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Abstract

Nerf-based Generative models have shown impressive
capacity in generating high-quality images with consistent
3D geometry. Despite successful synthesis of fake identity
images randomly sampled from latent space, adopting these
models for generating face images of real subjects is still a
challenging task due to its so-called inversion issue. In this
paper, we propose a universal method to surgically fine-tune
these NeRF-GAN models in order to achieve high-fidelity
animation of real subjects only by a single image. Given
the optimized latent code for an out-of-domain real image,
we employ 2D loss functions on the rendered image to re-
duce the identity gap. Furthermore, our method leverages
explicit and implicit 3D regularizations using the in-domain
neighborhood samples around the optimized latent code to
remove geometrical and visual artifacts. Our experiments
confirm the effectiveness of our method in realistic, high-
fidelity, and 3D consistent animation of real faces on multi-
ple NeRF-GAN models across different datasets.

1. Introduction
Animating a human with a novel view and expression

sequence from a single image opens the door to a wide
range of creative applications, such as talking head synthe-
sis [22, 34], augmented and virtual reality (AR/VR) [19],
image manipulation [24, 32, 45], as well as data augmenta-
tion for training of deep models [25,42,43]. Early works of
image animation mostly employed either 2D-based image
generation models [14, 26, 31, 37], or 3D parametric mod-
els [4, 11, 40, 41] (e.g. 3DMM [6]), but they mostly suffer
from artifacts, 3D inconsistencies or unrealistic visuals.

Representing scenes as Neural Radiance Fields
(NeRF) [23] has recently emerged as a breakthrough
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Figure 1. Image animation results of our method. NeRFInver-
tor achieves 3D-consistent and ID-preserving animation (i.e. novel
views and expressions) of real subjects given only a single image.

approach for generating high-quality images of a scene in
novel views. However, the original NeRF models [5,33,44]
only synthesize images of a static scene and require exten-
sive multi-view data for training, restricting its application
to novel view synthesis from a single image. Several studies
have shown more recent advances in NeRFs by extending
it to generate multi-view face images with single-shot data
even with controllable expressions [7, 8, 12, 27, 38, 46].
These Nerf-based Generative models (NeRF-GANs) are
able to embed attributes of training samples into their latent
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variables, and synthesize new identity face images with
different expressions and poses by sampling from their
latent space.

While animatable synthesis of fake identity images is im-
pressive, it is still challenging to generate 3D-consistent and
identity-preserving images of real faces. Specifically, cur-
rent Nerf-GANs have difficulties to accurately translate out-
of-domain images into their latent space, and consequently
change identity attributes and/or introduce artifacts when
applied to most real-world images. In order to synthesize
real faces, the conventional method applies optimization
algorithms to invert the input image to a latent code in a
smaller (i.e. W) or an extended (i.e. W+) NeRF-GAN la-
tent space. However, they both either have ID-preserving or
artifacts issues as shown in Figure 2. The W space inver-
sion, in particular, generates realistic novel views and clean
3D geometries, but suffers from the identity gap between
the real and synthesized images. In contrast, the W+ space
inversion well preserves the identity but commonly gener-
ates an inaccurate 3D geometry, resulting in visual artifacts
when exhibited from new viewpoints. Hence, it remains
as a trade-off to have a 3D-consistent geometry or preserve
identity attributes when inverting face images out of latent
space distribution.

In this paper, we present NeRFInvertor as a universal
inversion method for NeRF-GAN models to achieve high-
fidelity, 3D-consistent, and identity-preserving animation of
real subjects given only a single image. Our method is ap-
plicable to most of NeRF-GANs trained for a static or dy-
namic scenes, and hence accomplishes synthesis of real im-
ages with both novel views and novel expressions (see Fig-
ure 1). Since the real images are mostly out of the domain
of NeRF-GANs latent space, we surgically fine-tune their
generator to enrich the latent space by leveraging the single
input image without degrading the learned geometries.

In particular, given an optimized latent code for the in-
put image, we first use image space supervision to narrow
the identity gap between the synthesized and input images.
Without a doubt, the fine-tuned model can be overfitted on
the input image and well reconstruct the input in the origi-
nal view. However, fine-tuning with just image space super-
vision produces erroneous 3D geometry due to the insuffi-
cient geometry and content information in a single image,
resulting in visual artifacts in novel views. To overcome
this issue, we introduce regularizations using the surround-
ing samples in the latent space, providing crucial guidance
for the unobserved part in the image space. By sampling la-
tent codes from the neighborhood of optimized latent vari-
ables with different poses and expressions, we enforce a
novel geometric constraint on the density outputs of fine-
tuned and original pretrained generators. We also further
add regularizations on the rendered images of neighborhood
samples obtained from the fine-tuned and pretrained genera-
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Figure 2. Trade-off between ID-preserving and removing ar-
tifacts. Optimizing latent variables of Nerf-GANs for synthesis
of a real face leads to a trade-off between identity-preserving and
geometrical and visual artifacts. Specifically, W space inversion
results in clean geometry but identity gap between real and gener-
ated images, and W+ space inversion causes preserving of iden-
tity attributes but inaccurate geometry and visual artifacts.

tors. These regularizations help us to leverage the geometry
and content information of those in-domain neighborhood
samples around the input. Our experiments validate the ef-
fectiveness of our method in realistic, high-fidelity, and 3D
consistent animating of real face images.

The main contributions of this paper are as follows:

1. We proposed a universal method for inverting NeRF-
GANs to achieve 3D-consistent, high-fidelity, and
identity-preserving animation of real subjects given
only a single image.

2. We introduce a novel geometric constraint by leverag-
ing density outputs of in-domain samples around the
input to provide crucial guidance for the unobserved
part in the 2D space.

3. We demonstrate the effusiveness of our method on
multiple NeRF-GAN models across different datasets.

2. Related Work
2.1. NeRF-GANs

Recently, the impressive performance of NeRF-GANs
has demonstrated its potential as a promising research di-
rection. GRAF [30] and Pi-GAN [9] are two early attempts
that proposed generative models for radiance fields for 3D-
aware image synthesis from the unstructured 2D images.
Several recent studies (e.g. GRAM [12] and EG3D [8])
have enhanced synthesis quality with higher resolutions,
better 3D geometry, and faster rendering. Furthermore, An-
iFaceGAN [38] introduced a deformable NeRF-GAN for
dynamic scenes capable of synthesizing faces with control-
lable pose and expression. In this paper, we demonstrate the
effectiveness of our method on NeRF-GANs for both static
(GRAM and EG3D) and dynamic (AniFaceGAN) scenes.
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Figure 3. Framework of NeRFInvertor. Given the optimized latent code zinit, we fine-tune the generator and first apply image space
supervision to push the generated image to match the input image in the original view d. To augment the NeRF-GAN manifold without
worrying about visual artifacts in novel views, we then leverage the surrounding samples of the optimized latent code to regularize the
realism and fidelity of the novel view and expression synthesis.

2.2. GAN Inversion

GAN priors can be beneficial in a variety of applications
such as image editing [3,10,28] and face restoration [35,39].
To utilize the priors, the input image needs to be inverted
into a latent code that optimally reconstructs the given im-
age using a pretrained generator. The process is known as
GAN inversion, and it is a well-known issue in 2D GANs
(e.g. StyleGAN [16–18]). Abdal et al. [1, 2] used a straight
optimization method to transform an image into the latent
space of StyleGAN and observed a distortion-editability
trade-off between W and W+ space when editing images.
PTI [29] used an optimized latent code as an initial point
and fine-tuned the generator, achieving good results in the
process of reducing the distortion-editability trade-off.

To exploit NeRF-GAN priors for 3D tasks, recent at-
tempts inverted the real image to NeRF-GAN latent space
using the traditional optimization method [46], additive en-
coder [7, 27], or PTI [8, 20]. However, applying these 2D-
based inversion methods directly to 3D-GAN models makes
them insensitive to subtle geometric alterations in 3D space.
To address this issue, we propose explicit geometrical reg-
ularization and implicit geometrical regularization to help
produce better 3D geometry of the input.

2.3. Single-shot NeRFs

Due to the insufficient geometry and content informa-
tion in a single image, single-shot NeRFs without addi-
tional supervision (i.e. multi-view images or 3D objects)
remain challenging. Recently, Pix2NeRF [7] extended pi-
GAN with the encoder to obtain a conditional single-shot

NeRF models. HeadNeRF [15] incorporated the NeRF into
the parametric representation of the human head. Since the
whole process is differentiable, the model can generate a
NeRF representation from a single image using image fit-
ting. However, there remains a notable identity gap between
the synthesized results and input images, indicating the in-
efficiency of single-shot NeRFs for real image inversion.

3. Method
In this paper, we present NeRFInvertor as a universal

NeRF-GAN inversion method to translate a single real im-
age into a NeRF representation. Given an input image I,
the goal is to generate novel views or expressions of I using
a pretrained Nerf-GAN Go. To do this, we first find an in-
domain latent code1 capable of generating an image Io as
close as possible to the input image. Given a NeRF-GAN
generator G(·), the image I(·) can be synthesized as:

I(·) = R(G(·)(z,x), d) , (1)

where x ∈ R3 is the a 3D location, z denotes a latent code,
d ∈ R3 is the camera pose, and R is the volume renderer
discussed in [21, 23]. Therefore, the optimized latent code
zinit can be computed as:

zinit = argmin
z

Lperc(I, Io) + λ0Lpix(I, Io) , (2)

where Lperc, Lpix represent perceptual and l2-norm pixel-
wise loss functions, respectively.

1We optimize latent codes in Z or W space [18] for different NeRF-
GAN models.
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Figure 4. Masked Geometrical Constraint. (a) It shows the tra-
ditional rendering process for a novel view image. (b) Masked ge-
ometrical constraint takes only the foreground points into account.
To render the novel view, only the red dots are used for image ren-
dering. The two green dots are ignored, as they are definitely from
a background region.

Usually, there would be a gap between the generated and
real images, since the real images are mostly the out-of-
domain samples in NeRF-GANs. To solve this problem, we
propose a fine-tuning process with novel regularizations in
the following sections. Specifically, we fine-tune the gen-
erator with image space loss functions (Sec. 3.1) to reduce
the identity gap. We also apply an explicit geometrical con-
straint (Sec. 3.2) and an implicit geometrical regularization
(Sec. 3.3) to maintain the model’s ability to produce high-
quality and 3D-consistent images.

3.1. Image Space Supervision

Given the optimized latent code zinit, we fine-tune the
generator using image space supervision by pushing the
generated image to match the input image in the original
view d. Denoting the fine-tuned generator as Gf , it takes
the optimized latent code zinit and a 3D location x ∈ R3 as
the inputs and outputs a color c ∈ R3 and a volume density
σ ∈ R1 for each location. For the given view d, we can
then accumulate the colors and densities into a 2D image
If . Formally, the image If can be expressed as:

If = R(Gf (zinit,x), d) (3)

We employ the following loss function as the image
space supervision:

Limg = λ1Lpix(If , I) + λ2Lperc(If , I) + λ3Lid(If , I) ,
(4)

where Lperc, Lpix and Lid indicate perceptual, l2-norm
pixel-wise and identity losses, respectively. λ1, λ2 and λ3

are hyper-parameters of the losses. With the image space
supervision, the fine-tuned model well reconstructs the in-
put in the original view, but is prone to overfitting on the
input image, causing artifacts in novel view synthesized im-
ages and inaccurate 3D geometry of the subject.

Novel ViewsInput

Figure 5. The fogging artifacts around the hairline and/or in
cheek region.

3.2. Explicit Geometrical Regularization

To enrich the NeRF-GANs manifold using the input im-
age attributes without worrying about visual artifacts in
novel views, we relax the assumption of strict image space
alignment described in Sec. 3.1. In order to regularize the
model, we leverage the neighborhood samples around the
optimized latent code to enhance the geometry, realism, and
fidelity of the novel view and expression synthesis.

We first randomly sample different neighborhood latent
codes zng surrounding the optimized latent code with vari-
ous poses and expressions. The neighborhood latent codes
can be obtained by:

zng = zinit + α
zsmp − zinit

||zsmp − zinit||2
, (5)

where α is the interpolation distance between the randomly
sampled zsmp ∼ N (0, 1) and optimized latent variable
zinit. To leverage the high-fidelity qualities of the origi-
nal generator Go, we force the fine-tuned generator Gf to
perform the same as Go on the neighborhood latent codes,
poses, and expressions. The geometrical constraint is de-
fined based on both the color and density outputs of neigh-
borhood samples on Gf and Go, that are expressed as:

cfng, σ
f
ng =Gf (zng, x),

cong, σ
o
ng =Go(zng, x),

(6)

By reprojecting each ray (i.e. pixel) to 3D space according
to its depth, we define two sets of point clouds So and Sf

based on Go and Gf images. We compare the similarity of
two point clouds using the Chamfer distance, and define the
geometrical constraint as follows:

Lexp =
1

|So|
∑

po∈So

minpf∈Sf
||σf

ng(pf )− σo
ng(po)||22+

||cfng(pf )− cong(po)||22
(7)

where po and pf are the 3D locations in the point cloud sets
So and Sf .

3.3. Implicit Geometrical Regularization

Moreover, we also add implicit geometrical regulariza-
tions on the rendering results of fine-tuned and the pre-

8542



Re
c.

N
ov
el
Ex
p.

N
ov
el
V
ie
w

In
pu
t

Figure 6. Real image animation example on the “Avengers”. NeRFInvertor synthesizes realistic faces using the pretrained AniFaceGAN
with controllable pose and expression sequences given a single training image. As can be seen, NeRFInvertor not only is capable of
preserving identity attributes but also generates images with high quality and consistent appearance across different poses and expressions.

trained generator. Given a novel view ds, the rendered im-
age of Gf and Go can be expressed as:

Ifng =R((cfng, σ
f
ng), ds),

Iong =R((cong, σ
o
ng), ds).

(8)

We minimize the distance between the image generated
by Gf and Go using pixel-wise, perceptual, and identity
losses. Hence, the overall loss can be expressed as:

L =Limg + λ4Lexp + λ5Lpix(Ifng, Iong)+

λ6Lperc(Ifng, Iong) + λ7Lid(Ifng, Iong),
(9)

3.4. Masked Regularizations

Given a single-view image, we fine-tune the model with
novel regularizations to achieve better 3D geometry and
higher fidelity images in novel views. However, we still no-
ticed some fogging parts around the hair or cheek as shown
in Figure 5. In order to remove artifacts and get more accu-
rate geometry, We enhance our geometrical and image reg-

ularizations by a mask, which is based on matting informa-
tion on the input image. As shown in Figure 4, we predict
the mask for the input view image based on the foreground
and background regions shown by the red and green col-
ors. In particular, if a shooting ray reaches the foreground
region of the input image, we classify all the sample points
on that ray as foreground points. Similarly, if a shooting
ray reaches the background region of the image, we clas-
sify all the data points on that ray as background points. In
the masked constraints, we take only the foreground (red)
points into account for neighborhood density, color, and im-
age rendering, and ignore the background (green) points.

4. Experiments

In this section, we compare our approach to existing in-
version methods as well as single-shot NeRF models quali-
tatively and quantitatively. We validate our method on mul-
tiple NeRF-GANs trained for static (i.e. GRAM and EG3D)
or dynamic scenes (i.e. AniFaceGAN). Evaluations are per-
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InputI2S (𝒲) I2S (𝒲+) PTI NeRFInvertor

Figure 7. Comparison with prior inversion methods.

formed on reconstruction, novel view, and expression syn-
thesis. Finally, we conduct ablation studies to disclose the
contributions of the proposed components of our work.

4.1. Implementation Details

We use AniFaceGAN generator by default for the exper-
iments unless otherwise specified. The original generators
are pre-trained on the FFHQ and Cats datasets to synthesize
animated human faces and cat faces, respectively. We eval-
uate face animation, including novel view and expression
synthesis, on FFHQ, CelebA-HQ datasets, and a collection
of notable individuals as out-of-domain samples to empha-
size the NeRFInvertor’s identity-preserving capability.

We describe the training details of our NeRFInvertor ap-
plied on GRAM and EG3D in the Supplementary Mate-
rial. For AniFaceGAN, the model is fine-tuned for 500 it-
erations. Hyper-parameters were set as follows: α = 5,
λ0 = 0.1, λ1 = 1, λ2 = 10, λ3 = 0.1, λ4 = 10, λ5 = 1,
λ6 = 10, λ7 = 0.1. The model is trained on 2 Nvidia RTX
GPUs at the resolution of 128 × 128. We used an ADAM
optimizer with a learning rate of 2e−5. Our model takes
approximately 30 minutes for training. We followed previ-
ous works (i.e. EG3D, GRAM) to use Deep3DFace [13] for
estimating the camera pose of images.

4.2. Qualitative Evaluation

Comparison with inversion methods. We start by quali-
tatively comparing our approach to prior inversion methods
including I2S (W), and I2S (W+) and PTI. I2S [2] employs

InputPix2NeRF HeadNeRF NeRFInvertor

Figure 8. Comparison with single-shot NeRF methods.

the conventional optimization strategy to invert real images
to either the smaller W space or the extended W+ space.
PTI [29] is an inversion method for 2D-GANs with excel-
lent performance. Figure 7 shows a qualitative comparison
of these methods for novel view synthesis from a single in-
put image. I2S (W) is able to generate images with accept-
able visual quality, however there is a notable identity gap
with the input image. In contrast, I2S (W+) keeps identity
attributes but introduces lots of artifacts in novel views. PTI
shows better performance than I2S (W) and I2S (W+) by
fine-tuning the model with image space supervisions. How-
ever, since it lacks explicit constraints in 3D space, it fails to
generate accurate geometry of the input subject and the hid-
den content in the original view. Our NeRFInvertor outper-
forms these methods in terms of visual quality and identity
preservation. Furthermore, our method can generate novel
view images with similar texture to the input image. For
example, the visual details in Figure 7 such as wrinkle on
the forehead (1st row) and dimples in the cheeks (3rd row)
are well maintained in novel views. In the Supplementary
Material, we demonstrate reconstruction results and show
more novel views and expressions synthesis.

Comparison with single-shot NeRF methods. We com-
pare our method with single-image view synthesis meth-
ods, Pix2NeRF and HeadNeRF, in Figure 8. Statistical
comparisons are reported in the Supplementary Material.
Pix2NeRF [7] proposed an encoder to translate images to
the Pi-GAN [9] latent space and jointly trained the encoder
and the Pi-GAN generator. In contrast to Pix2NeRF and
our NeRFInvertor, which utilize GAN priors for novel view
synthesis, HeadNeRF [15] proposed a NeRF-based para-
metric head model to synthesize images with various poses.
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Input Rec. NeRFInvertor on AniFaceGAN: Novel Views + Expressions

NeRFInvertor on GRAM: Novel Views

NeRFInvertor on EG3D: Novel Views

Figure 9. Applying NeRFInvertor on multiple NeRF-GANs. We show reconstruction, novel views and expressions synthesis. NeRFIn-
vertor achieves high-fidelity, texture and 3D consistencies and ID-preserving synthesis across poses and expressions.

Table 1. Quantitative comparisons on FFHQ and CelebA-HQ
test set. The best, and the second best scores are highlighted.

FFHQ CelebA-HQ
NeRF- Inversion Rec. Novel View Rec. Novel View
GANs Methods PSNR (↑) FID (↓) ID (↑) PSNR (↑) FID (↓) ID (↑)

AniFace
[38]

I2S [2] (W) 15.62 58.37 0.33 16.50 42.53 0.25
I2S [2] (W+) 25.44 65.36 0.83 26.86 45.08 0.76

PTI [29] 23.89 50.20 0.75 22.61 37.83 0.73
NeRFInvertor 24.92 45.89 0.76 25.61 34.07 0.77

GRAM
[12]

I2S [2] (W) 16.74 49.65 0.39 17.57 30.95 0.19
I2S [2] (W+) 26.98 64.97 0.66 27.61 46.92 0.70

PTI [29] 28.90 45.94 0.79 29.26 38.01 0.80
NeRFInvertor 28.46 43.58 0.80 28.75 31.11 0.81

The results in Figure 8 show that Pix2NeRF is not a good
candidate for real face synthesis, since it does not preserve
the identity properly. HeadNeRF also shows a noticeable
identity gap between the generated and input images. Fur-
thermore, it also inherits the disadvantage of 3D paramet-
ric models that it produces some artificial visuals. Our ap-
proach achieves significantly higher fidelity and better iden-
tity preservation compared to these two methods.
Evaluation on multiple NeRF-GANs. We validate our

pipeline on a variety of NeRF-GANs, including AniFace-
GAN [38], GRAM [12], and EG3D [8]. In Figure 9, we
show the reconstruction, novel views, and expressions syn-
thesis given a single input image. AniFaceGAN uses a de-
formable NeRF structure and is trained for a dynamic scene.
We demonstrate that NeRFInvertor can faithfully translate
a single image to a deformable NeRF representation, allow-
ing us to generate realistic face editing with controllable
poses and expressions (Figure 6 and 9). Given a fixed latent
code, GRAM and EG3D generate the NeRF representation
for a static scene. We also validate our method on these two
methods, demonstrating that we can invert a single image to
a traditional NeRF representation for static scenes.

4.3. Quantitative Evaluation

Quantitative experiments were performed on the first 150
samples from the CelebA-HQ test set and FFHQ dataset.
For reconstruction results, we report PSNR in Table 1 and
additional structural similarity (i.e. SSIM [36]) and identity
similarity in the Supplementary Material. Since we do not
have multi-view ground truth images, we report Frechet In-
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Figure 10. Ablation study on different regularizations.

Table 2. Quantitative results of different regularizations.

Rec. Novel View Novel View+Exp.
PSNR/SSIM (↑) FID (↓) ID (↑) FID (↓) ID (↑)

Limg 22.48 / 0.764 38.61 0.66 38.82 0.60
+Limp 22.61 / 0.761 37.83 0.73 36.99 0.66
+Lexp 25.64 / 0.828 34.68 0.76 34.55 0.66

Full Model 25.61 / 0.830 34.07 0.77 33.61 0.67

ception Distance (i.e. FID) and identity similarity for novel
view images following prior works [7,15]. The results align
with our qualitative evaluation. I2S (W) fails to preserve
the identity of the input image and has poor ID scores. I2S
(W+) introduces artifacts in novel views and results in high
FID scores. Compared to PTI, our method generate compa-
rable reconstructions, but superior novel view synthesis in
terms of visual quality (i.e. FID scores) and better identity
preservation (i.e. ID scores). We achieve the best overall
performance across all metrics. More quantitative results
(e.g. novel view & expression evaluations, and user study)
can be found in the Supplementary Material.

4.4. Ablation Study

Effectiveness of Regularization. We conduct an ablation
study on the CelebA-HQ test set. Compared to existing im-
age space losses Limg , we show the effects of our proposed
implicit geometrical regularization (i.e. Limp), explicit ge-
ometrical regularization (i.e. Lexp), and masked regulariza-
tions (i.e. Full Model) in Figure 10 and Table 2. The re-
sults in Figure 10 indicate that the fine-tuned model with
just image space losses Limg is prone to generating arti-
facts in novel-view images and inaccurate 3D geometry; the
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Figure 11. Ablation study on distance of neighbor samples.

implicit geometrical regularization Limp helps to eliminate
artifacts; the explicit geometrical regularization Lexp im-
proves visual quality and the subject’s 3D geometry; the full
model with masked regularizations reduces fogging around
the hair, ear, or cheek. The quantitative results in Table 2
are consistent with the qualitative results in Figure 10.
Neighborhood Selection. We empirically find out that
the distance between the optimized and neighborhood la-
tent codes affects the ID-preserving ability and geometrical
constraints. As shown in Figure 11, if the selected neigh-
borhood is too close to the optimized latent code (i.e. the
distance α <= 1), the model shows superior geometrical
constraints but worse identity preservation. Conversely, in-
creasing the distance too far (i.e., α >= 10) results in a
model with superior ID-preserving ability but undesirable
3D shape generation. By selecting the value of α from
the interval [1, 10], we achieve a good compromise between
regularization and supervision in image space. As a result,
we chose to set the distance α to 5 in our experiments.

5. Conclusion
We introduced NeRFInvertor as a universal method for a

single-shot inversion of real images on both static and dy-
namic NeRF-GAN models. We employed image space su-
pervision to fine-tune NeRF-GANs generator for reducing
identity gap, along with explicit and implicit geometrical
constraints for removing artifacts from geometry and ren-
dered images in novel views and expressions. Our exper-
iments validate the importance of each component in our
method for 3D consistent, ID-preserving, and high-fidelity
animation of real face images.
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