This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Cross-Guided Optimization of Radiance Fields with Multi-View Image
Super-Resolution for High-Resolution Novel View Synthesis

Youngho Yoon and Kuk-Jin Yoon
Visual Intelligence Lab., KAIST, Korea
{dudgh1732, kjyoon}@kaist.ac.kr

Abstract

Novel View Synthesis (NVS) aims at synthesizing an im-
age from an arbitrary viewpoint using multi-view images
and camera poses. Among the methods for NVS, Neural
Radiance Fields (NeRF) is capable of NVS for an arbitrary
resolution as it learns a continuous volumetric representa-
tion. However, radiance fields rely heavily on the spectral
characteristics of coordinate-based networks. Thus, there
is a limit to improving the performance of high-resolution
novel view synthesis (HRNVS). To solve this problem, we
propose a novel framework using cross-guided optimiza-
tion of the single-image super-resolution (SISR) and radi-
ance fields. We perform multi-view image super-resolution
(MVSR) on train-view images during the radiance fields op-
timization process. It derives the updated SR result by fus-
ing the feature map obtained from SISR and voxel-based un-
certainty fields generated by integrated errors of train-view
images. By repeating the updates during radiance fields op-
timization, train-view images for radiance fields optimiza-
tion have multi-view consistency and high-frequency de-
tails simultaneously, ultimately improving the performance
of HRNVS. Experiments of HRNVS and MVSR on various
benchmark datasets show that the proposed method signifi-
cantly surpasses existing methods.

1. Introduction

Novel View Synthesis (NVS) is an approach to synthe-
sizing an image from an arbitrary viewpoint using multi-
view images and camera poses. This is an essential task in
computer vision and graphics, and it can be actively used
in street-view navigation, AR/VR, and robotics. Recently,
Neural Radiance Fields [28] (NeRF) significantly improved
the performance of NVS by learning multi-layer perceptron
(MLP) from 5d coordinate input. Since then, many studies
have been conducted to shorten the long learning time of

NeRF [4,10,29,36,42,43,48], increase the performance of
NVS using depth priors [5,8,32,41], and enable NVS from
few-shot views [13,16,31,49].
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Figure 1. Cross-guided optimization between single image super-
resolution and radiance fields. They complement weaknesses of
one another with their respective strengths by using the SR update
module, rendered train-view RGBs, and uncertainty maps.

Continuous scene representations such as NeRF [28] can
be rendered at arbitrary resolution. Thus, there are many
studies to improve the performance of multi-scale scene
representation. Mip-NeRF [2] proposes scale-dependent
positional encoding, which makes a network be trained on
multiple scales. In addition, BACON [22] proposes a net-
work capable of band-limited multi-scale decomposition by
giving a constraint to the bandwidth of network outputs.
Both papers showed significant down-scaling performance
on volume rendering. On the other hand, NeRF-SR [39]
improves the performance of high-resolution novel view
synthesis (HRNVS) by learning in an unsupervised manner
through super-sampling in the radiance fields optimization
process.

Radiance fields have the ability to find scene geometry
and optimize 5D functions simultaneously. Still, radiance
fields have a low ability to perform super-resolution, and
even if they synthesize high-resolution (HR) images, they
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only depend on the characteristic of continuous scene repre-
sentation. On the other hand, single-image super-resolution
(SISR) generally specializes in learning the inverse func-
tion of image degradation. Therefore, SISR could be benefi-
cial to HRNVS by super-resolving train-view images; how-
ever, SISR is an ill-posed problem for which multiple so-
lutions exist, and multi-view consistency cannot be main-
tained when multi-view images are processed separately.

To solve this problem, we propose a novel framework us-
ing cross-guided optimization between radiance fields and
SISR. As shown in Fig. 1, our framework aims to ensure
that radiance fields are guided by superior high-frequency
details from SISR, and conversely, SISR is guided by multi-
view consistency from radiance fields. We perform train-
view synthesis during the radiance fields optimization pro-
cess. Then, we generate voxel-based uncertainty fields to
obtain uncertainty maps to find reliable regions in rendered
train-view RGB images. The rendered train-view outputs
and feature maps from the SISR network make it possible to
do multi-view image super-resolution (MVSR) through the
SR update module (SUM). Then, we continue optimizing
the radiance fields using the updated SR outputs. Repeating
the update process makes train-view images for radiance
fields optimization have multi-view consistency and high-
frequency details simultaneously, ultimately improving the
performance of HRNVS.

Our method shows that the performance of HRNVS and
MVSR on various benchmark datasets significantly sur-
passes existing methods. It also shows consistent perfor-
mance improvements for various SISR models and radiance
fields models in our method.

In summary, our contributions are as follows:

* We propose a novel framework for performing cross-
guided radiance fields optimization using the SISR model
for HRNVS.

* We propose voxel-based uncertainty fields to find reliable
regions of synthesized images.

* We propose an SR update module (SUM) using voxel-
based uncertainty fields and train-view synthesis outputs
for MVSR.

» Experiments on various benchmark datasets show that the
proposed method significantly surpasses existing meth-
ods in terms of performance for HRNVS and MVSR.

2. Related Work
2.1. Single-Image Super-Resolution

SISR aims to learn mapping functions between LR and
HR image pairs. It has improved dramatically with the ad-
vent of learning-based methods using large-scale datasets.
SRCNN [9] first proposes a learning-based SR framework
using CNN, and after that, EDSR [21] and RCAN [50] sug-
gested a deeper network structure using residual blocks and

an attention mechanism respectively. Also, with the advent
of transformer-based architecture [38] together, researches
started to solve vision problems using the corresponding ar-
chitecture, and SwinlR [19] improved the performance of
SISR by using swin transformer [23]. However, SISR is an
inherently ill-posed problem, and there is no unique solu-
tion, which causes the SR results to produce blurry images.
To address this, some studies have improved the percep-
tual quality of SISR using discriminative networks [20, 33]
and adaptive targets [15]. Still, reconstruction accuracy and
perceptual quality of SISR are a trade-off. To solve this
problem, our method proposes an SR update module that
receives guidance from radiance fields and refines the re-
sults from SISR features.

2.2. Multi-Image Super-Resolution

Unlike SISR, there are studies that perform SR from
multiple images. Video super-resolution (VSR) has the ad-
ditional problem of exploiting the information from mul-
tiple frames of video with deep correlation. Some studies
propose a sliding window framework to predict the opti-
cal flow of LR frames or a framework using a recurrent
model architecture [3, 11, 18,40]. Reference-based super-
resolution (RSR) is an approach to improve the details
of LR images through HR images given as reference im-
ages. Some studies propose a deformable convolution or
the cosine similarity between the reference and LR images
[14,24,45,51]. Recently, a study proposes a method to per-
form MVSR, which generates HR reference images using
given LR inputs and paired depths [7]. However, it requires
depth maps as inputs, and since each image is processed
independently, it is difficult to maintain multi-view consis-
tency. Our method improves the performance of MVSR by
updating the SR outputs during the process of optimizing
the radiance fields from the given LR inputs. In addition,
we demonstrate that our method is superior through quan-
titative comparison with existing methods for performing
VSR and MVSR.

2.3. Multi-Scale Representations

Through the development of implicit neural representa-
tion [28,35] (INR), various studies have been actively con-
ducted to represent 2D images and 3D spaces as multi-scale
representations. LIIF [6] and SphereSR [47] propose con-
tinuous image representations that enable SISR with an ar-
bitrary resolution on planar and spherical images. In ra-
diance fields, mip-NeRF [2] proposes a scale-dependent
positional encoding, allowing for multiple-scale supervi-
sion. BACON [22] enables multi-scale decomposition with-
out multi-scale supervision through bandwidth constraints.
Both studies [2, 22] improve down-scaling performance in
radiance fields. In contrast, NeRF-SR [39] proposes a
super-sampling strategy that improves up-scaling perfor-
mance by learning in an unsupervised manner. We present
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Figure 2. The overall framework for cross-guided optimization. When update step [ is 0, I'=° is created through the SISR backbone
network, and {7, fzo}f{ are used by optimizing radiance fields. During optimization, updated SR image / f *1 is generated through the SR
update module (SUM) from rendered train-view RGB images S?, uncertainty map U;”, and a SISR network feature F;°79%_ The radiance
fields optimization is continued using updated images. During optimization, the train-view image update is repeated.

a new methodology that can improve HRNVS performance
through the interaction of 2D SISR and 5D radiance fields,
breaking away from the current methodology that depends
on the characteristics of INR.

2.4. Image Enhancement with Radiance Fields

Some studies improve NVS performance through radi-
ance fields using physics-based multi-view geometry tech-
niques for train-view images requiring image enhancement.
NeRF-W [26] solves the problem of inputs with variable
illumination and transient occluders by relaxing strict con-
sistency assumptions. Deblur-NeRF [25] solves the prob-
lem of blurry input by developing a module that mod-
els spatially-varying blur kernels. RawNeRF [27] enables
high-dynamic range (HDR) novel view synthesis by learn-
ing NeRF from raw data inputs and synthesizing raw out-
put images. HDR-NeRF [12] makes exposure control and
HDR image rendering possible by learning two implicit
functions, radiance field and tone mapper. We propose a
new method that finally enables HRNVS by allowing SR
input images to be appropriately super-resolved during ra-
diance fields optimization simultaneously. Unlike the image
enhancement method using the existing radiance fields, we
solve the problem by repeatably updating the train-view im-
ages which is the source of the radiance fields optimization.

3. Proposed Method
3.1. Preliminary

NeRF [28] trains an MLP network to estimate density
o and view-dependent color ¢ from 3D position x and 2D

direction d to perform 3D scene representation. It performs
ray casting to estimate one-pixel value C (r) for any camera
viewpoint. For each ray passing through the view-point and
pixel, a total of N points are sampled, and the corresponding
density and color are obtained through the MLP network.
With this, we can get C(r) using the following equation:

C(r) = Zil Tiaic; = ZN T;(1— e %) ¢; (1)

=1

where T; = Hé;lle_oi5i which is the accumulated transmit-
tance along the ray from starting point to point ¢. Finally,
we can train the NeRF model with a photometric loss as
follows:
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Even after NeRF, a lot of studies have been conducted to
improve the performance of volume rendering through var-
ious modelings such as voxel-based [4, 10, 36, 42], octree-
based [48], and point-based [43] models. All models that
use volume rendering also follow Eq. 1 and Eq. 2 by de-
fault.

3.2. Overview

As shown in Fig. 2, We propose a novel framework for
cross-guided optimization (CROP) that simultaneously im-
proves both performances by performing MVSR and ra-
diance fields optimization complementary to each other.
We propose voxel-based uncertainty fields to increase relia-
bility in the process of performing cross-guided optimiza-
tion (Sec. 3.3). We also propose an SR update module
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Figure 3. SR update module (SUM). SUM generates updated SR output through feature aggregation of the SISR feature map and rendered

train-view RGB image using the rendered uncertainty map.

(SUM) that generates updated SR images through feature
aggregation of rendered train-view RGB images from radi-
ance fields and train-view images from the SISR network
(Sec. 3.4). Finally, we introduce an optimization strategy
for cross-guidance of SISR network and radiance fields us-
ing uncertainty fields and SUM (Sec. 3.5).

3.3. Voxel-based Uncertainty Fields

Our framework receives guidance from the train-view
synthesis of radiance fields and performs updating SR re-
sults using SUM. Although RGB images reflecting the
scene geometry of multi-view images can be obtained from
train-view synthesis {S{*}X |, train-view images {I}} X,
for optimizing radiance ﬁelds are predicted SR outputs,
not ground truth (GT) {I; gt K |. Thus, synthesized train-
view outputs cannot be trusted completely. Therefore, we
try to generate the uncertainty map of the synthesized out-
put through the following inference. If the integrated er-
ror of pixels rendered from rays passing through a certain
3D point is high, the rgb values sampled at that point have
high uncertainty. We use this inference to generate voxel-
based uncertainty fields V (#7¢) 1 xNexNyxN= = Ag shown
in Fig. 4, for a specific grid v; inside a voxel- grid y (une)
there is a set of sampled ray points PV = {p/¥, p!3, ...} in-
side the neighborhood voxels of v;. If we set a correspond-
ing rays of P!V as Rl = {r!}, f;’, ... }, we can get the ren-
dered rgb values C’t“ = {cl¥,cly,...} from {SI"} K, and
train-view rgb values C** = {¢v ¢ty .} from {I}}K
Then, referring to the Eq. 1, we can derive the error et” of
the sampled point p as the following equation:
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Figure 4. Voxel-based uncertainty fields. Each voxel-grid inte-
grates the errors of adjacent sampling points.

where T;; and «y; are calculated by the radiance fields.
Then, we propagate all estimated et” into 8 neighborhood
voxel grids. At this time, the value propagated by e Y tov;
is obtained as follows:

=D ewis /) wis )

where w;; is the trilinear interpolation weight of pt“ with
respect to v;. Eq. 4 can be derived for all points of the voxel
grids at once through the gradient backward process. (More
details can be found in the supplementary.) Based on the
uncertainty fields obtained through Eq. 4, we can finally
obtain the train-view uncertainty map using the following

12431



equation:

k
= Z 1 Tiaief, where e; = ftri(pi; V(unc)) (5)
1=
where 4! is one pixel-uncertainty of one ray, and f,; is a
trilinear interpolation to the point p;.

3.4. SR update Module (SUM)

As shown in Fig. 3, we try to improve SR results of SISR
model by receiving guidance from the feature F;7/5% of the
SISR model with an LR image I!” as an input, the rendered
train-view RGB output va of the radiance fields, and the
rendered train-view uncertainty map U”. We propose an
SR update module (SUM) that aims to derive the SR output
I Zl +1 of higher quality than SISR output I 9 by delivering in-
formation about the reliable region in S!* to F7I5% using
U!Y. Therefore, we perform the feature aggregation mod-
ule (FAM) serially a total of four times to achieve the goal
of SUM. FAM initially makes two feature masks M}" and
M¢" from U}Y, and performs the feature aggregation as the
following equations:

FST

7,0Uu

v =ET | (FY M) (6)

Ff, t*Fitv | (FF"* M) (7

,0U

where || is concatenation, and {F", F}V} are the interme-
diate features of {F715% S} This makes it possible to
share information in regions that need each other. In SUM,
convolution operations for S and F*T5% are performed
with low-resolution scale features, but FAM for informa-
tion sharing is performed with high-resolution scale fea-
tures. The reason is to make it possible to transmit spatial
information of S! including information about scene ge-
ometry to Fis ISR exactly.

3.5. Cross-Guided Optimization Strategy

Dataset Generation for SUM. We use two large-scale
NVS datasets, RTMV [37] and BlendedMVS [46] dataset,
to train SUM. We conduct radiance fields optimization us-
ing DVGO [36] that dramatically reduces the optimization
time and inference time of NeRF to use a large-scale NVS
dataset. We created the radiance fields dataset by optimiz-
ing 60 scenes of RTMV and 40 scenes of BlendedMVS in
advance. And then, we synthesized the rendered train-view
RGB images, uncertainty maps, and paired LR/HR images
{(Stv, Ut Il I9%)}; required for training the SUM.
Training SUM. Training SUM is performed using the
dataset created by RTMV and BlendedMVS datasets. The
SISR backbone network is frozen in order not to lose the
generalizability of the model pretrained by a large-scale
SISR dataset. The loss function used for training is:

Lsun = 17" = Faum(S{°. U, I (®)

()

where fs,m (*) is the estimated SR output through the SISR
backbone network and SUM.

Optimization for the test set. After completing the train-
ing SUM, we finally proceed with the optimization of the
radiance fields for test sets. As shown in Fig. 2, we firstly
obtain SR images {I?}X, from the input LR images us-
ing the SISR backbone network and optimize the radiance
fields by using {I?}X | as train-view images. Durlng opti-
mization, we update the train-view images from {I ! ~,to
{I; ZH} * ; using SUM and continue the radiance ﬁelds opti-
mization from updated train-view images. The photometric
loss used for optimization is as follows.

photo = ‘R| Z ||C“}

reR

— e (n)li3 ©)

where R is a set of rays for every pixel in every train-view
image {I!}X . After optimization, we finally get high-
quahty HRNVS outputs {I7*, 137, ...} and MVSR outputs

{Il} K| corresponding to {I!"} X ,.

4. Experiments
4.1. Datasets

Train and Validation set. We use a subset of 60 scenes
of google scanned environment setting in RTMV [37] and
a subset of 40 scenes in BlendedMVS [46] as a training
dataset for the SR update module (SUM), a total of 100
scenes. Among 100 scenes, we split it into 86 scenes for
training and 14 scenes for validation. We preprocess the res-
olution of the RTMYV dataset to 800x 800 and use it as GT,
and we use preprocessed BlendedMVS dataset at 768 x 576
as GT. In addition, the scale factor for generating LR im-
ages is set to 4. The down-scaling process is performed by
bicubic interpolation (imresize Matlab function) commonly
used in the bicubic image SR datasets [1,30,44]. We make
LR images into SR images using the SISR-backbone model
and then perform optimization using the DVGO [36] model.
Finally, we obtain the train-view synthesis to get RGBs and
uncertainty outputs required for training the SUM.

Test set. We use a total of three datasets as test sets to
evaluate HRNVS and MVSR. Syntheic-NeRF [28] consists
of 8 scenes, and the resolution of each image is 800x800.
BlendedMVS [46] is a synthetic dataset using realistic am-
bient lightning. We use a subset of 4 scenes in Blended-
MYVS, and the resolution of each image is 768x576. Fi-
nally, Tanks and Temple [!7] is a real-world dataset. The
resolution is 1920x 1080, and we use a subset of 5 scenes.
We generate train-view LR images by performing bicubic
interpolation on scale factor 4 for train-view images as in
the test set. Also, HR images are used as novel-view im-
ages GT for HRNVS and train-view images GT for MVSR.
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Method Type Novel View Synthesis Multi-View SR
PSNR(T) | SSIM(T) [ LPIPS(}) PSNR(T) | SSIM(T) [ LPIPS(})
Synthetic NeRF Dataset

LR Unsupervised 28.5821 0.9211 0.1019 - - -

NeRF-SR [39] Unsupervised 28.8960 0.9266 0.0992 - - -
EDSR [21] Single Image 29.7931 0.9361 0.0820 31.7865 0.9500 0.0776
SwinIR [19] Single Image 30.4878 0.9431 0.0708 33.1234 0.9611 0.0600
MVSRnet [7] Multi-View Image 30.0039 0.9388 0.0773 31.9639 0.9544 0.0687
VRT [1§] Video 30.5072 0.9435 0.0708 33.2345 0.9544 0.0599
Ours(CROP)+EDSR Multi-View Image 30.0351 0.9403 0.0729 32.1515 0.9563 0.0636
Ours(CROP)+SwinIR Multi-View Image 30.7140 0.9459 0.0671 33.7725 0.9644 0.0565

GT Unsupervised 31.9228 0.9562 0.0538 - - -

BlendedMVS Dataset

LR Unsupervised 25.2950 0.8475 0.1775 - - -

NeRF-SR [39] Unsupervised 26.4342 0.8747 0.1635 - - -
EDSR [21] Single Image 26.1210 0.8723 0.1585 28.7489 0.8941 0.1570
SwinlR [19] Single Image 26.5167 0.8787 0.1492 29.2811 0.9034 0.1476
MVSRnet [7] Multi-View Image 26.4726 0.8798 0.1474 29.0628 0.9034 0.1475
VRT [1§] Video 26.5795 0.8848 0.1458 29.6916 0.9112 0.1405
Ours(CROP)+EDSR Multi-View Image 26.2594 0.8793 0.1456 28.7968 0.9015 0.1488
Ours(CROP)+SwinIR Multi-View Image 26.6914 0.8874 0.1405 29.7451 0.9126 0.1378

GT Unsupervised 28.0466 0.9225 0.1052 - - -

Tanks and Temples Dataset

LR Unsupervised 27.3093 0.9033 0.1578 - - -

NeRF-SR [39] Unsupervised 26.7621 0.8869 0.1920 - - -
EDSR [21] Single Image 28.4840 0.9144 0.1484 34.4941 0.9523 0.0938
SwinIR [19] Single Image 28.5877 0.9157 0.1462 35.6951 0.9604 0.0841
MVSRnet [7] Multi-View Image 28.5191 0.9148 0.1470 34.7496 0.9526 0.0975
VRT [18] Video 28.5973 0.9159 0.1459 35.7584 0.9595 0.0854
Ours(CROP)+EDSR Multi-View Image 28.5539 0.9164 0.1444 35.2112 0.9568 0.0897
Ours(CROP)+SwinIR Multi-View Image 28.6490 0.9176 0.1425 36.2430 0.9613 0.0808

GT Unsupervised 28.6749 0.9184 0.1427 - - -

Table 1. HR novel view synthesis results and multi-view image SR results on the Synthetic NeRF, BlendedMVS, Tanks and Temples
dataset for X4 SR. Bold indicates the best results, and underline indicates the second best results.

4.2. Experimental Setup with the DIV2K+ Flickr2K dataset (2650 images). After
that, the radiance fields optimization is performed using the
corresponding results.

VSR setup. In this setup, one VRT [ 18] method is executed.
In advance, we use the poses of the train-view images to
form the video frame order of the images. We obtain the SR
result of the LR images from the VRT [ 8] model pretrained
with the Vimeo90K [44] (64612 seven-frame videos) and
optimize the radiance fields using it.

MYVSR setup. In this setup, three methods are performed:
MVSRnet [7] and our two models using EDSR-backbone
and SwinIR-backbone. Since MVSRnet [7] needs LR depth
maps of train-view images, we use COLMAP [34] to ex-

HRNVS and MVSR performances of our framework de-
pend on the performance of radiance fields. Therefore,
we use DVGO [36] in all experiments to unify the radi-
ance fields model. Experimental setups are largely divided
into four types: unsupervised, SISR, MVSR, and VSR. Ex-
cept for the unsupervised setup, all setups perform super-
resolution on train-view images and then optimize the radi-
ance fields.

Unsupervised setup. In this setup, there are three meth-
ods: LR, NeRF-SR [39], and GT. LR optimizes the radi-
ance fields from train-view LR images and then performs

HRNYVS. NeRF-SR [39] uses the super-sampling loss pro-
posed here. Additionally, we perform HRNVS using GT to
obtain upper bounds for the performance of this task.

SISR setup. In this setup, there are two methods:
EDSR [21] and SwinIR [19]. We obtain SR results for train-
view LR images using the EDSR [2 1] model pretrained with
DIV2K (800 images) and the SwinIR [19] model pretrained

tract depth maps or GT depth maps of the dataset. Through
this, we train MVSRnet [7] using RTMV and BlendedMVS
dataset as used in training SUM, and after training, we op-
timize the radiance fields using the SR results of the test
set. Our framework using EDSR-backbone and SwinlR-
backbone follows the training and cross-guided optimiza-
tion strategy as described in Sec. 3.5.

12433



o

MVSRnet EDSR SwinIR

VRT Ours(w/ EDSR) Ours(w/ SwinIR) GT

(a) HR Novel View Synthesis

MVSRnet EDSR

SwinIR

VRT Ours(w/ EDSR) Ours(w/ SwinIR) GT

(b) Multi-view image SR

Figure 5. Qualitative comparisons of HR novel view synthesis (a) and multi-view image SR with scale factor as 4 (b) of different methods.

4.3. Quantitative Analysis

Table 1 shows the HRNVS and MVSR results obtained
through various methods from the X4 LR inputs. We use
the Synthetic NeRF, BlendedMVS, and Tanks and Tem-
ples dataset for evaluation. We use PSNR, SSIM, and
LPIPS(VGG) as evaluation metrics.

HR novel view synthesis. The 3rd column of Table 1
shows the HRN'VS results. Our method (SwinIR-backbone)
has the highest performance in the three datasets and
all three metrics. Also, for the two backbone models
(EDSR/SwinlR) used in our method, there are perfor-
mance improvements in all cases compared to when only
EDSR/SwinlR is used. In particular, in the synthetic nerf
dataset, both EDSR/SwinIR PSNR values increased by
more than 0.2dB.

Multi-view image SR.The 4th column of Table 1 shows the
MVSR results. In MVSR, our method (SwinIR-backbone)
has the highest performance in all three datasets and three
metrics. For the two backbone models (EDSR/SwinlR)
used in our method, there are performance improvements
in all cases compared to when only EDSR/SwinlR is used.
In particular, our method (SwinIR-backbone) increases the
PSNR value by more than 0.46dB for all datasets.

4.4. Qualitative Comparison and Analysis

HR novel view synthesis. As shown in Fig. 5 (a), our mod-
els generate accurate text images for novel views and syn-
thesize clear textures. On the other hand, other models can-
not create a clear text image and synthesize a blurry texture.
Multi-view image SR. As shown in Fig. 5 (b), our mod-
els generate a perfect texture and a small repeating pattern
even though a small amount of information. On the other
hand, other models generate irregular patterns and produce
images with little or no texture.

Uncertainty map and error with GT. We qualitatively
compare the uncertainty map and the error map with train-
view RGB and GT for various views in the Lego scene of
the synthetic nerf dataset. As shown in Fig. 6, high errors
occur in the highly activated uncertainty region.

4.5. Ablation Study and Discussion

In Table 2, we perform an ablation study on the rendered
train-view RGB output, the uncertainty map, and the num-
ber of SUM updates on the synthetic NeRF dataset. Also,
in Table 3, we check generalizability by conducting experi-
ments on other radiance fields model as TensoRF [4] other
than DVGO [36].
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Model Rendered  Rendered # Update Novel View Synthesis Multi-View SR
RGB uncertainty PSNR(T) | SSIM(T) | LPIPS(}) || PSNR(T1) | SSIM(1) | LPIPS({)
1 X X 0 30.4878 0.9431 0.0708 33.1234 0.9611 0.0600
2 X X 1 30.4241 0.9428 0.0713 32.9417 0.9606 0.0617
3 v X 1 30.6501 0.9449 0.0686 33.6402 0.9631 0.0651
4 v X 2 30.6852 0.9455 0.0679 33.6279 0.9634 0.0641
5 v X 3 30.6824 0.9458 0.0671 33.5945 0.9635 0.0635
6 v v 1 30.6554 0.9450 0.0686 33.7112 0.9637 0.0583
7 v v 2 30.6978 0.9456 0.0679 33.7497 0.9641 0.0574
8 v v 3 30.7140 0.9459 0.0671 33.7725 0.9644 0.0565

Table 2. Ablation study on Synthetic NeRF dataset for X4 SR. Bold indicates the best, and underline indicates the second best results.

Method Novel View Synthesis Multi-View SR
PSNR(1) [ SSIM(1) | LPIPS(]) || PSNR(1) | SSIM(1) | LPIPS({)
Synthetic NeRF Dataset

SwinIR 30.8246 | 0.9441 | 0.0693 || 33.1234 | 0.9611 | 0.0600

Ours(CROP) | 31.0368 | 0.9459 | 0.0664 || 33.8953 | 0.9649 | 0.0556
BlendedMVS Dataset

SwinIR 26.4551 | 0.8805 | 0.1422 | 29.2811 | 0.9034 | 0.1476

Ours(CROP) | 26.5315 | 0.8864 | 0.1329 | 29.5891 | 0.9109 | 0.1393
Tanks and Temples Dataset

SwinIR 28.5118 | 0.9151 | 0.1415 || 35.6951 | 0.9604 | 0.0841

Ours(CROP) | 28.5406 | 0.9161 | 0.1388 | 35.9486 | 0.9611 | 0.0813

Table 3. Quantitative Results with TensoRF [4] on Synthetic NeRF,
BlendedMVS, and Tanks and Temples datasets. Bold indicates the
best results. Ours uses SwinlR [19] as the SISR backbone model.

Low s High

(c) Error with train-view
RGB and GT

(a) GT image (b) Uncertainty map

Figure 6. GT images (a), uncertainty maps (b), and error maps
with train-view RGBs and GT images (c).

Rendered train-view RGB. As shown in models 1, 2, and
3 of Table 2, if there is no train-view rendered output, the
performance is rather degraded when updated using SUM
like model 2. On the other hand, if there is a train-view
rendered output, both tasks have performance improvement
as in model 3.

Rendered uncertainty map. Looking at models 5 and 8
of Table 2, by using the uncertainty map, there is a per-
formance improvement of 0.03 dB in HRNVS performance
and 0.20 dB in MVSR performance. In addition, when the
uncertainty map is not used, it can be seen that the PSNR
performance of MVSR drops sharply as the update pro-
ceeds, as shown in models 3, 4, and 5.

Number of updates. Looking at models 6, 7, and 8 of Ta-
ble 2, when the rendered uncertainty map is used, the per-
formances of HRNVS and MVSR are steadily improved as
the update progresses. Through these results, we interpret
that SUM extracts high-performance MVSR results through
appropriate feature fusion using the uncertainty map at ev-
ery update. In addition, it can be said that the performance
of HRNVS is improved by maintaining multi-view consis-
tency between MVSR results.

Generalizability for other radiance fields model. In Ta-
ble 3, we can see the results of using TensoRF [4] instead
of DVGO [36] for the radiance fields model for three test
datasets. We did not perform any additional training SUM
for TensoRF [4]. As can be seen in Table 3, it can be
seen that there is a performance improvement for three met-
rics in both HRNVS and MVSR tasks. From these results,
we analyze that our framework using SUM can be general-
ized to other radiance fields model without being biased to
DVGO [36].

5. Conclusion

This paper proposes a novel framework for performing

cross-guided radiance fields optimization using the SISR
model for high-resolution novel view synthesis. We also
propose an SR update module using voxel-based uncer-
tainty fields and train-view synthesis results. Experiments
on various benchmark datasets show that the proposed
method significantly surpasses existing methods in terms of
performance for high-resolution novel view synthesis and
multi-view image super-resolution.
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