
A General Regret Bound of Preconditioned Gradient Method for DNN Training

Hongwei Yong Ying Sun Lei Zhang
The Hong Kong Polytechnic University

hongwei.yong@polyu.edu.hk, {csysun, cslzhang}@comp.polyu.edu.hk

Abstract

While adaptive learning rate methods, such as Adam,
have achieved remarkable improvement in optimizing Deep
Neural Networks (DNNs), they consider only the diago-
nal elements of the full preconditioned matrix. Though the
full-matrix preconditioned gradient methods theoretically
have a lower regret bound, they are impractical for use to
train DNNs because of the high complexity. In this paper,
we present a general regret bound with a constrained full-
matrix preconditioned gradient, and show that the updat-
ing formula of the preconditioner can be derived by solving
a cone-constrained optimization problem. With the block-
diagonal and Kronecker-factorized constraints, a specific
guide function can be obtained. By minimizing the up-
per bound of the guide function, we develop a new DNN
optimizer, termed AdaBK. A series of techniques, includ-
ing statistics updating, dampening, efficient matrix inverse
root computation, and gradient amplitude preservation, are
developed to make AdaBK effective and efficient to imple-
ment. The proposed AdaBK can be readily embedded into
many existing DNN optimizers, e.g., SGDM and AdamW,
and the corresponding SGDM BK and AdamW BK algo-
rithms demonstrate significant improvements over existing
DNN optimizers on benchmark vision tasks, including im-
age classification, object detection and segmentation. The
code is publicly available at https://github.com/
Yonghongwei/AdaBK.

1. Introduction
Stochastic gradient descent (SGD) [26] and its vari-

ants [21, 23], which update the parameters along the oppo-
site of their gradient directions, have achieved great success
in optimizing deep neural networks (DNNs) [14, 24]. In-
stead of using a uniform learning rate for different parame-
ters, Duchi et al. [5] proposed the AdaGrad method, which
adopts an adaptive learning rate for each parameter, and
proved that AdaGrad can achieve lower regret bound than
SGD. Following AdaGrad, a class of adaptive learning rate
gradient descent methods has been proposed. For example,

RMSProp [30] and AdaDelta [35] introduce the exponential
moving average to replace the sum of second-order statis-
tics of the gradient for computing the adaptive learning rate.
Adam [15] further adopts the momentum into the gradient,
and AdamW [22] employs a weight-decoupled strategy to
improve the generalization performance. RAdam [18], Ad-
abelief [38] and Ranger [19,32,37] are proposed to acceler-
ate training and improve the generalization capability over
Adam. The adaptive learning rate methods have become the
mainstream DNN optimizers.

In addition to AdaGrad, Duchi et al. [5] provided a full-
matrix preconditioned gradient descent (PGD) method that
adopts the matrix HT = (

∑T
t=1 gtg

⊤
t)

1
2 to adjust the gra-

dient gT , where t denotes the iteration number and T is
the number of the current iteration. It has been proved
[5] that the preconditioned gradient H−1

T gT has a lower
regret bound than the adaptive learning rate methods that
only consider the diagonal elements of HT . However,
the full-matrix preconditioned gradient is impractical to
use due to its high dimension, which limits its applica-
tion to DNN optimization. Various works have been re-
ported to solve this problem in parameter space by adding
some structural constraints on the full-matrix HT . For in-
stances, GGT [1] stores only the gradients of recent itera-
tions so that the matrix inverse root can be computed effi-
ciently by fast low-rank computation tricks. Yun et al. [34]
proposed a mini-block diagonal matrix framework to re-
duce the cost through coordinate partitioning and grouping
strategies. Gupta et al. [9] proposed to extend AdaGrad
with Kronecker products of full-matrix preconditioners to
make it more efficient in DNN training. Besides, natural
gradient approaches [6, 7], which adopt the approximations
of the Fisher matrix to correct the descent direction, can also
be regarded as full-matrix preconditioners.

The existing constrained PGD (CPGD) methods, how-
ever, are heuristic since manually designed approximations
to the full matrix HT are employed in them, while their in-
fluence on the regret bound is unknown. By far, they lack a
general regret-bound theory that can guide us to design the
full-matrix preconditioned gradient methods. On the other
hand, the practicality and effectiveness of these precondi-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7866

https://github.com/Yonghongwei/AdaBK
https://github.com/Yonghongwei/AdaBK

tioner methods are also an issue, which prevents them from
being widely used in training DNNs.

To address the above-mentioned issues, in this paper we
present a theorem to connect the regret bound of the con-
strained full-matrix preconditioner with a guide function.
By minimizing the guide function under the constraints, an
updating formula of the preconditioned gradient can be de-
rived. That is, optimizing the guide function of the precon-
ditioner will minimize its regret bound at the same time,
while different constraints can yield different updating for-
mulas. With the commonly-used constraints on DNN pre-
conditioners, such as the block-diagonal and Kronecker-
factorized constraints [7, 9], specific guide functions can be
obtained. By minimizing the upper bound of the guide func-
tion, a new optimizer, namely AdaBK, is derived.

We further propose a series of techniques, including
statistics updating, dampening, efficient matrix inverse root
computation and gradient norm recovery, to make AdaBK
more practical to use for DNN optimization. By embedding
AdaBK into SGDM and AdamW (or Adam), we develop
two new DNN optimizers, SGDM BK and AdamW BK.
With acceptable extra computation and memory cost, they
achieve significant performance gain in convergence speed
and generalization capability over state-of-the-art DNN op-
timizers, as demonstrated in our experiments in image clas-
sification, object detection and segmentation.

For a better understanding of our proposed regret bound
and the developed DNN optimizer, in Fig. 1, we illustrate
the existing major DNN optimizers and their relationships.
SGD and its momentum version (SGDM) apply the same
learning rate to all parameters based on their gradient de-
scent directions. The adaptive learning rate methods as-
sign different learning rates to different parameters by using
second-order information of the gradients, achieving bet-
ter convergence performance. The adaptive learning rate
methods can be viewed as special cases of PGD methods
by considering only the diagonal elements of the full pre-
conditioned matrix of gradients. Our method belongs to the
class of PGD methods, while our proposed general regret
bound of constrained PGD methods can be applied to the
PGD optimizers under different constraints, including Ada-
Grad, Full-Matrix AdaGrad and our AdaBK.

Notation system. We denote by wt and gt the weight
vector and its gradient of a DNN model in the t-th iteration.
Denote by gt,i the gradient of the i-th sample in a batch
in the t-th iteration, we have gt = 1

n

∑n
i=1 gt,i, where n

is the batch size. The notations A ⪰ 0 and A ≻ 0 for
a matrix A denote that A is symmetric positive semidef-
inite (PSD) and symmetric positive definite, respectively.
A ⪰ B or A −B ⪰ 0 means that A −B is PSD. Tr(A)
represents the trace of the matrix A. For a PSD matrix A,
Aα = UΣαU⊤, where UΣU⊤ is the Singular Value De-
composition (SVD) of A. ||x||A =

√
x⊤Ax is the Maha-

SGD SGDM

AdaGradRMSProp

Adam Adabelief

Shampoo FM-AdaGrad

KFAC AdaBK

Stochastic Gradient Descent

Adaptive Learning Rate Method

Preconditioned Gradient Descent

R
eg

re
t

B
o

u
n

d
 T

h
e

o
re

m
 o

f
C

P
G

D

෥𝒈

𝒈

𝑯−1𝒈

𝑯−1𝒈

Diagonal Constraint

General Constraints

Figure 1. Illustration of the main DNN optimizers.

lanobis norm of x induced by PSD matrix A, and its dual
norm is ||x||∗A =

√
x⊤A−1x. A ⊗ B means the Kro-

necker product of A and B, while A⊙B and A⊙α are the
element-wise matrix product and element-wise power oper-
ation, respectively. Diag(x) is a diagonal matrix with diag-
onal vector x, and vec(·) denotes the vectorization function.

2. Background
2.1. Online Convex Optimization

The online convex optimization framework [10, 28]
remains the most powerful and popular tool to analyze
DNN optimization algorithms, including AdaGrad [5],
Adam [15], Shampoo [9], etc. Given an arbitrary, unknown
sequence of convex loss functions {f1(w), ..., ft(w), ...,
fT (w)}, we aim to optimize the weight wt in the t-th itera-
tion, and evaluate it on the loss function ft(w). The goal of
our optimization process is to minimize the regret, which is
defined as follows [10, 28]:

R(T) =
∑T

t=1
(ft(wt)− ft(ŵ)) , (1)

where ŵ = argminw
∑T

t=1 ft(w). Generally speaking, a
lower regret bound means a more effective learning process.

2.2. Regret Bound of Preconditioned Gradient
As in previous works [5, 9], an online mirror descent

with an adaptive time-dependent regularization is adopted
for online convex learning. In the t-th iteration, suppose we
have obtained the gradient gt = ∇ft(wt), then given a PSD
matrix Ht ⪰ 0, the parameters are updated by optimizing
the following objective function:

wt+1 = argmin
w

ηg⊤
t w +

1

2
||w −wt||2Ht

. (2)

7867

The solution of Eq. (2) is exactly a preconditioned gradient
descent step, which is

wt+1 = wt − ηH−1
t gt. (3)

Duchi et al. [5] have provided a regret bound for online mir-
ror descent, as shown in Lemma 1:

Lemma 1 [5, 9] For any sequence of matrices HT ⪰
... ⪰ H1 ⪰ 0, the regret of online mirror descent holds that

R(T) ≤ 1

2η

∑T

t=1

(
||wt − ŵ||2Ht

− ||wt+1 − ŵ||2Ht

)
+

η

2

∑T

t=1

(
||gt||∗Ht

)2
.

(4)
If we further assume D = maxt≤T ||wt− ŵ||2, then we have

R(T) ≤ D2

2η
Tr(HT) +

η

2

∑T

t=1
(||gt||∗Ht

)
2
. (5)

Our goal is to find a proper sequence of PSD matri-
ces {H1,H2, ...,HT } to minimize the regret bound in Eq
(4) or (5). Duchi et al. [5] suggested to adopt HT =
(
∑T

t=1 gtg
⊤
t)

1
2 as the full matrix regularization matrix.

However, it is hard to directly use it for DNN optimization
due to the high dimension of parameter space. Therefore,
Duchi et al. simplified this full-matrix HT with its diago-
nal elements, resulting in the AdaGrad algorithm [5].

3. A General Regret Bound for Constrained
Preconditioned Gradient

3.1. The General Regret Bound

Directly adopting a full-matrix Ht is absurd for optimiz-
ing a DNN because it is hard or even prohibitive to compute
and store such a high-dimensional matrix. Hence, we need
to reduce the dimension of Ht with a constraint set Ψ, e.g.,
the set of the block-diagonal matrices [5]. In this section,
we aim to construct a general and practical full-matrix reg-
ularization term in Eq. (2) to achieve the low regret bound
in Eq. (4). For a general constraint set Ψ ⊆ Rd×d, if it is
a cone (i.e., ∀x ∈ Ψ, θ > 0, θx ∈ Ψ holds), we have the
following Theorem 1 and Lemma 2, whose proofs can be
found in the supplementary materials.

Theorem 1 For any cone constraint Ψ ⊆ Rd×d, we
define a guide function FT (S) on Ψ as

FT (S) =
∑T

t=1
(||gt||∗S)2, (6)

and then define the matrix HT as
HT = CTST , ST = arg min

S∈Ψ,S⪰0,Tr(S)≤1
FT (S), (7)

where CT =
√
FT (ST). The regret of online mirror de-

scent holds that

R(T) ≤ (
D2

2η
+ η)CT

= (
D2

2η
+ η)

√
min

S∈Ψ,S⪰0,Tr(S)≤1
FT (S).

(8)

The above theorem reveals that minimizing the guide

function FT (S) on cone Ψ will minimize the regret
bound of the preconditioned gradient descent algorithm
simultaneously. More importantly, given a cone con-
straint Ψ, the optimal HT = CTST that achieves the
lowest regret bound can be obtained by optimizing Eq.
(7). From Theorem 1, we can know that the regret
R(T) ≤ O(

√
minS∈Ψ,S⪰0,Tr(S)≤1 FT (S)). If two cones sat-

isfy Ψ1 ⊆ Ψ2, we have
√

minS∈Ψ2,S⪰0,Tr(S)≤1 FT (S) ≤√
minS∈Ψ1,S⪰0,Tr(S)≤1 FT (S). This also explains why full-

matrix regularization can achieve the lowest regret bound.
In addition, we have the following lemma:

Lemma 2 Suppose that Ψ is the set of either diagonal
matrices or full-matrices, according to the definition of ST

and HT in Eq. (7), we have

HT = Diag
((T∑

t=1

gt ⊙ gt
)⊙ 1

2
)
, HT =

(T∑
t=1

gtg
⊤
t

) 1
2 .

(9)
From Lemma 2, we can easily see that the diagonal and

full matrices used in AdaGrad [5] are two special cases of
the results in Theorem 1.

3.2. Layer-wise Block-diagonal Constraint

In practice, we need to choose a proper constraint set
Ψ to regularize the structure of matrix HT . The diagonal
constraint is the simplest constraint. However, it results in a
very low effective dimension of HT so that the regret bound
is high. We aim to find a more effective and practical con-
straint set over HT for DNN optimization.

Instead of considering the full-matrix regularization of
all parameters, one can consider the full-matrix regulariza-
tion of parameters within one DNN layer. Similar ideas
have been adopted in KFAC [7] and Shampoo [9], which
assume that the matrix HT has a block diagonal structure
and each sub-block matrix is used for one layer of a DNN.
Suppose matrices Sl and Hl are for the l-th layer, and gl is
the gradient of weight in the l-th layer, in order to obtain the
updating formula with block-diagonal constraint, we could
minimize the guide function FT (S). There is

FT (S) =

T∑
t=1

(||gt||∗S)2 =

L∑
l=1

T∑
t=1

(||gl,t||∗Sl
)2. (10)

The above equation shows that the original optimization
problem can be divided into a number of L sub-problems,
and we can solve these sub-problems independently. For
the convenience of expression, we omit the subscript l and
analyze the sub-problem within one layer of a DNN in the
following development.

3.3. Kronecker-factorized Constraint

Because the dimension of the parameter space of one
DNN layer can still be very high, we need to further con-
strain the structure of HT . The Kronecker-factorized con-
straint can be used to significantly reduce the parameter di-

7868

mension within one layer [7, 9]. To be specific, for a fully-
connected layer with weight W ∈ RCout×Cin and w =
vec(W), its corresponding gradient is G ∈ RCout×Cin and
g = vec(G). Let S = S1 ⊗ S2, where S1 ∈ RCout×Cout ,
S2 ∈ RCin×Cin and S ∈ RCinCout×CinCout , and ⊗ is Kro-
necker product. Since (S1 ⊗ S2)

−1 = S−1
1 ⊗ S−1

2 , what
we need to minimize becomes
FT (S) =

∑T

t=1
(||gt||∗S1⊗S2

)2 =
∑T

t=1
g⊤
t (S

−1
1 ⊗ S−1

2)gt

= Tr
(
(S−1

1 ⊗ S−1
2)
∑T

t=1
gtg

⊤
t

)
(11)

under the constraints {S1,S2 ⪰ 0,Tr(S1) ≤ 1,Tr(S2) ≤ 1}.
Nevertheless, directly minimizing the FT (S) in Eq. (11)

is still difficult, and we construct an upper bound of FT (S)
to minimize. Since g = 1

n

∑n
i=1 gi, where gi is the gradient

of sample i and n is the batch size, and gi = vec(δixT
i) =

δi ⊗ xi, where xi is the input feature and δi is the output
feature gradient of sample i, we have the following lemma.

Lemma 3 Denote by LT =
∑T

t=1

∑n
i=1 δtiδ

⊤
ti and RT =∑T

t=1

∑n
i=1 xtix

⊤
ti, there is

FT (S) ≤ Tr

(
(S−1

1 ⊗ S−1
2)

1

n

T∑
t=1

n∑
i=1

gtig
⊤
ti

)

≤ 1

n
Tr(S−1

1 LT)Tr(S−1
2 RT).

(12)

We minimize the upper bound of FT (S) defined in
Lemma 3. One can see that the upper bound can be di-
vided into two independent problems w.r.t. S1 and S2, re-
spectively, which are

min
S1⪰0,Tr(S1)≤1

Tr(S−1
1 LT) and min

S2⪰0,Tr(S2)≤1
Tr(S−1

2 RT).

(13)
To solve the above problem, we have the following lemma:
Lemma 4 If A ≻ 0, we have:

arg min
S⪰0,Tr(S)≤1

Tr(S−1A) = A
1
2 /Tr(A

1
2). (14)

The proofs of Lemma 3 and Lemma 4 can be found in
the supplementary materials. According to Lemma 4, we
know that the solution of Eq. (13) is S1,T = L

1
2

T /Tr(L
1
2

T)

and S2,T = R
1
2

T /Tr(R
1
2

T). In practice, LT and RT will
be added with a dampening term ϵI to ensure that they are
symmetric and positive definite. Without considering the
magnitude of HT , we can set

HT = H1,T ⊗H2,T ,H1,T = L
1
2

T ,H2,T = R
1
2

T . (15)
Then according to the property of Kronecker product, the
online mirror descent updating formula in Eq. (3) becomes

Wt+1 = Wt − ηH−1
1,t GtH

−1
2,t . (16)

We ignore the magnitude of HT here because it will have
no impact on the result after we introduce a gradient norm
recovery operation in the algorithm, which will be described
in the next section.

Finally, the proposed vanilla optimizer, termed AdaBK,
is summarized in Algorithm 1.

4. Detailed Implementation

The proposed AdaBK in Algorithm 1 involves the cal-
culation of matrix inverse root, which may be unstable and
inefficient. For an efficient and effective implementation
of AdaBK in training DNNs, we propose a series of tech-
niques.

Efficient Matrix Inverse Root. As shown in Algo-
rithm 1, we need to calculate the matrix inverse root of Lt

and Rt. Traditional approaches usually use SVD to calcu-
late it. Notwithstanding, SVD is inefficient and the existing
deep learning frameworks (e.g., PyTorch) do not implement
SVD on GPU well, making the training unstable or even
not converging. Instead of using SVD, we adopt the Schur-
Newton algorithm [8] to compute the matrix inverse root.
For matrix A, let Y0 = A/Tr(A) and Z0 = I . The Schur-
Newton algorithm adopts the following iterations:Tk =

1

2
(3I −Zk−1Yk−1) ;

Yk = Yk−1Tk, Zk = TkZk−1, k = 1, 2, ...,K.
(17)

Then we have A
1
2 ≈ YK

√
Tr(A), A− 1

2 ≈ ZK/
√

Tr(A).
In practice, we find that setting K = 10 can achieve good
enough precision for our problem.

Statistics Updating. In Algorithm 1, Lt and Rt accu-
mulate the statistics of output feature gradient ∆t and input
feature Xt, respectively. Hence the amplitude of Lt and Rt

will increase during training. After certain iterations, the ef-
fective learning rate will become small, making the learning
process inefficient. To solve this issue, we use the exponen-
tial moving average of Lt and Rt. Meanwhile, it is unnec-
essary to compute Lt, Rt, and their inverse root in each
iteration. Two hyper-parameters Ts and Tir are introduced
to control the frequency of updating Lt and Rt and their
inverse root, respectively. This infrequent statistics updat-
ing strategy can significantly improve efficiency with a little
performance drop. We use two additional statistics L̂t and
R̂t to restore the matrix inverse root of Lt and Rt (please
refer to Algorithm 2).

Dampening Strategy. When the dimensions of ∆t and
Xt are high, Lt and Rt tend to be singular matrices with
large condition numbers. A dampening term ϵI should be
added into Lt and Rt to improve their condition number
and enhance the stability of computing inverse root. As in
[33], we adopt an adaptive dampening parameter ϵλmax,
where λmax is the max singular value of the matrix Lt

or Rt. With this setting, the condition number will be
λmax+ϵλmax

λmin+ϵλmax
≤ 1+ϵ

ϵ , bounded by a value determined by ϵ.
Meanwhile, the maximum singular value of the symmetric
matrix (Lt or Rt) can be efficiently obtained by the power
iteration method [2] as follows:{

vk = Auk−1,

uk = vk/||vk||2, k = 1, 2, ...,K.
(18)

7869

Algorithm 1: AdaBK (Adaptive Regularization
with Block-diagonal and Kronecker-factorized
Constraints)

Input: W0, L0 = ϵICout , R0 = ϵICin
, η

Output: WT

1 for t=1:T do
2 Receive Xt = [xti]

n
i=1 by forward propagation;

3 Receive ∆t = [δti]
n
i=1 by backward propagation;

4 Compute gradient Gt;
5 Update preconditioners:
6 Lt = Lt−1 +∆t∆

⊤
t ;

7 Rt = Rt−1 +XtX
⊤
t ;

8 Update weight:

Wt+1 = Wt − ηL
− 1

2
t GtR

− 1
2

t ;
9 end

Algorithm 2: One Step Preconditioned Gradient of
AdaBK

Input: Ts, Tir , α, ϵ, β, Lt−1, Rt−1,L̂t−1, R̂t−1, Xt = [xti]
n
i=1,

∆t = [δti]
n
i=1, Gt = ∇WtL

Output: G̃t

1 if t%Ts = 0 then
2 Lt = αLt−1 + (1 − α)∆t∆

⊤
t ;

3 Rt = αRt−1 + (1 − α)XtX
⊤
t ;

4 else
5 Lt = Lt−1,Rt = Rt−1;
6 end
7 if t%Tir = 0 then
8 Compute λL

max and λR
max by Power Iteration;

9 Compute L̂t = (Lt + λL
maxϵI)

− 1
2 and

R̂t = (Rt + λR
maxϵI)

− 1
2 by Schur-Newton Iteration Eq. (17);

10 else
11 L̂t = L̂t−1 and R̂t = L̂t−1;
12 end
13 Ĝt = L̂tGtR̂t;

14 G̃t = Ĝt
||Gt||2
||Ĝt||2

;

We use λmax ≈ ||vK ||2 for our proposed adaptive dampen-
ing and set K to 10 in our implementation.

Gradient Norm Recovery. Since the amplitude of
the preconditioned gradient L− 1

2
t GtR

− 1
2

t may significantly
differ from the amplitude of original Gt, the optimal learn-
ing rate and weight decay will also differ from the orig-
inal optimizer. It is expected that the well-tuned hyper-
parameters in current optimizers (e.g., SGDM, AdamW)
can be directly used in our proposed AdaBK optimizer with-
out further hyper-parameter tuning. To this end, we follow
the strategy in [33] to re-scale the amplitude of the precondi-
tioned gradient Ĝt = L

− 1
2

t GtR
− 1

2
t to the original gradient

Gt by multiplying it with a scaling factor, i.e.,

G̃t = Ĝt
||Gt||2
||Ĝt||2

. (19)

It is easy to know that G̃t and Gt have the same L2 norm.
With gradient norm recovery, the proposed AdaBK method
can be easily embedded into existing optimizers without
much extra hyperparameter tuning.

Convolutional Layer. We have discussed the optimiza-
tion of FC layers in Section 3. For the Conv layer, the
derivation process is similar. The convolution operation can
be formulated as matrix multiplication with the im2col op-
eration [31, 36], and then the Conv layer can be viewed as
an FC layer with A = U1(W)X, where A and X are the
output and input features after im2col operation, and U1(·)
is the mode 1 unfold operation of a tensor. For example,
for a convolution weight W ∈ RCout×Cin×k1×k2 , we have
U1(W) ∈ RCout×Cink1k2 . U1(W) can be considered as
the weight of the FC layer, and the remaining computation
is the same as the FC layer.

Embedding AdaBK into SGDM and AdamW. With
the above-introduced techniques, a more efficient and prac-
tical implementation of AdaBK can be obtained. The one-
step preconditioned gradient of AdaBK is summarized in

Algorithm 2. For a FC layer, the complexity of AdaBK
is T (O(

C3
in+C3

out
Tir

) + O(
(C2

in+C2
out)N

Ts
) + O(CinCout(Cin +

Cout)))), where T is the total number of iterations. For
a Conv layer, its complexity is T (O(

C3
ink3

1k
3
2+C3

out
Tir

) +

O(
(C2

ink2
1k

2
2+C2

out)N

Ts
)+O(Cink1k2Cout(Cink1k2+Cout))). In

our implementation, Ts and Tir are set to 200 and 2000, re-
spectively, and the complexity is acceptable. In practice, it
only costs 10% ∼ 25% additional training time.

AdaBK can be embedded into many existing optimiz-
ers. In this paper, we embed it into the two commonly
used DNN optimizers, i.e., SGDM and AdamW (or Adam),
and name the obtained new optimizers as SGDM BK
and AdamW BK accordingly. The detailed algorithms of
SGDM BK and AdamW BK are summarized in the sup-
plementary materials.

5. Experiments

We evaluate the proposed SGDM BK and AdamW BK
optimizers on typical vision tasks, including image classi-
fication (on CIFAR100/CIFAR10 [16] and ImageNet [27]),
object detection and segmentation (on COCO [17]). For the
hyper-parameters of SGDM BK and AdamW BK, we set
α = 0.9, Ts = 200, Tir = 2000, and ϵ = 0.00001 through-
out the experiments if not specified. Ablation studies on
hyper-parameter selection can be found in the supplemen-
tary material. All experiments are conducted under the Py-
torch 1.11 framework with NVIDIA GeForce RTX 2080Ti
and 3090 Ti GPUs.

5.1. Image Classification

In the image classification task, we compare SGDM BK
and AdamW BK with the representative and state-of-the-
art DNN optimizers, including SGDM, AdamW [22], Ada-

7870

Table 1. Testing accuracies (%) on CIFAR100/CIFAR10. The best and second best results are highlighted in bold and italic fonts,
respectively. The numbers in red color indicate the improvement of SGDM BK/AdamW BK over SGDM/AdamW, respectively.

CIFAR100
Optimizer SGDM AdamW Adagrad RAdam Adabelief Shampoo KFAC WSGDM SGDM BK AdamW BK
ResNet18 77.20± .30 77.23± .10 71.55± .25 77.05± .15 77.43± .36 71.81± .40 78.25± .23 79.28 ± .27 79.30± .07 (↑2.10) 78.66± .34 (↑1.43)
ResNet50 77.78± .43 78.10± .17 72.20± .15 78.20± .15 79.08± .23 71.31± .53 79.25± .26 80.90 ± .23 81.26± .20 (↑3.48) 80.15± .19 (↑2.05)
VGG11 70.80± .29 71.20± .29 67.70± .18 71.08± .24 72.45± .16 63.56± .44 72.75± .31 73.42 ± .28 73.89± .13 (↑3.09) 73.09± .29 (↑1.89)
VGG19 70.94± .32 70.26± .23 63.30± .58 73.01± .20 72.39± .27 65.62± .56 73.87± .43 74.82 ± .23 75.10± .13 (↑4.16) 74.27± .25 (↑4.01)

DenseNet121 79.53± .19 78.05± .26 71.27± .79 78.65± .05 79.88± .08 74.95± .42 79.84± .33 81.23± .10 81.18 ± .27 (↑1.65) 79.93± .23 (↑1.88)
CIFAR10

ResNet18 95.10± .07 94.80± .10 92.83± .12 94.70± .18 95.12± .14 92.94± .27 95.01± .12 95.43 ± .08 95.44± .12 (↑0.34) 95.22± .13 (↑0.42)
ResNet50 94.75± .30 94.72± .10 92.55± .39 94.72± .10 95.35± .05 92.61± .27 95.43± .16 95.80 ± .15 95.86± .05 (↑1.11) 95.40± .07 (↑0.68)
VGG11 92.17± .19 92.02± .08 90.25± .25 92.00± .18 92.45± .18 89.01± .29 92.82± .11 92.95± .20 93.14± .26 (↑0.97) 92.96 ± .07 (↑0.94)
VGG19 93.61± .06 93.40± .04 91.28± .14 93.57± .11 93.58± .12 90.62± .32 93.47± .09 93.91± .19 94.03± .15 (↑0.42) 93.94 ± .10 (↑0.54)

DenseNet121 95.37± .17 94.80± .07 92.95± .23 95.02± .08 95.37± .04 94.37± .36 95.18± .22 95.72± .14 95.70 ± .13 (↑0.33) 95.40± .04 (↑0.60)

0 20 40 60

epoch

0.8

1

1.2

1.4

1.6

1.8

2

L
o
s
s

ResNet18 on CIFAR100

SGDM

SGDM_BK

AdamW

AdamW_BK

0 0.1 0.2 0.3 0.4

time/h

0.8

1

1.2

1.4

1.6

1.8

2

L
o
s
s

ResNet18 on CIFAR100

SGDM

SGDM_BK

AdamW

AdamW_BK

0 20 40 60

epoch

1

1.5

2

2.5

3

L
o
s
s

ResNet50 on CIFAR100

SGDM

SGDM_BK

AdamW

AdamW_BK

0 0.5 1

time/h

1

1.5

2

2.5

3

L
o
s
s

ResNet50 on CIFAR100

SGDM

SGDM_BK

AdamW

AdamW_BK

Figure 2. Training loss curves (loss vs. epoch and loss vs. time) of SGDM, SGDM BK, AdamW and AdamW BK on CIFAR100 with
ResNet18 and ResNet50 before 60 epochs.

grad [5], RAdam [19]1, and Adabelief [38]2, Shampoo [9]3,
KFAC [7] [9]4, WSGDM [33]5. We tune learning rate and
weight decay for each optimizer with grid search and the
detailed settings for different optimizers can be found in the
supplementary material.

Results on CIFAR100/10: We first testify the ef-
fectiveness of SGDM BK and AdamW BK with differ-
ent DNN models on CIFAR100/CIFAR10 [16], includ-
ing ResNet18, ResNet50 [12], VGG11 VGG19 [29] and
DenseNet-121 [13] 6. All the DNN models are trained for
200 epochs with batch size 128 on one GPU. The learn-
ing rate is multiplied by 0.1 for every 60 epochs. The
experiments are repeated 4 times and the results are re-
ported in a “mean±std” format in Table 1. We can see that
SGDM BK and AdamW BK achieve significant improve-
ments over SGDM and AdamW, which are 1.44% ∼ 4.16%
and 1.43% ∼ 4.01% on CIFAR100, and 0.28% ∼ 1.11%
and 0.42% ∼ 0.94% on CIFAR10, respectively. They also
surpass other compared optimizers for most of the used
backbone networks.

1https://github.com/LiyuanLucasLiu/RAdam
2https : / / github . com / juntang - zhuang / Adabelief -

Optimizer
3https://github.com/moskomule/shampoo.pytorch
4https://github.com/alecwangcq/KFAC-Pytorch
5https://github.com/Yonghongwei/W-SGDM-and-W-Adam
6The model can be downloaded at https://github.com/weiaicunzai/

pytorch-cifar100.

Figure 2 shows the curves of training loss vs. epoch and
training loss vs. time for SGDM, SGDM BK, AdamW and
AdamW BK on CIFAR100 with ResNet18 and ResNet50
backbones before 60 epochs. One can see that SGDM BK
and AdamW BK can significantly speed up the training pro-
cess of SGDM and AdamW, respectively. Since SGDM BK
and AdamW BK cost additional time in each iteration, for
a fair comparison, we also show the curves of training loss
vs. time. One can see that they still have great advantages
over the original SGDM and AdamW.

Results on ImageNet-1k: To testify that SGDM BK
and AdamW BK can also work well on large-scale datasets,
we evaluate them on ImageNet-1k [27], which contains
1000 categories with 1.28 million images for training and
50K images for validation. ResNet18 and ResNet50 are
selected as the backbone models with training batch size
256 on 4 GPUs, and the training settings follow the work
in [3, 38]. The learning rate is multiplied by 0.1 for every
30 epochs. SGDM BK and AdamW BK adopt the same
learning rate and weight decay as SGDM and AdamW, re-
spectively. The top 1 accuracies on the validation set are
reported in Table 2. One can see that SGDM BK and
AdamW BK perform better than others. Meanwhile, we
plot the training and validation accuracy curves in Figure 3,
from which we see that the proposed AdaBK technique can
largely speed up the training process. .

We also evaluate the proposed optimizer on Swin-

7871

https://github.com/LiyuanLucasLiu/RAdam
https://github.com/juntang-zhuang/Adabelief-Optimizer
https://github.com/juntang-zhuang/Adabelief-Optimizer
https://github.com/moskomule/shampoo.pytorch
https://github.com/alecwangcq/KFAC-Pytorch
https://github.com/Yonghongwei/W-SGDM-and-W-Adam
https://github.com/weiaicunzai/pytorch-cifar100
https://github.com/weiaicunzai/pytorch-cifar100

Table 2. Top 1 accuracy (%) on the validation set of ImageNet-1k. The numbers in red color indicate the improvement of
SGDM BK/AdamW BK over SGDM/AdamW, respectively.

Optimizer SGDM AdamW Adagrad RAdam Adabelief Shampoo KFAC WSGDM SGDM BK AdamW BK
ResNet18 70.49 70.01 62.22 69.92 70.08 64.45 69.62 71.43 71.59 (↑1.10) 71.63 (↑1.62)
ResNet50 76.31 76.02 69.38 76.12 76.22 70.11 76.36 77.48 77.62 (↑1.31) 77.22 (↑1.10)

0 20 40 60 80 100

epoch

35

40

45

50

55

60

65

70

75

80

85

A
cc

u
ra

cy
(%

)

Training

R18--SGDM

R18--SGDM_BK
R50--SGDM

R50--SGDM_BK

0 20 40 60 80 100

epoch

35

40

45

50

55

60

65

70

75

80

A
cc

u
ra

cy
(%

)

Validation

R18--SGDM

R18--SGDM_BK
R50--SGDM

R50--SGDM_BK

0 20 40 60 80 100

epoch

35

40

45

50

55

60

65

70

75

80

85

A
cc

u
ra

cy
(%

)

Training

R18--AdamW

R18--AdamW_BK
R50--AdamW

R50--AdamW_BK

0 20 40 60 80 100

epoch

35

40

45

50

55

60

65

70

75

80

A
cc

u
ra

cy
(%

)

Validation

R18--AdamW

R18--AdamW_BK
R50--AdamW

R50--AdamW_BK

Figure 3. Training and validation accuracy curves of SGDM, SGDM BK, AdamW and AdamW BK on ImageNet-1k with ResNet18 and
ResNet50 backbones.

Table 3. Top 1 accuracy (%) on the validation set of ImageNet-1k.

Optimizer AdamW AdamW BK
Swin-T 81.18 81.79 (↑0.61)
Swin-B 83.02 83.14 (↑0.12)

transformer [20] backbone. We compare AdamW BK with
their default optimizer AdamW. The configurations follow
the settings of the official MMClassification toolbox7. The
results are shown in Table 3. We can see AdamW BK can
also achieves certain performance gain over AdamW.

5.2. Detection and Segmentation

We then evaluate SGDM BK and AdamW BK on
COCO [17] detection and segmentation tasks to show that
they can work well beyond classification tasks and can
be used to fine-tune pre-trained models. The models
are pre-trained on ImageNet1k and fine-tuned on COCO
train2017 (118K images), and then evaluated on COCO
val2017 (40K images). The latest version of MMDe-
tection toolbox [4] is used as to train our models. We
test SGDM BK and AdamW BK by Faster-RCNN [25]
and Mask-RCNN [11] with various backbones, includ-
ing ResNet50 (R50), ResNet101 (R101) and Swin trans-
former [20].

As mentioned in Section 4, with the gradient norm re-
covery operation, we can directly adopt the same hyper-
parameters (i.e., learning rate and weight decay) of SGDM
and AdamW into SGDM BK and AdamW BK, respec-
tively. To be specific, for R50 and R101 backbones, we
compare the proposed optimizer with SGDM, WSGDM
and AdamW. The learning rate and weight decay are set to

7https://github.com/open-mmlab/mmclassification/tree/
master/configs/swin_transformer

0.02 and 0.0001 for SGDM, WSGDM and SGDM BK, and
0.0001 and 0.2 for AdamW and AdamW BK, respectively.

For the Swin transformer backbone, the learning rate and
weight decay are set to 0.0001 and 0.02 for AdamW and
AdamW BK, respectively. The learning rate schedule is 1X
for Faster-RCNN. Other configurations follow the settings
of the official MMDetection toolbox8. For the default op-
timizers, we use their official results9. This experiment is
conducted on NVIDIA GeForce RTX 3090 Ti GPUs.

Table 4 lists the Average Precision (AP) of object de-
tection by Faster-RCNN. It can be seen that the models
trained by SGDM BK and AdamW BK achieve clear per-
formance gains of 1.6% ∼ 2.2% AP for R50 and R101
backbones. Fig. 4 shows the training loss curves of
Faster-RCNN with ResNet50 backbone. One can see that
SGDM BK and AdamW BK accelerate the training process
over SGDM and AdamW. Table 5 shows the APb of de-
tection and APm of segmentation by Mask-RCNN. We can
see that SGDM BK and AdamW BK gain 1.5% ∼ 2.2%
APb and 1.2% ∼ 2.2% APm for R50 and R101 back-
bones over SGDM and AdamW, respectively. For Swin
transformer backbone, AdamW BK also improves 0.7% ∼
0.9% APb and 0.3% ∼ 0.9% APm over AdamW. Mean-
while, compared with WSGDM, the proposed SGDM BK
also outperforms it with 0.2% ∼ 0.6% AP gain. More-
over, Fig. 5 plots the training loss curves of Faster-RCNN
with ResNet50, Swin-T (1X) and Swin-S (3X). The pro-
posed SGDM BK and AdamW BK accelerate the train-

8https://github.com/open-mmlab/mmdetection
9Please refer to https://github.com/open-mmlab/mmdetection/

tree / master / configs / faster _ rcnn, https : / / github . com /
open-mmlab/mmdetection/tree/master/configs/mask_rcnn, and
https://github.com/open-mmlab/mmdetection/tree/master/
configs/swin.

7872

https://github.com/open-mmlab/mmclassification/tree/master/configs/swin_transformer
https://github.com/open-mmlab/mmclassification/tree/master/configs/swin_transformer
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn
https://github.com/open-mmlab/mmdetection/tree/master/configs/swin
https://github.com/open-mmlab/mmdetection/tree/master/configs/swin

Table 4. Detection results of Faster-RCNN on COCO. ∆ means the
gain of SGDM BK over SGDM or AdamW BK over AdamW. * in-
dicates the default optimizer.

Backbone Algorithm AP AP.5 AP.75 APs APm APl

R50

SGDM* 37.4 58.1 40.4 21.2 41.0 48.1
WSGDM 39.4 60.6 43.1 23.1 42.9 50.7

SGDM BK 39.6 60.7 42.8 22.6 42.9 52.2
∆ ↑ 2.2 ↑2.6 ↑2.4 ↑1.4 ↑1.9 ↑4.1

AdamW 37.8 58.7 41.0 22.1 41.2 49.2
AdamW BK 39.4 60.3 42.9 22.5 42.8 52.3

∆ ↑1.6 ↑1.6 ↑1.9 ↑0.4 ↑1.6 ↑3.1

R101

SGDM* 39.4 60.1 43.1 22.4 43.7 51.1
WSGDM 41.1 61.6 45.1 24.0 45.2 54.3

SGDM BK 41.6 62.3 45.3 24.9 45.6 55.2
∆ ↑2.2 ↑ 2.2 ↑2.2 ↑2.5 ↑1.9 ↑4.1

AdamW 40.1 60.6 43.8 22.9 44.1 52.8
AdamW BK 41.7 62.1 45.5 24.4 45.4 56.2

∆ ↑1.6 ↑1.5 ↑1.7 ↑1.5 ↑1.3 ↑3.4

0 2 4 6 8

Iteration (10k)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
o
ss

Faster-RCNN

SGDM

SGDM_BK

0 2 4 6 8

Iteration (10k)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
o
ss

Faster-RCNN

AdamW

AdamW_BK

Figure 4. Training loss curves of ResNet50.

Table 5. Detection and segmentation results of Mask-RCNN on
COCO. ∆ means the gain of SGDM BK over SGDM or AdamW BK
over AdamW. * indicates the default optimizer.

Backbone Lr schedule Algorithm APb APb.5 APb.75 APm APm.5 APm.75

R50 1X

SGDM* 38.2 58.8 41.4 34.7 55.7 37.2
W-SGDM 39.8 60.8 43.4 36.4 57.6 38.9

SGDM BK 40.4 61.3 43.9 36.9 58.3 39.6
∆ ↑2.2 ↑2.5 ↑2.5 ↑2.2 ↑2.6 ↑2.4

AdamW 37.8 58.7 41.0 35.4 56.2 38.0
AdamW BK 40.0 60.6 43.5 36.7 58.0 39.3

∆ ↑2.2 ↑1.9 ↑2.5 ↑1.3 ↑1.8 ↑1.3

R100 1X

SGDM* 40.0 60.5 44.0 36.1 57.5 38.6
W-SGDM 41.7 62.5 45.5 37.9 59.4 40.8

SGDM BK 42.2 62.9 46.1 38.1 60.0 40.7
∆ ↑2.2 ↑2.4 ↑2.1 ↑2.0 ↑ 2.5 ↑2.1

AdamW 40.7 61.1 44.6 37.2 58.4 40.1
AdamW BK 42.2 62.5 46.0 38.4 59.9 41.2

∆ ↑1.5 ↑1.4 ↑1.4 ↑1.2 ↑1.5 ↑1.1

Swin-T 1X
AdamW* 42.7 65.2 46.8 39.3 62.2 42.2

AdamW BK 43.6 65.9 47.8 40.2 63.1 43.1
∆ ↑0.9 ↑0.7 ↑1.0 ↑0.9 ↑0.9 ↑0.9

Swin-T 3X
AdamW* 46.0 68.2 50.3 41.6 65.3 44.7

AdamW BK 46.8 68.8 51.4 42.4 66.1 45.6
∆ ↑0.8 ↑0.6 ↑1.1 ↑0.8 ↑0.8 ↑0.9

Swin-S 3X
AdamW* 48.2 69.8 52.8 43.2 67.0 46.1

AdamW BK 48.9 70.4 53.8 43.5 67.4 46.8
∆ ↑0.7 ↑0.6 ↑1.0 ↑0.3 ↑0.4 ↑0.7

0 2 4 6 8

0.5

0.6

0.7

0.8

0.9

1

1.1

L
o

ss

Mask-RCNN/ResNet50

SGDM

SGDM_BK

0 2 4 6 8

0.5

0.6

0.7

0.8

0.9

1

1.1

L
o

ss

Mask-RCNN/ResNet50

AdamW

AdamW_BK

0 2 4 6 8

Iteration (10k)

0.5

0.6

0.7

0.8

0.9

1

1.1

L
o

ss

Mask-RCNN/Swin-T (1X)

AdamW

AdamW_BK

0 5 10 15 20 25

Iteration (10k)

0.5

0.6

0.7

0.8

0.9

1

1.1

L
o

ss

Mask-RCNN/Swin-S (3X)

AdamW

AdamW_BK

Figure 5. Training loss curves of Mask-RCNN.

ing process clearly. The results on COCO demonstrate
that the proposed SGDM BK and AdamW BK can be eas-
ily adopted into the downstream tasks without additional
hyper-parameter tuning.

5.3. Memory Usage and Training Time

For full-matrix adaptive optimizers, one important con-
cern is the training cost, including memory usage and train-
ing time. Here we compare the memory and time cost of
our optimizers with SGDM [23], AdamW [22] and Ada-
grad [5] on CIFAR100. ResNet50 is used as the backbone
and one GeForce RTX 2080Ti GPU is used. The results are
reported in Table 6. One can see that the embedding of Ad-
aBK slightly increases the memory usage and training time
(10% ∼ 25% extra training time and memory usage). Com-
pared to the improvement of performance, the extra cost is
affordable and worthwhile.

6. Conclusion
This work presented a general regret bound for the con-

strained full-matrix preconditioned gradient methods for

Table 6. Memory cost (MiB) and training time (h) of different
optimizers with ResNet50.

Optimizer SGDM AdamW Adagrad SGDM BK AdamW BK
Memory 5867 5883 5865 6525 6535

Time 3.42 3.48 3.46 4.14 4.20

DNN optimization. Different from previous full-matrix pre-
conditioned methods, where the parameter update formulas
are designed heuristically, we proved that given a cone con-
straint on the full-matrix preconditioner, the corresponding
parameter update formula can be obtained by optimizing a
guide function. Based on our theoretical analysis, we de-
rived a specific guide function with the layer-wise block-
diagonal constraint and Kronecker-factorized constraint.
Through optimizing an upper bound of the guide function,
a new preconditioned optimization algorithm, namely Ad-
aBK, was obtained. We embedded AdaBK into two widely
used optimizers, i.e., SGDM and AdamW, and the experi-
mental results on image classification, object detection and
segmentation tasks demonstrated that AdaBK can signif-
icantly improve the DNN optimization performance with
only 10% ∼ 25% extra computation cost.

7873

References
[1] Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan,

Karan Singh, Cyril Zhang, and Yi Zhang. Efficient full-
matrix adaptive regularization. In International Conference
on Machine Learning, pages 102–110. PMLR, 2019. 1

[2] Richard L Burden, J Douglas Faires, and Annette M Burden.
Numerical analysis. Cengage learning, 2015. 4

[3] Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan
Cao, and Quanquan Gu. Closing the generalization gap of
adaptive gradient methods in training deep neural networks.
arXiv preprint arXiv:1806.06763, 2018. 6

[4] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, et al. Mmdetection: Open mmlab detection tool-
box and benchmark. arXiv preprint arXiv:1906.07155, 2019.
7

[5] John Duchi, Elad Hazan, and Yoram Singer. Adaptive sub-
gradient methods for online learning and stochastic opti-
mization. Journal of machine learning research, 12(7), 2011.
1, 2, 3, 6, 8

[6] Thomas George, César Laurent, Xavier Bouthillier, Nico-
las Ballas, and Pascal Vincent. Fast approximate natural
gradient descent in a kronecker-factored eigenbasis. arXiv
preprint arXiv:1806.03884, 2018. 1

[7] Roger Grosse and James Martens. A kronecker-factored
approximate fisher matrix for convolution layers. In Inter-
national Conference on Machine Learning, pages 573–582.
PMLR, 2016. 1, 2, 3, 4, 6

[8] Chun-Hua Guo and Nicholas J Higham. A schur–newton
method for the matrix\boldmath p th root and its in-
verse. SIAM Journal on Matrix Analysis and Applications,
28(3):788–804, 2006. 4

[9] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo:
Preconditioned stochastic tensor optimization. In Interna-
tional Conference on Machine Learning, pages 1842–1850.
PMLR, 2018. 1, 2, 3, 4, 6

[10] Elad Hazan et al. Introduction to online convex optimization.
Foundations and Trends® in Optimization, 2(3-4):157–325,
2016. 2

[11] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 7

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[13] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 6

[14] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej
Chum. Label propagation for deep semi-supervised learning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5070–5079, 2019. 1

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1, 2

[16] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5, 6

[17] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 5, 7

[18] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen,
Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the vari-
ance of the adaptive learning rate and beyond. arXiv preprint
arXiv:1908.03265, 2019. 1

[19] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen,
Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the vari-
ance of the adaptive learning rate and beyond. arXiv preprint
arXiv:1908.03265, 2019. 1, 6

[20] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 7

[21] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 1

[22] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 1, 5,
8

[23] Ning Qian. On the momentum term in gradient descent
learning algorithms. Neural networks, 12(1):145–151, 1999.
1, 8

[24] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 1

[25] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015. 7

[26] Herbert Robbins and Sutton Monro. A stochastic approxi-
mation method. The annals of mathematical statistics, pages
400–407, 1951. 1

[27] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015. 5, 6

[28] Shai Shalev-Shwartz et al. Online learning and online convex
optimization. Foundations and Trends® in Machine Learn-
ing, 4(2):107–194, 2012. 2

[29] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 6

[30] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning,
4:26–31, 2012. 1

[31] Chengxi Ye, Matthew Evanusa, Hua He, Anton Mitrokhin,
Tom Goldstein, James A Yorke, Cornelia Fermüller, and

7874

Yiannis Aloimonos. Network deconvolution. arXiv preprint
arXiv:1905.11926, 2019. 5

[32] Hongwei Yong, Jianqiang Huang, Xiansheng Hua, and Lei
Zhang. Gradient centralization: A new optimization tech-
nique for deep neural networks. In European Conference on
Computer Vision, pages 635–652. Springer, 2020. 1

[33] Hongwei Yong and Lei Zhang. An embedded feature whiten-
ing approach to deep neural network optimization. In the
European Conference on Conputer Vision, 2022. 4, 5, 6

[34] Jihun Yun, Aurelie C Lozano, and Eunho Yang. Stochas-
tic gradient methods with block diagonal matrix adaptation.
arXiv preprint arXiv:1905.10757, 2019. 1

[35] Matthew D Zeiler. Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701, 2012. 1

[36] Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Train feed-
foward neural network with layer-wise adaptive rate via
approximating back-matching propagation. arXiv preprint
arXiv:1802.09750, 2018. 5

[37] Michael R Zhang, James Lucas, Geoffrey Hinton, and
Jimmy Ba. Lookahead optimizer: k steps forward, 1 step
back. arXiv preprint arXiv:1907.08610, 2019. 1

[38] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C
Tatikonda, Nicha Dvornek, Xenophon Papademetris, and
James Duncan. Adabelief optimizer: Adapting stepsizes by
the belief in observed gradients. Advances in neural infor-
mation processing systems, 33:18795–18806, 2020. 1, 6

7875

	. Introduction
	. Background
	. Online Convex Optimization
	. Regret Bound of Preconditioned Gradient

	. A General Regret Bound for Constrained Preconditioned Gradient
	. The General Regret Bound
	. Layer-wise Block-diagonal Constraint
	. Kronecker-factorized Constraint

	. Detailed Implementation
	. Experiments
	. Image Classification
	. Detection and Segmentation
	. Memory Usage and Training Time

	. Conclusion

