Rawgment: Noise-Accounted RAW Augmentation Enables Recognition in a Wide Variety of Environments

Masakazu Yoshimura Junji Otsuka Atsushi Irie Takeshi Ohashi
Sony Group Corporation
{masakazu.yoshimura, junji.otsuka, atsushi.irie, takeshi.a.ohashi}@sony.com

Abstract

Image recognition models that work in challenging environments (e.g., extremely dark, blurry, or high dynamic range conditions) must be useful. However, creating training datasets for such environments is expensive and hard due to the difficulties of data collection and annotation. It is desirable if we could get a robust model without the need for hard-to-obtain datasets. One simple approach is to apply data augmentation such as color jitter and blur to standard RGB (sRGB) images in simple scenes. Unfortunately, this approach struggles to yield realistic images in terms of pixel intensity and noise distribution due to not considering the non-linearity of Image Signal Processors (ISPs) and noise characteristics of image sensors. Instead, we propose a noise-accounted RAW image augmentation method. In essence, color jitter and blur augmentation are applied to a RAW image before applying non-linear ISP, resulting in realistic intensity. Furthermore, we introduce a noise amount alignment method that calibrates the domain gap in the noise property caused by the augmentation. We show that our proposed noise-accounted RAW augmentation method doubles the image recognition accuracy in challenging environments only with simple training data.

1. Introduction

Although image recognition has been actively studied, its performance in challenging environments still needs improvement [15]. Sensitive applications such as mobility sensing and head-mounted wearables need to be robust to various kinds of difficulties, including low light, high dynamic range (HDR) illuminance, motion blur, and camera shake. One possible solution is to use image enhancement and restoration methods. A lot of DNN-based low-light image enhancement [12, 20, 29, 30, 46, 54], denoising [32, 43, 53], and deblurring [43, 48, 52] methods are proposed to improve the pre-captured sRGB image quality. While they are useful for improving pre-captured image quality, a recent work [15] shows that using them as preprocessing for image recognition models has limited accuracy gains since they already lost some information, and restoring the lost information is difficult.

Another possible solution is to prepare a dataset for difficult environments [3, 33]. However, these datasets only cover one or a few difficulties, and creating datasets in various environments is too expensive. Especially, manual annotation of challenging scenes is difficult and time-consuming. For example, we can see almost nothing in usual sRGB images under extremely low-light environments due to heavy noise. In addition, some regions in HDR scenes suffer from halation or blocked-up shadows because the 8-bit range of usual sRGB images cannot fully preserve the real world, which is 0.000001 [cd/m²] under starlight and 1.6 billion [cd/m²] under direct sunlight [37]. Heavy
motion blur and camera shake also make annotation difficult. Some works capture paired short-exposure and long-exposure images, and the clean long-exposure images are used for annotation or ground truth [15–17, 19]. The limitation is that the target scene needs to be motionless if the pairs are taken sequentially with one camera [15], and positional calibration is required if the pairs are taken with synchronized cameras [16,17]. Some works use a beam splitter to capture challenging images and their references without calibration [19,45]. However, they are difficult to apply in dark scenes. Moreover, HDR images cannot be taken in the same way because some regions become overexposed or underexposed in both cameras.

To this end, we aim to train image recognition models that work in various environments only using a training dataset in simple environments like bright, low dynamic range, and blurless. In this case, image augmentation or domain adaptation is important to overcome the domain gap between easy training data and difficult test data. However, we believe usual augmentations on sRGB space are ineffective because it does not take into account the nonlinear mapping of ISPs. In particular, tone mapping cannot be significantly changes the RAW image values, which are roughly proportional to physical brightness [44]. Contrast, brightness, and hue augmentation on sRGB space result in unrealistic images that cannot be captured under any ambient light intensity as shown in Fig. 1(a). In contrast, we propose augmentation on RAW images. In other words, augmentation is applied before ISPs to diminish the domain shift as shown in Fig. 1(b).

Other possible sources of the domain gap are differences in noise amount and noise distribution. To tackle these problems, we propose a method to align both light intensity and noise domains. Recent works show that adding physics-based realistic noise improves the performance of DNN-based denoisers [2, 44, 47, 50] and dark image recognition [4, 15]. Although their proposed sensor noise modeling are accurate, they assume that the original bright images are noise free. In contrast, we propose to modify the noise amount after contrast, brightness, and hue conversion considering the noise amount in the original images. It enables a more accurate alignment of the noise domain. Even bright images may have dark areas due to shadows or object colors, and their prior noise cannot be ignored. Another merit of our method is that it is possible to take dark images that already contain a lot of noise as input. In addition to noise alignment after color jitter augmentation, we show the importance of noise alignment after blur augmentation, which is proposed for the first time in this paper.

Our contributions are as follows:

- It is the first work to emphasize the importance of augmentation before ISP for image recognition to the best of our knowledge.
- Noise amount alignment method is proposed to reduce the noise domain gap after RAW image augmentation. In contrast to previous works, our proposed method takes into account prior noise in the input image. It enables more accurate alignment and use of any strength of augmentation and even already noisy input.
- We show qualitative analysis for the validity of our sensor noise modeling and corresponding noise-accounted augmentation. We prove that our proposed noise-accounted RAW augmentation has the edge over the previous methods.

2. Related Works

2.1. Recognition in Difficult Environment

Many works have tackled image recognition in difficult environments. For low-light environments, several works improve the accuracy by replacing a traditional ISP with a powerful DNN-based ISP to create clean images for downstream image recognition models [5, 25, 33]. Even though these methods are promising because there is no information loss, the computational cost is the problem. Another approach is direct RAW image recognition without ISP [15, 39]. Their image recognition models benefit from the richest information and improve accuracy under low-light environments. However, several works report ISPs, especially tone mapping, are helpful for machine vision [13,49]. Direct RAW image recognition may works well if the images have a low dynamic range. Another approach is domain adaptation or related methods which support low-light recognition with bright images [4, 15, 38].

For HDR environments, some works propose DNN-based auto-exposure control [35, 42] to improve downstream recognition. Also, multi-frame HDR synthesis methods [1, 6] can be used as a preprocessing, although camera motion makes them challenging. A luminance normalization method is also introduced to improve recognition performance under varying illumination conditions [18].

For blurry environments, deblurring methods are actively studied [48, 51]. These DNN-based methods successfully restore clear images from heavily blurred images.

Differing from the above, we aim to do image recognition under all the above difficulties using simple scene training data with our proposed augmentation method. We do not use domain adaptation methods since these methods are usually used in a setting where the target domain is equal to or smaller than the source domain [10]. On the contrary, in our setting, the distribution of the target domain is much wider than that of the source domain.
2.2. Image Conversion on RAW

Recently, several methods [2, 4, 29] convert bright sRGB images into realistic dark images by the following procedures. First, they invert an ISP pipeline to generate RAW-like images followed by illumination change on the RAW data space with plausible sensor noise. Afterward, degraded sRGB is generated by applying the forward ISP pipeline. This operation avoids the nonlinear mappings in the ISP and simulates short exposures and dark environments. With a similar intention, we propose to apply augmentation before ISPs to train image recognition models.

2.3. Noise Modeling and Noise Amount Alignment

In the electronic imaging sensor community, detailed noise modelings based on electric current and circuit have been studied [7, 11, 23, 41]. They are precise but difficult to be applied to the image-to-image conversion. Thus, in the machine vision community, simplified pixel value-based noise modelings are proposed based on electric noise modelings [2, 44, 47]. Although the noise model of [47] is well designed with a high degree of freedom Tukey lambda distribution [21], we are based on the well-established heteroscedastic Gaussian model [2, 9, 36, 50] because it is still well fitted to real sensor noise and we can consider prior noise in original images which will be explained later.

Recently, adding realistic model-based sensor noise to the ground truth clean images is proved to be helpful to train DNN-based denoiser [2, 44, 47, 50] and low-light object detection models [4, 15]. Although they use highly consistent noise models, they regard original images as noise-free. In contrast, we propose to modify the noise amount after image conversion considering the noise amount of the original images. It enables a more accurate alignment of the noise domain and enables the use of any intensity of augmentation and already noisy images as input.

3. Methodology

In this section, we introduce our noise model, calibration procedure, and proposed noise-accounted RAW augmentation.

3.1. Noise Model

First, we briefly introduce our noise model for later explanation although it is based on the well-established heteroscedastic Gaussian model [2, 9, 36, 50]. The number of photons \(u \) hitting the photodiode of each pixel is converted to a voltage with quantum efficiency \(\alpha \). Some processing is then performed to read out the voltage, in which noise \(n_d \) is inevitably mixed. Next, analog gain \(g \) is multiplied to amplify the value. Lastly, the voltage is converted to a digital value. We simplify and summarize the noise after analog gain as \(n_r \). Since it is common to use analog gain which has a better signal-to-noise ratio (SNR), we omit the digital gain term in our noise model. To sum up, the photon-to-RAW pixel value conversion can be formulated as,

\[
x = g (\alpha u + n_d) + n_r.
\]

We approximate \(n_d \) and \(n_r \) as Gaussian noise \(\mathcal{N} (0, \sigma_d^2) \) \(\mathcal{N} (0, \sigma_r^2) \) and the number of photons \(u \) itself obeys the Poisson distribution \(\mathcal{P} (\bar{u}) \) where \(\bar{u} \) is the expected number of photons. If \(\bar{u} \) is large enough, we can approximate as \(\mathcal{P} (\bar{u}) = \mathcal{N} (\bar{u}, \bar{u}) \) [9]. Thus, our noise model is as follows;

\[
x \sim g (\alpha \mathcal{N} (\bar{u}, \bar{u}) + \mathcal{N} (0, \sigma_d^2)) + \mathcal{N} (0, \sigma_r^2).
\]

We show the validity of the Gaussian approximation of \(n_d \), \(n_r \), and \(\mathcal{P} (\bar{u}) \) in the Section 4.3. We don’t follow the further development of the formula in [9] for our purpose.

Gaussian distribution has the following convenient natures;

\[
\begin{align*}
X & \sim \mathcal{N} (\mu_X, \sigma_X^2) \\
Y & \sim \mathcal{N} (\mu_Y, \sigma_Y^2) \\
X + Y & \sim \mathcal{N} (\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2) \\
cX & \sim \mathcal{N} (c\mu_X, c^2\sigma_X^2)
\end{align*}
\]

if \(X \) and \(Y \) are independent, and that’s why we choose the simple Gaussian approximation instead of the recently proposed more expressive noise model [47]. These natures enable the proposed noise-accounted RAW augmentation to account for prior noise in input images. Furthermore, they further simplify our noise model as,

\[
x \sim \mathcal{N} (g\alpha \bar{u}, g^2\alpha^2 \bar{u} + g^2\sigma_d^2 + \sigma_r^2).
\]

Because the expected number of photon \(\bar{u} \) is inconvenient to use in image-to-image conversion, we replace it with the expected pixel value \(\mu_x = g\alpha \bar{u} \), and our final noise model is defined as,

\[
x \sim \mathcal{N} (\mu_x, \sigma_x^2 = g\alpha \mu_x + g^2\sigma_d^2 + \sigma_r^2).
\]

3.2. Noise Model Calibration

Our sensor noise model shown in Eq. (5) has three parameters, \(\alpha, \sigma_d^2, \) and \(\sigma_r^2 \), which have to be calibrated per target sensor. We capture a series of RAW images of a color checker as shown in Fig. 2(a). We then calculate the mean \(\mu_x \) and variance \(\sigma_x^2 \) along the time direction of each pixel position. We calculate them along the time direction instead of the spatial direction as performed in [44] since lens distortion changes the luminance of the same color patch. These operations are performed several times by changing the analog gain and exposure time. Eventually, we get various sets of \(\{ \mu_x, \sigma_x^2 \} \) for each analog gain. Note that we calculate mean and variance without separating RGB channels because there is no significant difference in noise properties.
Therefore, we solve linear regression to estimate sensor specific parameters. Figure 2. Our noise model calibration procedures to a target sensor. It just needs to capture burst RAW images and does not need special devices.

In Eq. (5), μ_x and σ_x^2 have a linear relationship per analog gain g_n:

$$\sigma_x^2 = a_{g_n} \mu_x + b_{g_n}. \quad (6)$$

Therefore, we solve linear regression to estimate a_{g_n} and b_{g_n} per gain like Fig. 2(b). In addition, we use RANSAC [8] to robustly take care of outlier $\{\mu_x, \sigma_x^2\}$ pairs.

Finally, we estimate α, σ_d^2, and σ_r^2 from the following redundant simultaneous equations by least-squares method,

$$\begin{aligned}
&\begin{cases}
 a_{g_1} = g_1 \alpha \\
 \vdots \\
 a_{g_n} = g_n \alpha
\end{cases}, \\
&\begin{cases}
 b_{g_1} = g_1^2 \sigma_d^2 + \sigma_r^2 \\
 \vdots \\
 b_{g_n} = g_n^2 \sigma_d^2 + \sigma_r^2
\end{cases}.
\end{aligned} \quad (7)$$

The procedure above enables calibration of the sensor noise model without special devices. We later show that our sensor model and the calibration method represent the real sensor noise with enough preciseness.

3.3. Noise-Accounted RAW Augmentation

We propose augmentation before ISP instead of the usual augmentation after ISP to generate realistic images. Furthermore, we improve the reality of the augmented images by considering the sensor noise model. Unlike the previous works [2,4,15,44,47,50], ours takes the prior noise amount of input images into account. It generates more realistic noise since even bright images have some extent of noise. Especially, dark parts due to shadow or the color of objects might have a non-negligible amount of noise. Moreover, it allows any brightness of input images different from previous works. Specifically, we introduce how to adjust noise amount after contrast, brightness, hue, and blur augmentation.

3.3.1 Color Jitter Augmentation

Contrast, brightness, and hue augmentation simulate different exposure times, light intensities, and analog gain. Hence, we first assume to multiply the exposure time, light intensity, and analog gain by p_c, p_l, p_g respectively. Because p_c and p_l equally change the number of photon u in the case of our noise model, we rewrite them as $p_u = p_c p_l$.

Then, images in the above environment settings x_{new} can be rewritten as,

$$x_{\text{new}} \sim \mathcal{N}
\frac{(p_g g_2)^{\alpha_2} (p_u \bar{u})}{(p_g g_2)^{\alpha_2} (p_u \bar{u}) + (p_g g_2)^{\alpha_2} \sigma_d^2 + \sigma_r^2}. \quad (9)$$

Based on Eq. (3), it can be expanded as

$$x_{\text{new}} \sim \mathcal{N}
\frac{(p_g g_2)^{\alpha_2} (p_u \bar{u})}{(p_g g_2)^{\alpha_2} (p_u \bar{u}) + (p_g g_2)^{\alpha_2} \sigma_d^2 + \sigma_r^2}.
\frac{(p_g g_2)^{\alpha_2} (p_u \bar{u}) + (p_g g_2)^{\alpha_2} \bar{u} e^{\alpha_2}}{p_g g_2 + (p_g g_2)^{\alpha_2} + \bar{u} e^{\alpha_2}}. \quad (10)$$

By inserting $\mu_x = g_0 \bar{u}$ and original pixel value, $x_{\text{pre}} \sim \mathcal{N} (\mu_x, g_0 \sigma_d^2 + g_2 \sigma_d^2 + \sigma_r^2)$, it can be expressed with a pixel value-based equation as follows;

$$x_{\text{new}} \sim p_u p_g x_{\text{pre}} + \mathcal{N}(0, p_u (1 - p_u) p_g^2 g_0 \mu_x + (1 - p_u)^2 p_g^2 g_0^2 \sigma_d^2 + (1 - p_u) p_g^2 (p_g g_2)^{\alpha_2} \sigma_r^2). \quad (11)$$

Because the expected original pixel value μ_x in the Gaussian term is impossible to obtain, we approximate it as $\mu_x = x_{\text{pre}}$. Based on this equation, we can precisely simulate as if exposure time, light intensity, and analog gain were $p_c, p_l,$ and p_g times. Then, let’s come back to contrast, brightness, and hue augmentation. When contrast is multiplied by p_c and brightness is changed by p_b, it can be expressed as,

$$x_{\text{new}} = p_c x_{\text{pre}} + p_b. \quad (12)$$

This function is represented as multiplication by

$$\frac{p_c x_{\text{pre}} + p_b}{x_{\text{pre}}}.$$ Therefore, noise-accounted contrast and
brightness augmentation is finally defined as,
\[
\begin{aligned}
\text{random } p_c,\ p_b \\
\text{random } p_u,\ p_g \text{ (where } p_up_g = \frac{(px_{pre}+p_g)}{x_{pre}}, \ p_u,\ p_g > 0) \\
\text{Eq. (11) } (\mu_x \leftarrow x_{pre})
\end{aligned}
\]
(13)
We can also convert hue by changing \(p_c \) and \(p_b \) per color filter position in the RAW bayer.

3.3.2 Blur Augmentation

Next, we introduce noise-accounted blur augmentation. Usual blur augmentation makes noise smaller than actual blur because the noise \(n_d \) and \(n_u \) are smoothed out although their noise amounts, in reality, are not related to how fast you shake a camera or how fast objects move. Only the photon number-related noise is smoothed out in actual motion blur. The actual blurred pixel is expressed as,
\[
x_{new} \sim \mathcal{N} \left(g \alpha \sum_k w_k \bar{u}_k \cdot g^2 \alpha^2 \sum_k w_k \bar{u}_k + g^2 \sigma_d^2 + \sigma_f^2 \right),
\]
(14)
where \(\sum_k w_k = 1 \) is the blur kernel. With similar equation manipulation from Eq. (9) to Eq. (11), noise-accounted blur augmentation is
\[
x_{new} \sim \mathcal{N} \left(\sum_k w_k g \alpha \bar{u}_k \cdot \sum_k w_k^2 (g^2 \alpha^2 \bar{u}_k + g^2 \sigma_d^2 + \sigma_f^2) \right) \\
+ \mathcal{N}(0, -\sum_k w_k^2 (g^2 \alpha^2 \bar{u}_k + g^2 \sigma_d^2 + \sigma_f^2)) \\
+ g^2 \alpha^2 \sum_k w_k \bar{u}_k + g^2 \sigma_d^2 + \sigma_f^2) \\
= \sum_k w_k x_{pre} + \mathcal{N}(0, g \alpha \sum_k (1 - w_k) w_k x_{pre,k}) \\
+ (1 - \sum_k w_k^2 (g^2 \sigma_d^2 + \sigma_f^2)).
\]
(15)
We account for prior noise but not for prior blur amounts because most images in usual datasets are not very blurry. Furthermore, it is difficult to estimate the prior blur amount.

In addition, please note that augmentation to make images clean (make them brighter and deblurred) is inevitably difficult with noise-accounted RAW augmentation. Clipping noise variance in Eq. (11) to zero forcibly enables brightening, but brightening too much causes a mismatch of noise domain.

4. Evaluation

4.1. Dataset

Although our method can be applied to any computer vision task, we choose a human detection task as a target because of its wide usage. We prepared a RAW image dataset for human detection task captured with an internally developed sensor. As mentioned earlier, our objective is to train image recognition models that work in various environments only using a training dataset in simple environments. So, most training images are taken under normal light conditions with fixed camera positions in several environments. Note that moderately dark and HDR images are also included to some extent in the training dataset. The analog gain is set to 6dB outdoors, 12dB indoors, and 32dB at night in moderate darkness to generate realistic easy images without auto-exposure. Test images, on the other hand, are taken in HDR or extremely dark environments. In addition, about 50% of them are captured with a strong camera shake. Moreover, the analog gain is chosen from 3dB, 6dB, 12dB, and 24dB regardless of the environment. Both datasets are captured with around 1 fps to increase diversity among images.

We manually annotate the human bounding boxes of both training and test data. Because precise annotation of test data on sRGB is impossible due to the noise and blur, we apply an offline ISP to each image and then annotate the bounding boxes. We manually set adequate ISP parameters per image and had to change the parameters several times to grasp the entire image. To avoid annotating large training datasets in this time-consuming way, it is desirable to train the model with a simple dataset. In total, 18,880 images are collected for training and 2,800 for testing. The examples are shown in Fig. 3.

4.2. Implementation Details

We mainly test with TTFNet [27] whose backbone is ResNet18 [14]. The network is trained for 48 epochs from scratch using Adam optimizer [22] and a cosine decay learning rate scheduler with a linear warmup [28] for the first 1,000 iterations whose maximum and minimum learning rates are 1e-3 and 1e-4. As to an ISP, a simple software ISP consisting of only a gamma tone mapping is implemented. In detail, two types of gamma tone mapping are implemented. One is the simplest gamma tone mapping, \(y = x^\gamma \) (0 ≤ x ≤ 1). The \(\gamma \) is set to 5 after tuning with a rough grid search manner. The other is a gamma tone mapping parameterized with three parameters [34]. Because the grid search for three parameters is time-consuming, we tuned the parameters with backpropagation together with the detector’s weights as performed in [35, 49]. Other ISP functions are not used because they are known to have less impact on image recognition compared with tone mapping [13]. We also prepare an elaborated black-box ISP consisting of many functions in addition to a tone mapping function. The parameters are tuned for human perceptual quality by experts. We only use the elaborated black-box ISP under the conventional training pipeline. In other words, experiments are performed un-
under ISP-augmentation-detection order with the elaborated black-box ISP due to the hardware limitation. If contrast augmentation is used, the hue is also changed with a probability of 50%. In detail, the contrast factor per color channel $p_{c,h} = \{R, G, B\}$ is randomized from the base contrast factor $p_{c,base}$ by $(0.8p_{c,base}, 1.2p_{c,base})$ after $p_{c,base}$ is randomly decided. If blur augmentation is used, a random-sized blur kernel with a probability of 50% is used. Random shift and random scale augmentation whose maximum transformations are 10% and 3% of the input size are also applied with a probability of 80% before color jitter augmentation. The input size to the detector is $(576, 352, 3)$. The performance of the detector is evaluated with average precision (AP@0.5:0.95) [24].

4.3. Calibration of the Noise Model

For each analog gain of 6dB, 12dB, and 24dB, two burst sequences are captured with different illumination. Each sequence consists of 100 images. 24×24 Bayer pixels are sampled from each of the 24 color patches to calculate the mean and variance. In total $2 \times 24 \times 24 \times 24$ pairs of mean and variance sets are obtained per analog gain to estimate the noise model. Thanks to the various color filters, exposure values, and color patches, two sequences are enough to ensure diversity. The lines in Fig. 4 show the estimated linear relationship in Eq. (6). The coefficients of determination, R^2, for these line estimations are 0.9833, 0.9884, 0.9862 for 6, 12, and 24dB respectively. High values of R^2 indicate that the noise intensity is well modeled with respect to illumination intensity. Also, R^2 of the Eq. (7) and Eq. (8) are 1.0000 and 0.9984. This means the noise intensity is well modeled with respect to the analog gain. Based on the above, our noise model and the calibration method are well suited to the sensor in terms of noise intensity.

Next, we check the validity of the shape of the distribution. All noises were assumed to follow a Gaussian distribution. Especially, it is unclear whether the approximation $\mathcal{P}(\bar{u}) \approx \mathcal{N}(\bar{u}, \bar{u})$ [9] is true. Therefore, the Shapiro-Wilk test [40] is performed. If the p-value of the test is higher than 0.05, it indicates that we cannot reject the null hypothesis that the data are normally distributed with more than a 95% confidence interval. Fig. 5(a) shows that most of them are higher than 0.05, but some results for dark pixels are less than 0.05. However, the distributions of the dark pixels are like Fig. 5(b). It is not very skewed and the sparsity causes the small p-value. Therefore, we conclude that all the noise
appropriate range of contrast factor parameters. The strategy is as follows. First, we search the
fair comparison, we roughly tune both of the augmentation
ent between augmentation before and after ISP. To make a
account for sensor noise. We use the elaborated black-box ISP for the augmentation after ISP setting and the simplest
gamma function for the augmentation before ISP setting.

The results are shown in Table 1. The best parameter settings are used in the next section.

4.6. Evaluation of the Noise-Accounted RAW Augmentation

In this section, the proposed noise-accounted RAW augmentation is evaluated on training image recognition models. First, as Table 2 shows, augmentation before ISP drastically improves the accuracy with the simplest ISP. It suggests the realistic pixel intensity distribution achieved by augmentation before ISP is the key to improving the accuracy in wide environments. In the color jitter augmentation only setting, the accuracy is improved from the general noise alignment method [2,4,9,15,26,31,36,47,50] by considering prior noise. In the color jitter and blur augmentation setting, noise-accounted color jitter augmentation plus normal blur augmentation does not improve much from no noise-accounted settings. Instead, noise alignment in both color jitter and blur augmentation improves the accuracy. It indicates that random noise is not effective and realistic noise is important. Comparing the accuracy under the same simplest gamma tone mapping setting, our proposed noise-accounted RAW augmentation doubles the accuracy of conventional augmentation after ISP. Furthermore, when parameterized gamma tone mapping is used as our simple ISP, the accuracy is even superior to the elaborated black-box ISP consisting of many functions in addition to a tone mapping function. As the visualization results in the supplementary material show, the elaborated black-box ISP outputs more perceivable images. It suggests that minimizing the domain gap caused by augmentation is more important than the superiority of the ISP. We might improve the accuracy more by an elaborated ISP and the proposed augmentation.

As mentioned earlier, there are noise dealing works in noise-related fields like denoising. We compare ours with these methods in the detection task. One is the K-Sigma transform [44], a kind of noise domain generalization. It normalizes images so that the pixel value and the standard deviation of the noise are linearly correlated. The other is noise amount notification with a concatenation of the noise variance map [2]. To follow the previous setup, direct RAW input without an ISP is also compared. Color jitter and blur augmentation are also applied to the methods different from the previous papers for a fair comparison. Table 3 shows the comparison results. As to the K-Sigma transform, simply applying “aug.” before or after the K-Sigma
Table 1. The augmentation hyperparameter tuning for a fair comparison between before and after ISP augmentation. The range of contrast, brightness, and blur distance are tuned one by one, taking over the previous best parameters.

<table>
<thead>
<tr>
<th>augmentation after ISP (tuned for the black-box ISP)</th>
<th>augmentation before ISP (tuned for the simplest ISP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>contrast range</td>
<td>contrast range</td>
</tr>
<tr>
<td>AP@0.5:0.95 [%]</td>
<td>AP@0.5:0.95 [%]</td>
</tr>
<tr>
<td>0.2-1</td>
<td>0.1-1</td>
</tr>
<tr>
<td>0.1-1</td>
<td>0.2-5</td>
</tr>
<tr>
<td>0.2-5</td>
<td>0.1-10</td>
</tr>
<tr>
<td>0.05-20</td>
<td>0.05-20</td>
</tr>
<tr>
<td>41.9</td>
<td>36.9</td>
</tr>
<tr>
<td>41.8</td>
<td>39.8</td>
</tr>
<tr>
<td>43.2</td>
<td>40.4</td>
</tr>
<tr>
<td>45.1</td>
<td>40.4</td>
</tr>
<tr>
<td>43.2</td>
<td>40.4</td>
</tr>
<tr>
<td>brightness range</td>
<td>brightness range</td>
</tr>
<tr>
<td>AP@0.5:0.95 [%]</td>
<td>AP@0.5:0.95 [%]</td>
</tr>
<tr>
<td>0.0-0</td>
<td>0.0-0</td>
</tr>
<tr>
<td>-0.1-0.1</td>
<td>-0.1-0.1</td>
</tr>
<tr>
<td>-0.2-0.2</td>
<td>-0.2-0.2</td>
</tr>
<tr>
<td>-0.5-0.5</td>
<td>-0.5-0.5</td>
</tr>
<tr>
<td>-0.7-0.7</td>
<td>-0.7-0.7</td>
</tr>
<tr>
<td>45.1</td>
<td>40.4</td>
</tr>
<tr>
<td>44.5</td>
<td>39.9</td>
</tr>
<tr>
<td>45.2</td>
<td>40.9</td>
</tr>
<tr>
<td>44.7</td>
<td>39.4</td>
</tr>
<tr>
<td>blur distance range</td>
<td>blur distance range</td>
</tr>
<tr>
<td>AP@0.5:0.95 [%]</td>
<td>AP@0.5:0.95 [%]</td>
</tr>
<tr>
<td>0.0-0</td>
<td>0.0-0</td>
</tr>
<tr>
<td>0-3</td>
<td>0-3</td>
</tr>
<tr>
<td>0-5</td>
<td>0-5</td>
</tr>
<tr>
<td>0-9</td>
<td>0-9</td>
</tr>
<tr>
<td>0-13</td>
<td>0-13</td>
</tr>
<tr>
<td>45.2</td>
<td>40.9</td>
</tr>
<tr>
<td>46.8</td>
<td>39.8</td>
</tr>
<tr>
<td>45.7</td>
<td>39.6</td>
</tr>
<tr>
<td>45.9</td>
<td>40.6</td>
</tr>
<tr>
<td>37.9</td>
<td>43.3</td>
</tr>
</tbody>
</table>

Table 2. Evaluation of the noise-accounted RAW augmentation. The color augmentation contains default hue augmentation plus tuned contrast and brightness augmentation. The w/o prior means the prior input noise is disregarded like many of the previous noise-accounted image conversion methods [2, 4, 9, 15, 26, 31, 36, 47, 50]. Because we adopt the well-established heteroscedastic Gaussian model Eq. (2), it is identical to the noise alignment of [2, 9, 36, 50]. In this experiment, we also use the parameterized gamma tone mapping as the simple ISP, although it can’t be used in the augmentation after ISP settings because the gradient from the detection loss is needed to tune.

Table 3. The comparison results with other noise-dealing techniques. The “aug.” means contrast and blur augmentation without noise-accounted and “our aug.” means with noise-accounted. We use the simplest gamma function in the ISP.

<table>
<thead>
<tr>
<th>method</th>
<th>AP@0.5:0.95 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o ISP</td>
<td>16.5</td>
</tr>
<tr>
<td>w/ ISP</td>
<td>35.0</td>
</tr>
<tr>
<td>our aug. + concat [2]</td>
<td>33.7</td>
</tr>
<tr>
<td>K-Sigma [44]</td>
<td>14.3</td>
</tr>
<tr>
<td>K-Sigma [44] + aug.</td>
<td>25.0</td>
</tr>
<tr>
<td>our aug.</td>
<td>32.8</td>
</tr>
</tbody>
</table>

5. Conclusion

We propose a noise-accounted RAW augmentation method in which augmentation is applied before ISP to minimize the luminance domain gap and a sensor noise model is taken into account to minimize the noise domain gap. Unlike previous noise-accounted methods, ours takes the prior input noise into account. It minimizes the domain gap more and enables the use of already noisy images as training data. Thanks to the realistic augmentation, our method improves the detection accuracy in difficult scenes compared to the conventional methods. In the future, we would like to investigate whether the proposed augmentation with an elaborate ISP improves computer vision performance even further. Also, we would like to check the effectiveness against other image recognition tasks, such as classification or segmentation, by preparing datasets. We believe it is effective because our method is task-independent. Lastly, we are glad if this work sheds light on the importance of RAW images.

References

