visual characteristics of traditional
Western and non-Western festivals are different, but these
scenarios all belong to the same category festival. Learn-
ing to identify category similarity can connect diverse visual
concepts under similar categories and generalize to under-
standing more relevant concepts across regions more sim-
ply. On the other hand, each of the visual concepts in simi-
lar categories associates with unique knowledge. Therefore,
it is also crucial for GIVL to precisely distinguish if input
knowledge aligns with the input image.

To this end, we construct the three types of input contents
and formulate IKM as a 3-way classification task to enforce
GIVL to identify the input type:

¢ Type 1: k matches input image I;

e Type 2: k mismatches input image I and the visual
concept described by k does NOT fall into a similar

category of the visual concept p,, in I;

* Type 3: k mismatches input image I but the visual con-
cept described by k falls into a similar category of the
visual concept p,, in L.

To select knowledge k for Type 3 input in IKM, we need
to conduct two steps (i) extracting the name of visual con-
cept p,, of input image I from its caption (for GQA data, see
supplementary) and (ii) looking for visual concepts under
similar categories. More details of extracting p,, from im-
age caption and its category information will be introduced
in Section 3.3. After the visual concept name p,, is extracted
from the caption, to find a visual concept which falls in the
most relevant categories to p,,, we randomly sample 200 vi-
sual concepts as candidates from rest WIT training corpora.
Then we select the candidate concept that has the most se-
mantically similar category with p,’s category. Specifically,
the sampled candidates are ranked by cosine similarity be-
tween text embeddings® of their category names and the em-
bedding of p,’s category name. The process of selecting the
most relevant visual concept p* is illustrated in Eq. (2),

2

_ C s
p* = arg max CosineSim(z,,, zp, ),
Pi

where z,, is the embedding of i-th sampled visual con-
cept p;’s category, z,, is the embedding of p,’s category,
CosineSim denotes the function quantifying cosine simi-
larity between two embeddings. The corresponding knowl-
edge of p* can be regarded as k in Type 3 input.

For preparing k in Type 2 input content, we first set up a
threshold for the cosine similarity between the embeddings
of category names (7 = 0.3) to filter out the visual concepts
relevant with p,,. Then we randomly pick one of the retained
visual concepts. The selected visual concept indicates the

SWe utilize FastText [2] embeddings pre-trained on Wikipedia. Phrase
embeddings are mean pooled embeddings of the words in the phrases.
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First sentence of Wikipedia page of "Torii":
traditional Japanese

e |

...... a traditional Japanese most commonly found ...

Figure 4. Steps to mine category information of visual concepts.
The composition of the head noun (“gate”, root of parse tree) and
its modifiers (“traditional Japanese”, words with “amod” relation
with “gate”) can be treated as the category of torii (“traditional
Japanese gate”).

one that has irrelevant category information with p,. Its
corresponding knowledge can be used as k in Type 2 input.

IKM loss is a cross-entropy loss with respect to the prob-
ability of predicting the type of relationship between the in-
put image and knowledge upon [CLS] representation,

|D|
> logp(yfle,k,t,v), (3

i=1

Lrixkm = — ]

where D indicates the entire pre-training corpus® and ¥ is
the label for the input type in IKM.

3.2.3 Image Edit Checking (IEC)

To better differentiate visually similar but irrelevant con-
cepts, we propose another pre-training objective Image Edit
Checking (IEC). In geo-diverse setting, it is highly likely
that visual concepts share similar visual characteristics but
fall into completely different categories. For example, in
Figure 2, Chinese paper cuttings are red and circular, which
aligns with the visual characteristics of red frisbee. 1EC is
designed to identify whether a specific visual concept p, in
input image I is replaced by another visually similar one in
an irrelevant category.
We consider two types of input contents for IEC:

e Type 1: Input image I remains the same;

e Type 2: The visual embedding of the visual concept
Dy in input image I is replaced with the embedding of
another concept that is visually similar but falls into an
irrelevant category with p,,.

In Figure 3, since the visual concept Chinese paper cuttings
is replaced with red frisbee, the input type is Type 27.

To prepare input contents of Type 2 data, we need to ac-
complish two steps (i) seeking the corresponding detected
objects of the visual concept p,, in input image I from its
caption (ii) looking for visually similar concepts for re-
placement. The pipeline of locating visual concept p,, is

The proportion of Type 1, 2 and 3 input for IKMin Dis 2 : 1 : 1.
"The proportion of Type 1 and 2 input for IEC in Dis 1 : 1.

introduced in Section 3.4. After the visual concept p,, is lo-
cated, to select the proper visual concept for replacement in
Type 2 input, we randomly sample 20 images, and then col-
lect the visual embeddings and tag names of all the detected
objects in the sampled images as candidates. The visual
concept for replacement is selected according to two crite-
ria: (i) its category is dissimilar® with the category informa-
tion of concept p,, and (ii) its visual embedding is closest to
py’s visual embedding. We select irrelevant visual concepts
with p, to guarantee that the replacement is unreasonable
given the image context.

IEC loss is a binary cross-entropy loss with respect to the
probability of predicting whether the input image is modi-
fied upon the [CLS] representation,

|D|

1
~ip] 2 lesrile ke y), @)
i=1

Ligc =
where y; is the label for input type in IEC. The final loss L
is the sum of all losses mentioned above:

L=Lyrm+Lirvm +Lrixm + Ligc. &)

3.3. Acquiring Categories of Visual Concepts

Acquiring the categories of visual concepts is a prereq-
uisite step to construct GIVL inputs for IKM and IEC. We
first need to extract the visual concept name p,, in input im-
age I from its image caption. We achieve this by parsing the
caption with [32]. p, is the composition of the head noun
and its modifiers in the parse tree. For example, given a
caption “Chinese paper cuttings in a shop”, p,, is Chinese
paper cuttings, which is composed of the head noun “cut-
tings” and its modifiers “Chinese paper” in its parse tree.

To acquire p,’s category, we then search for Wikipedia
with keyword p,,. If p, is an entry of Wikipedia, we find that
the category information can be usually found in the first
sentence of Wikipedia introduction paragraph. As shown
in Figure 4, the category of torii (i.e., traditional Japanese
gate) is present in the first sentence “A forii ... is a tradi-
tional Japanese gate most commonly ...” Then we notice
that the category name is the phrase consisting of the head
noun and its modifiers in the first sentence. In this exam-
ple, the head noun of the first sentence is “gate” and its
modifier words are “traditional” and “Japanese”. The final
concatenation, “traditional Japanese gate”, is the category
of rorii. Though the category information mined with these
simple heuristics is imperfect, the extraction method is easy
to implement and efficient in acquiring categories of large
quantities of visual concepts.

8We use the cosine similarity between embeddings of the candidate
visual concept’s category and p,,’s category. Any candidate concepts with
a similarity lower than 0.3 are treated as dissimilar ones.
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2. Replace the object tag witl
visual concept mentioned in captions

H 3. Propagate the replacement on detected

objects that share the same tag names

Figure 5. Steps to locate novel visual concepts in input images.

3.4. Locating Visual Concepts in Images

With a limited amount of object class labels, it is diffi-
cult for current object detectors to detect a geo-diverse vi-
sual concept p,,. Therefore, we introduce a simple approach
to efficiently locate the corresponding object given a visual
concept p,,. We find that a visual concept p,, is commonly (i)
classified as a tag name that has similar semantics with p,,’s
category, and (ii) its image patch occupies a large portion of
the image. To this end, we design heuristics to locate novel
visual concepts according to our empirical findings. First,
only the top-10 large detected objects from each image will
be considered. Second, we calculate the similarity between
their object tags and p,,’s category. The one with the highest
similarity score will be treated as the object corresponding
to p,. We take Figure 5 as an example. The visual concept
Dy to be located is Chinese paper cuttings. Suppose that one
of the Chinese paper cuttings (the object in top right corner)
is among top-10 large detected objects. Besides, its original
detected object tag is poster, which is the most semantically
similar to Chinese paper cuttings’s category. Hence, we can
replace its original object tag with Chinese paper cuttings as
it is the corresponding object we are looking for.

The method above only locates one visual concept per
image. However, it is possible that one image may contain
multiple identical visual concepts. For example, in Figure 5,
there are a couple of Chinese paper cuttings. To solve this
problem, we simply propagate the visual concept name of
Chinese paper cuttings to other objects that share the same
original detection labels.

4. Experiments

We conduct two sets of experiments to evaluate GIVL.
We first evaluate GIVL on multiple geo-diverse V&L tasks
including zero-shot image classification, V&L reasoning
and image-text retrieval. It helps us to verify the effective-
ness of GIVL under geo-diverse settings. On the other hand,
experiments on common V&L tasks are conducted to prove
the generalizability of GIVL’s pre-training method.

4.1. Baselines for Ablation Study

Five baselines are described below. For fair compari-
son, pre-training corpus, number of pre-training steps, and
hyper-parameters are all identical to GIVL’. Since V&L
pre-training is extremely time consuming, all baselines are
pre-trained with 500K steps in ablation study.

GIVL w/o ACIKM & GIVL w/o EIEC’- GIVL w/o EIKM
and GIVL w/o Ljgc is the model pre-trained without
Image-Knowledge Matching (IKM) objective and Image
Edit Checking (IEC) objective, respectively. We demon-
strate the effectiveness of our proposed pre-training objec-
tives with these two baselines.

VinVL*. VinVL* is pre-trained only with MLM and ITM
objectives as VinVL [53]. It also shares the same pre-
training corpus with GIVL. The only difference between
GIVL and VinVL* is objectives. GIVL is pre-trained with
Image-Knowledge Matching (IKM) and Image Edit Check-
ing (IEC) but VinVL* is not. Comparing GIVL and VinVL*
can manifest the improvement by introducing IKM and IEC
objectives on geo-diverse V&L tasks. The comparison is
also fair for the pre-training methods of GIVL and VinVL
on common V&L tasks.

GIVL w/ CLIP. Some recent VLPs utilize CLIP [33] as
the vision encoder. We replace object-level visual encoder
in GIVL with CLIP to check if it can further improve perfor-
mance. CLIP provides grid-level visual representation in-
stead of object-level’s. Therefore, IEC objective is removed
because it involves object-level replacements.

GIVL-B. The only difference between GIVL and GIVL-
B is that the IKM objective of GIVL-B is a binary classifi-
cation objective instead of 3-way classification. For IKM,
it requires GIVL-B to identify whether the input knowledge
matches the image contents. GIVL-B doesn’t need to judge
whether the input knowledge describes a visual concept that
shares similar category with the concept in input image. The
comparison between GIVL and GIVL-B is able to demon-
strate the effect of incorporating category information for
learning the knowledge of geo-diverse visual concepts.

4.2. Results on Geo-Diverse Benchmarks

Geo-Diverse Zero-Shot Image Classification. Geo-
diverse zero-shot image classification is a downstream geo-
diverse V&L task that directly evaluates the effectiveness
of the pre-training methods. We evaluate models on Dol-
lar Street dataset'?. It is labeled with 127 classes, each of
which contains images around the world. For classification
on one image, we compose 127 inputs, each of which is the
concatenation of one class name, the class’s corresponding

9Details of experimental setups are described in Appendix A.
10Tmages in Dollar Street are labeled with country information. The
proxy to categorize Western and non-Western countries is based on [16].
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Model #Param  Acc.  Western/non-Western

Prior VLPs

VinVL* 112M 1.21 1.77/1.01
VinVL [53] 112M 1.29 1.25/1.30
Ours

GIVL w/o Lixn  112M 2137 25.31/20.37
GIVL w/o Ligc 112M 12.96 12.71/13.02
GIVL w/ CLIP 199M  18.04 22.89/16.82
GIVL-B 112M  20.35 23.93/19.45
GIVL 112M  27.25 31.65/26.15

Table 1. Results on geo-diverse zero-shot image classification on
Dollar Street dataset. We also show the respective performance on
Western and non-Western images.

Model Data/Steps ~ #Param  Acc. NLVR2 A
Prior VLPs

ViLBERT [29] 3.3M/- 274M  66.53  77.40  10.87
VinVL [53] 5.65M/2M 112M 7248  81.03 8.55

VinVL* 3.17M/500K  112M  69.66  77.93 8.27

Ours
GIVL w/o Lixp  3.17M/500K  112M 72.11 -
GIVLw/o Lipc 3.17M/500K  112M  68.58 -

GIVL w/ CLIP 3.17M/500K  199M  71.78 -

GIVL-B 3.17M/500K  112M  70.26 - -
GIVL 3.17M/500K  112M 72,50  79.06 6.56
GIVL 3.17M/900K  112M  72.70  79.87 717

Table 2. Results on MaRVL testing set. We also show the perfor-
mance discrepancy A between NLVR2 and MaRVL. } denotes the
results reported in [55]. Bolded numbers indicate highest perfor-
mance and smallest performance gap on MaRVL other than mod-
els colored with gray.

knowledge'', tag names and visual embeddings of the de-
tected objects. We compare the probability of predicting
that each class name matches the input image via ITM ob-
jective for all the 127 classes. The class with the highest
probability is treated as the final classification result.

As shown in Table 1, GIVL outperforms both VinVL
and VinVL* by a significant margin around 26%. GIVL
achieves 6%-20% improvement in ablation studies, demon-
strating the effectiveness of the proposed IKM and IEC
objectives. We also find that GIVL outperforms GIVL
w/ CLIP which involves a strong vision encoder. It fur-
ther demonstrates that object-level visual representations
and object-level pre-training objective IEC are effective for
learning geo-diverse visual concepts.

Multicultural Visual Reasoning (MaRVL). Following
NLVR2 [40], MaRVL [28] is a V&L task that requires
models to identify whether a sentence correctly describes
the contents of two input images. MaRVL images in-
volve diverse visual concepts in non-Western regions. Since
MaRVL'? is merely a testing set, following [28], we fine-
tune models on NLVR?2 training set and then select the best

1I'The knowledge of each class sources from Wikipedia and Wordhoard.
12We use the translated English version of MaRVL dataset in [55].

Model #Param  Acc. Non-West Acc. A
Prior VLPs

VisualBERT [29] 135M  53.95 - 10.42
ViLBERT [29] 274M  59.99 - 7.28
VinVL* 112M  69.07 66.45 8.46
VinVL [53] 112M  70.20 66.78 11.04
Ours

GIVL w/o Ly 112M 69.56 65.96

GIVL w/o Lipc 112M  69.89 66.92 -
GIVL w/ CLIP 199M  70.43 67.25 10.20
GIVL-B 112M  69.56 65.96 -
GIVL 112M  70.32 68.41 6.14
GIVL (IM) 112M  72.01 70.4 4.97

Table 3. Results on GD-VCR. We also show the results on all
the non-Western images in GD-VCR and discrepancy A between
Western and non-Western images.

checkpoint on the dev set of NLVR2 to evaluate on MaRVL.

From Table 2, we observe that GIVL outperforms the
ablated baselines pre-trained without our proposed objec-
tives IKM and IEC, respectively. Also, similar to the ob-
servations on Dollar Street dataset, compared with VinVL*
pre-trained with the same corpus as GIVL, GIVL achieves
higher performance. It further demonstrates that the pre-
training objectives of GIVL can help VLPs learn geo-
diverse visual concepts better than VinVL.

We also compare GIVL with VLPs (i) 3 larger model
(METER) and (ii) pre-trained with 2 — 5x larger corpus
(VinVL, X-VLM and ALBEF). GIVL achieves competitive
performance with much less data and smaller model size.
Additionally, we attach importance to performance gap on
NLVR2 and MaRVL. It is shown that the visual concepts in
NLVR2 dataset are Western-centric [28]. A smaller perfor-
mance gap between NLVR2 and MaRVL means less bias
against non-Western regions. We observe that GIVL can
achieve more balanced performance on both datasets, while
other VLPs including METER, X-VLM and ALBEF have
larger performance discrepancy.

Geo-Diverse Visual Commonsense Reasoning (GD-
VCR). GD-VCR is a testing set to evaluate multi-modal
models’ ability to understand geo-diverse commonsense
knowledge in images. It is a multiple-choice QA task which
requires geo-diverse commonsense reasoning. We fine-tune
models on VCR [51] training set and select the best check-
point on VCR’s dev set to evaluate on GD-VCR.

As shown in Table 3, GIVL outperforms all prior similar-
size VLPs models trained with similar number of images.
GIVL also outperforms all ablated baselines except for
GIVL w/ CLIP, which uses a much stronger visual encoder
and only achieves 0.1% subtle improvements. Besides, we
highlight the performance gap between Western and non-
Western data in GD-VCR. GIVL has significantly smaller
gap than any of the ablated baselines. While GIVL w/ CLIP
has a marginal improvement over GIVL, the performance
gap of GIVL is 4.06% smaller than GIVL w/ CLIP.
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+: models with larger size than GIVL
NLVR2 or pre-trained with larger corpus than GIVL
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Figure 6. GIVL performance on common V&L tasks. Complete
results are shown in Appendix B.

Model Data  #Param  I/R T/R
Prior VLPs

LXMERT [42] - 240M  14.28 14.86
VisualBERT [24] - 135M 1536 1575
UNITER [4] - - 1543  16.01
VL-BERT [39] 3.3M - 15.11  16.09
VIiLBERT [29] 3.3M 274M 1540 16.93
VinVL [53] 5.65M  112M  27.78 28.65
VinVL* 3.17M 112M 2544 25.50
Ours

GIVLw/o Lixn  3.17M  1I2M 2621 2697
GIVLw/o Lipc 3.17M  112M  28.08 28.18
GIVLw/CLIP  3.17M 199M 27.94 28.17

GIVL-B 3.17M 112M 2997  29.86
GIVL 3.17M  112M  28.00 28.79
GIVL (1M) 3.17M  112M 2998  30.79

Table 4. Results on WIT image-text retrieval task. I/R and T/R
denote image retrieval and text retrieval. The evaluation metric is
Recall@1. 1M denotes the number of pre-training steps.

Wikipedia Image-Text Retrieval (WIT). WIT image-
text retrieval is a standard retrieval task on geo-diverse
Wikipedia images'?. Table 4 shows that GIVL achieves su-
perior performance comparing to baselines except GIVL-
B. Pre-trained with 1M steps, GIVL obtains SOTA perfor-
mance on WIT image-text retrieval task.

4.3. Results on Common V&L Benchmarks

Besides testing GIVL on geo-diverse V&L tasks, we
benchmark GIVL on common V&L task to investigate
whether the pre-training method of GIVL is competitive
among existing VLPs. We don’t expect GIVL to perform
the best among SOTA VLPs on these V&L benchmarks,
because they are annotated with Western-centric data and
SOTAs are trained with much larger similar data as well.
We aim to answer two questions. Q1: Is GIVL able to ob-
tain comparable performance with VLPs pre-trained with
similar scale of data? Q2: Can GIVL perform as strongly
as SOTA VLPs pre-trained with the same corpus?

To answer Q1, we evaluate GIVL on common V&L
benchmarks including NLVR2, GQA and COCO caption-
ing. As shown in Figure 6, for NLVR2, GIVL is able to beat
11 VLPs with much more parameters and pre-trained with
more data. For GQA, GIVL performs better than most of
the VLPs. For COCO image captioning, it can even obtain
close performance with SimVLM-base, a VLP pre-trained

13We use the translated English WIT retrieval data in [3].
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Figure 7. GIVL and VinVL'’s performance on non-Western and
Western images related to geo-diverse categories.

Vegetable

with 1.8B images. Overall, even if GIVL is pre-trained with
the corpus whose domain is not similar with common V&L
tasks, it can still achieve competitive results.

For Q2, we target on VinVL, a strong VLP that once
swept leaderboards of multiple V&L tasks. For fair compar-
ison, we reproduce the pre-training process of VinVL with
GIVL pre-training corpus. As mentioned in Section 4.1, we
denote the reproduced pre-training as VinVL*. On above
three V&L datasets covered in Figure 6, the performance
difference between GIVL and VinVL* is subtle. We ar-
gue that GIVL could perform as well as VinVL on common
V&L benchmarks if it was pre-trained with VinVL corpus.

4.4. Qualitative Study on Geo-Diverse Categories

We showcase examples from GD-VCR and Dollar Street
datasets to better demonstrate GIVL’s advantages. In Fig-
ure 7, non-Western festivals, servants and religions are
quite different from those in Western regions. We find that
GIVL’s performance gap on the images involving these cat-
egories is significantly smaller than VinVL on GD-VCR.
Moreover, GIVL’s performance on non-Western images is
5-8% higher than VinVL. For Dollar Street, while the over-
all performance of GIVL is around 30%, it can achieve
above 55% accuracy when recognizing vegetables and dry-
ing clothes which greatly vary across the world. GIVL even
outperforms VinVL 50% on those categories.

5. Conclusion

We propose GIVL, a geographically inclusive V&L pre-
trained model. GIVL achieves strong and more balanced
results on multiple geo-diverse V&L tasks. It can also pro-
duce competitive performance on common V&L tasks. By
proposing GIVL, we call upon researchers to devise meth-
ods that can further improve geographical inclusivity of
VLPs and popularize their applications for all.
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