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Abstract

We present Deformable mesh transFormer (DeFormer),
a novel vertex-based approach to monocular 3D human
mesh recovery. DeFormer iteratively fits a body mesh
model to an input image via a mesh alignment feedback
loop formed within a transformer decoder that is equipped
with efficient body mesh driven attention modules: 1) body
sparse self-attention and 2) deformable mesh cross atten-
tion. As a result, DeFormer can effectively exploit high-
resolution image feature maps and a dense mesh model
which were computationally expensive to deal with in pre-
vious approaches using the standard transformer attention.
Experimental results show that DeFormer achieves state-of-
the-art performances on the Human3.6M and 3DPW bench-
marks. Ablation study is also conducted to show the ef-
fectiveness of the DeFormer model designs for leveraging
multi-scale feature maps. Code is available at https:
//github.com/yusukey03012/DeFormer.

1. Introduction

Human mesh recovery from a single image is an im-
portant problem in computer vision, with a wide range
of applications like virtual reality, sports motion analysis
and human-computer interactions. It is a challenging prob-
lem as it requires modeling of complex nonlinear mappings
from an image to 3D body shape and pose.

In the past decade, remarkable progress has been accom-
plished in the field of 3D human mesh recovery based on
convolutional neural networks (CNNs) [41]. A common
way used in this field is a parametric approach that employs
statistical human models parameterized by shape and pose
parameters [33]. Here, CNNs features are regressed with
body shape and pose parameters with approximately 100 di-
mensions. Then, a body mesh surface is obtained from these
body parameter predictions by inputting them to the human
body kinematics and statistical shape models. Leveraging
multi-scale image feature maps and iteratively refining the
body parameters based on global and local spatial contexts
in an image, the pyramidal mesh alignment feedbacks (Py-

Figure 1. Summary of this work. We propose DeFormer, a mem-
ory efficient decoder-only transformer architecture for 3D human
mesh recovery based on block sparse self-attention [16, 40, 51]
and multi-scale (MS) deformable cross attention [56]. Leverag-
ing MS feature maps efficiently in transformer, our method out-
performs previous parametric approaches using MS feature maps
[52, 53] and vertex transformer approaches using a single-scale
feature [28, 29]. Further, by learning sparse self-attention patterns
based on body mesh and skeleton connectivity, DeFormer can re-
cover a dense mesh with 6.9K joint/vertex queries at interactive
rates. The units of the MPJPE and PA-MPJPE scores are in mil-
limeters. The lower is better.

MAF) model [53] produces a 3D mesh recovery result well-
aligned to an input image.

Another paradigm for human mesh recovery is a vertex-
based approach that directly regresses 3D vertex coordi-
nates [14, 15, 26, 28, 29, 35]. Recently, transformer archi-
tectures have been applied to vertex-based human mesh re-
covery and show good reconstruction performances by cap-
turing long-range interactions between body parts via self-
attentions. Furthermore, as a vertex-based approach, they
naturally possess potential in learning fine-grained effects
like facial expressions, finger poses and clothing non-rigid
deformations, if such supervisions are given. Despite their
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promising performances, the main challenge of the current
transformer-based approaches based on the standard trans-
former attention is its memory cost, which limits the use of
high-resolution image feature maps and a dense body mesh
model within it for better 3D reconstruction. In fact, the cur-
rent methods are limited to managing a single-scale coarse
feature map with 7×7 grids and a coarse mesh with around
400 vertices [28, 29].

In this paper, we propose a novel vertex-based trans-
former approach to 3D human mesh recovery, named
Deformable mesh transFormer (DeFormer). DeFormer it-
eratively fits a human mesh model to an image using the
mesh-alignment feedback loop formed in a transformer de-
coder. In order to leverage multi-scale feature maps and
a dense mesh model in the human mesh recovery trans-
former model, we design a decoder network architecture us-
ing block sparse attention and multi-scale (MS) deformable
attention [56] as illustrated in Fig. 1. The block sparse self-
attention module exploits the sparse connectivity patterns
established from a human body mesh and its skeleton. This
sparsifies self-attention access patterns and reduces mem-
ory consumption. The MS deformable cross attention mod-
ule aggregates multi-scale image features by attending only
to a small set of key sampling points around the mesh ver-
tex of the current reconstruction. DeFormer therefore can
attend to visual feature maps in both coarse and fine levels,
which contain not only global contexts but also local spa-
tial information. It can then extract useful contextualized
features for human mesh recovery and regress corrective
displacements to refine the estimated mesh shape. Conse-
quently, DeFormer can exploit high-resolution image fea-
ture maps and a dense mesh model that are not accessible
to previous approaches based on the standard transformer
attention [14,28,29] due to time/memory computational de-
mands. As a result, DeFormer achieves better performance
than previous approaches in 3D human mesh recovery.

The main contributions of this paper include:

• DeFormer: A novel decoder-only transformer archi-
tecture for monocular 3D human mesh recovery based
on the new body-mesh-driven attention modules that
leverage multi-scale visual features and a dense mesh
reasonably efficiently. DeFormer achieves new SOTA
results on the Human3.6M and 3DPW benchmarks.

• Body Sparse Self-Attention that exploits the sparse
connectivity patterns extracted from a human body
mesh model and its skeleton to restrict self-attention
access patterns, improving memory efficiency.

• Deformable Mesh cross Attention (DMA) that effi-
ciently aggregates and exploits multi-scale image fea-
ture maps by attending only to a small set of key sam-
pling points around the reference points obtained from
the current body joint and mesh vertex reconstructions.

2. Related Work
Human mesh recovery Human mesh recovery approaches
can be roughly divided into three categories from a shape
representation perspective: parametric body models [10,22,
25, 27, 53], volumetric shape models [42, 54] and vertex-
based approaches [28]. Please refer to the detailed taxon-
omy provided in the survey paper [41].

Parametric human mesh recovery approaches employ
statistical human models parameterized by shape and pose
parameters [10, 19, 22, 25, 27]. Kanazawa et al. [22] pro-
posed an end-to-end learning framework of human body
and shape using the SMPL human statistical model [33] and
generative adversarial networks (GANs). In [22], global
feature vectors are regressed with body parameters in a
feedback loop manner which minimizes discrepancy be-
tween reconstruction and an input image. PyMAF [53] in-
troduced a visual feature pyramid into a mesh alignment
feedback loop, leveraging multi-scale spatial feature maps.

Vertex-based approaches [14, 15, 15, 26, 28, 29] di-
rectly regress the 3D vertex coordinates of the deformed
mesh. GraphCMR [26] uses Graph Convolutional Net-
works (GCN) built from the adjacency matrix of the tem-
plate human mesh model to retain the topology of the mesh.
Recently, transformer architectures have been applied to
3D human mesh recovery to model long-range interactions
between body parts. Mesh transformer (METRO) [28]
uses a transformer encoder to regress 3D vertex coordi-
nates of a mesh from CNNs global feature vectors. Mesh
graphormer [29] extends METRO by incorporating vertex-
to-vertex mesh connectivity, again in the form of the adja-
cency matrix, using graph neural networks to further cap-
ture short-range interactions between body parts. It also in-
corporates coarse-scale image grid features. Concurrently,
Cho et al. [14] proposed a transformer encoder-decoder ar-
chitecture for human mesh recovery. They focus on improv-
ing training and inference time, by introducing mask atten-
tions in self-attention layers based on the adjacency matrix
obtained from the template mesh.

Our DeFormer extends the vertex transformer ap-
proaches [3, 5]. Unlike the encoder-only [3] or encoder-
decoder [5] architectures, we design a novel decoder-only
transformer to avoid memory intensive self-attentions of
image features in the encoder [2], because we do not need to
learn highly nonlinear mapping from low resolution image
features to vertex/joint 3D coordinates. Instead, we lever-
age multi-scale spatial context from a HRNet variant back-
bone [38], exploit it through DMA and better align a body
model in image space. BodySparse-SA exploits body con-
nectivity prior knowledge and sparsifies attention patterns
to improve memory efficiency. Thus, the way we exploit
body connectivity is different from [1, 4, 5] that use such
knowledge in GCNs or attention mask. BodySparse-SA is
the first transformer approach that can deal with a full reso-
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lution SMPL mesh with 6.9K vertices.
Efficient transformer In order to address a quadratic com-
plexity of transformer attention w.r.t sequence length, many
efficient transformer architectures have been proposed [40].
In language domain, much efforts have been spent to tackle
this problem with the goal of processing longer input sen-
tences. Most methods use fixed predefined sparse attention
patterns on keys [9, 13, 36, 51]. Longformer [9], External
transformer construction (ETC) [6] and Bigbird [51] use at-
tention patterns having local input tokens that only attend
to the tokens in fixed radius and a small set of global to-
kens that attend to all tokens in the sequence. ETC pro-
poses a global-local attention mechanism that divides a se-
quence into global and local tokens and constructs atten-
tion patterns by adding global tokens externally. Our work
can be thought of a sparse version of ETC where the joint
queries act as global ones that attend to other joints in an
unrestricted manner, while attending sparsely to mesh ver-
tices. Using graphs as has been done in graph attention
networks [44, 49] could remove redundant connections but
such graph-based attention approaches only consider the
first order neighbors that are one-hop away. Graphomer
[29] relies on the standard transformer full self-attentions.

In the image domain, Swin transformer [32] is probably
the most famous one based on shifted window based self-
attention. Deformable DETR [56] introduced an efficient
attention mechanism using learnable attention patterns that
only attend to a small set of key sampling locations around a
reference. In the 3D domain, ShapeFormer [48] introduced
a compact 3D representation called vector quantized deep
implicit function (VQDIF) that utilizes spatial sparsity.

3. Background
We first revisit the attention modules which are the key

ingredients of DeFormer.
Multi-head attention module Given a query element and
a set of key elements, the multi-head attention module [43]
aggregates the key contents with the attention weights that
measure the compatibility of query-key pairs. To focus on
contents from different feature subspaces and positions, the
outputs of different attention heads are linearly aggregated
using learnable weights. Let q ∈ Ωq and k ∈ Ωk be the
index of a query element and key element with their features
zq ∈ RC and xk ∈ RC , respectively. Here, Ωq and Ωk

are a set of query and key elements, respectively. C is the
feature dimension. Then, the Multi-Head Attention (MHA)
is calculated as:

MHA(zq,x) =

M∑
m=1

wm[
∑
k=Ωk

Amqk ·w′
mxk] (1)

where m indexes the attention head. wm ∈ RCh×C and
w′

m ∈ RC×Ch are learnable weights with Ch being C/M .

The attention weights Amqk = exp{zT
q uT

mvmxk√
Ch

} is normal-
ized to

∑
k∈Ωk

Amqk = 1 and um,vm ∈ RCh×C are learn-
able weights. To distinguish different spatial locations, zq
and xk are usually the concatenation/summation of element
contents and positional embeddings.
Multi-scale deformable attention module In order to ad-
dress the issues of applying transformer attention on higher
resolution feature maps, which would look over all possi-
ble spatial locations and would result in high computational
cost, Zhu et al. [56] proposed a multi-scale deformable at-
tention module. The deformable attention only attends to a
small set of key sampling points around a reference point,
regardless of the spatial size of the feature maps—it assigns
only a fixed number of keys for each query.

Let us denote multi-scale feature maps with L levels as
{xl}Ll=1. Let p̂q ∈ [0, 1]2 and zq be the normalized coor-
dinates of the reference point for each query q and its con-
tent feature, respectively, where the top-left and the bottom-
right corners of the normalized image space being (0, 0) and
(1, 1). Given {xl}Ll=1 as input, the Multi-Scale Deformable
Attention (MSDA) is applied as:

MSDA(zq, p̂q, {xl}Ll=1) (2)

=

M∑
m=1

wm[

L∑
l=1

K∑
k=1

Amlqk ·w′
m xl(ϕl(p̂q) + ∆pmlqk)]

where m indexes the attention head, l indexes the input fea-
ture level and k indexes the sampling point. ∆pmlqk and
Amlqk are the sampling offset and attention weight at the
k-th sampling point in the l-th feature level and m-th atten-
tion head. Also, the function ϕl(·) un-normalizes the nor-
malized reference point coordinates. Again, wm ∈ RCh×C

and w′
m ∈ RC×Ch are learnable weights as in Eq. 1.

Block sparse attention module In order to address
quadratic complexity of transformer, researchers in the lan-
guage field have attempted to sparsify attention [40]. How-
ever, it is well known that sparse multiplications cannot be
efficiently implemented in GPUs. Hardware accelerators
like GPUs and TPUs thus work better by loading blocks of
contiguous bytes at once. Thus, the works such as Bigbird
define attention on blocks by packing sets of query and keys
together. In order to use such a block-sparse attention mod-
ule, we need to specify a sparsity layout at the block-level
by dividing the original attention patterns into blocks with
block sizes of 8x8, 16x16, 32x32 etc. When the tokens are
arranged in 1D or 2D regular grid and when attention is
local, it reduces to sliding window attentions that can be ac-
complished by an efficient role operation without expensive
gather operations of query and key vectors.

4. Method
We propose Deformable mesh transFormer (dubbed as

DeFormer) for 3D human mesh recovery. DeFormer is
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based on the transformer decoder with efficient attention
mechanisms. The overview of DeFormer is depicted in Fig.
2. DeFormer consists of 1) a backbone feature extractor, 2)
a transformer decoder with body sparse self-attention layers
and deformable mesh cross-attention (DMA) layers and 3)
a dense mesh reconstruction module with a global scale es-
timator (and a mesh upsampler). The transformer decoder
produces contextualized features by aggregating multi-scale
feature maps extracted from a backbone model and pro-
duces the 3D coordinates of human body mesh in image
space corresponding to joint and vertex queries. The dense
mesh reconstruction module then optionally upsamples the
transformer output and scales it to physical size. We detail
each component in below.

4.1. Backbone feature extractor

Given a single RGB image, a backbone model extracts
L levels of feature maps {f l}Ll=1, where each level consists
of f l ∈ RHl×W l×Cl

with H l × W l and Cl denoting the
spatial resolution and channel dimension size of l-th feature
map, respectively. Then, feature maps {f l}Ll=1 are passed
through 1 × 1 convolution and group normalization layers
to obtain the input multi-scale feature maps {xl}Ll=1 of the
decoder. With this process, the channel dimension size of
feature maps are changed from Cl to D.

4.2. Transformer decoder

The inputs to the decoder are a set of joint queries QJ =
{q1J . . . qJJ } and vertex queries QV = {q1V . . . qNV } corre-
sponding to the template human body mesh that consists of
J joints and N vertices. These queries are fed into the de-
coder with three layers to produce contextualized visual fea-
tures at the queries, which will be mapped to the 3D coor-
dinates of joints J ∈ RJ×3 and vertices V ∈ RN×3 where
we denote their concatenation as X ∈ R(J+N)×3. Each
decoder layer consists of a body sparse self-attention and
deformable mesh cross attention. Different from previous
vertex-based approaches [26, 28], DeFormer removes cam-
era projection model and regresses 3D joint/vertex coordi-
nates in the normalized image space, XIm ∈ R(J+N)×3.
Initialization of joint and vertex queries Joint and ver-
tex queries are encoded by two different components i.e.,
appearance (content) feature and position embedding. To
obtain such initial features, we provide two options. The
first approach learns both position embeddings and appear-
ance features as in [56]. The second method obtains posi-
tion embedding by mapping the 3D vertex coordinates of
the template mesh to high dimensions with MLPs or sinu-
soidal functions [43]. In the second approach, the global
feature vector from the backbone is repeatedly used at each
query [29] to exploit image evidences from the backbone
model to establish the initial appearance features.
Body Sparse Self-Attention Given query features, the

Figure 2. Overview of DeFormer. Given multi-scale visual feature
maps extracted from a backbone model and joint/vertex queries,
the transformer decoder that consists of body sparse self-attention
and deformable mesh cross-attention (DMA) layers produce con-
textualized features for human body shape and pose. The body
sparse self-attention layer exploits the sparsity patterns built from
a human body mesh. At each DMA layer, the 3D coordinates of
joint and mesh vertices in image space are reconstructed and used
as reference points of deformable attention. Finally, the dense re-
construction module outputs a dense mesh with its global scale
adjusted to physical scale.

self-attention layer processes them and produces contextu-
alized features. To improve efficiency of transformer atten-
tion, we employ block sparse attention based on the sparse
attention patterns built from the SMPL body model [33].

We divide our sparse attention pattern into four pieces
as illustrated in Fig. 3: i.e. the joint-to-joint (j2j), joint-to-
vertex (j2v), vertex-to-joint (v2j) and vertex-to-vertex (v2v)
pieces. To promote unrestricted non-local attentions be-
tween joints, the j2j piece have a dense pattern i.e. 1 ∈
RJ×J . Attentions in the v2v piece are restricted to one-ring
neighbors from each vertex. For this, an adjacency matrix
A ∈ [0, 1]N×N containing mesh connectivity can be sim-
ply used. For the v2j piece, we construct it from finding
non-zero values of the joint regressor matrix J ∈ RJ×N

which is used to estimate joint positions from vertex posi-
tions where we have J̄ ∈ [0, 1]J×N . For the j2v piece we
construct it from a skinning weight matrix W ∈ RN×J .
This is done by first extracting two weight matrices, one
for the joints queries and the other for their parent joints.
These weight matrices are summed so that the vertices will
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Figure 3. Sparse attention pattern built from the SMPL hu-
man body model [33], which consists of joint-to-joint (j2j), joint-
to-vertex (j2v), vertex-to-joint (v2j) and vertex-to-vertex (v2v)
pieces. It is established from a joint regressor matrix, skinning
weight matrix and adjacency matrix. Using the approximate min-
imum degree (AMD) algorithm, nonzero blocks of the sparse at-
tention pattern for 6.9K queries reduced from 4.2% to 2.5%.

be attended by the joints close to them. Then, similar to
the v2j case, we find non-zero values within it and construct
W̄ ∈ [0, 1]N×J . Finally, the sparse connectivity attention
pattern, S ∈ [0, 1](J+N)×(J+N) is constructed by combin-
ing the pieces: S = [ [ 1, J̄ ], [ W̄, A ] ]. Once S is con-
structed, we obtain a block-level sparse layout for 16 × 16
blocks and it is set to the block-sparse attention layer. S
is also used for attention masks by inverting its values with
logical NOT operations.

Since the template is an irregular mesh, S does not have
an efficient structure to exploit it by GPU operations. We in-
stead use a tool from sparse linear algebra i.e. pre-ordering
techniques which are heuristic algorithms that find a permu-
tation matrix to produce the least fill-in in the subsequent
factorization. The approximate minimum degree (AMD)
algorithm [7] is one of these methods that iteratively elim-
inates nodes with the smallest degree and is known to pro-
duce a fractal-like matrix structure with large blocks of ze-
ros. In our case, we use AMD for making a block atten-
tion pattern further sparser. As shown in Fig. 3 right, after
the AMD reordering, nonzero blocks of the sparse atten-
tion pattern for 6904 queries reduced from 4.2% to 2.5%.
This means we can reduce memory consumption by 1/40
from the full transformer self-attention. To make use of the
re-ordered sparse pattern, the input query features are per-
muted according to the AMD permutation matrix and the
output query features from the block-sparse attention layer
are back permuted to the original ordering.
Deformable Mesh cross-Attention (DMA) Once contex-
tualized features are produced by the self-attention layer,
they are then passed through the DMA layer. DMA uses
the current reconstructed mesh as a reference point to sam-
ple features around it to perform multi-scale deformable at-
tention. The 3D coordinate regressor then reconstructs 3D

coordinates of joints and mesh vertices corresponding to
the given queries from the features produced. Our 3D re-
gression module follows the feedback loop style approaches
[22, 53] which regress corrections for pose and body shape
parameters. We instead regress a 3D displacement vector
for each query at each decoder layer.

Given the reconstructed joint position (or a mesh ver-
tex position) as a reference point, MS deformable attention
samples features at K = 4 offset points around it for L = 4
feature levels and M = 8 heads. These features are then
aggregated by the MSDA function Eq. 2. The 3D coordi-
nates for the next iteration Xt+1

Im ∈ R(J+N)×3 are obtained
by adding displacements ∆Xt

Im ∈ R(J+N)×3 predicted by
giving the concatenation of joint locations and mesh vertex
coordinates in image space at the t-th decoder layer Xt

Im as:

Xt+1
Im = Xt

Im +∆Xt
Im, for t > 0. (3)

∆Xt
Im = Ψ( Φ( Xt

Im)⊕ xt
q)

where xt
q ∈ R(J+N)×D is the features of joint and vertex

queries at the t-th layer after self-attention. Φ maps the 3D
coordinates to high-dimensional features, ⊕ concatenates
3D coordinate features with query features and Ψ regresses
3D displacement vectors from them. These 3D displace-
ments are used to refine the mesh vertices/joints and as a
result reference points that will be used in MS deformable
attention are updated—the reference points are the x and y
coordinates of the mesh vertices. As for the initial 3D mesh
coordinates X0

Im, we can use the 3D vertex coordinates of
a template, a single point [0, 0, 0] or the learned position
embeddings obtained using MLPs followed by a sigmoid
function [56].

4.3. Dense mesh reconstruction modules

Mesh upsampling and smoothing Depending on the res-
olution of the reconstructed mesh obtained with the 3D co-
ordinate regressor, we apply upsampling to obtain a dense
mesh. When the transformer produces a level-1 (1723 ver-
tices) or level-2 (431 vertices) down-sampled coarse mesh,
we upsample the mesh using MLPs [28]. When the trans-
former produces the original resolution mesh (6890 ver-
tices) we do not perform upsampling. The process is fol-
lowed by Taubin smoothing [39] to remove undesirable
noise and spikes on a surface. To obtain a down-sampled
sparse pattern matrix, the down-sampling and upsampling
matrices from [37] are used to construct the down-sampled
v2j and j2v patterns. For example let D0→1 and U1→0

be the down-sampling matrix from level-0 to level-1 and
the upsampling matrix from level-1 to level-0, respectively.
Then, the level-l v2j and j2v matrices are obtained by find-
ing the nonzero values of J̄U1→0 and D0→1W̄ .
3D global scale estimator Once the 3D coordinates of joint
and mesh vertex are predicted by the transformer, we apply
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a global scaling to the output 3D coordinates to transform
them from the normalized image space to the model space
to obtain a mesh in physical size. Specifically, the scale
value is regressed from the joint and mesh vertex coordi-
nates in image space using MLPs. We then apply a scal-
ing to XIm and transform them to physical model space
to obtain XM ∈ R(J+N)×3. This allows us to simplify
the structure of the decoder layer and its learning process,
such that reference points can be obtained without learn-
ing a camera projection model within a decoder layer. Note
that the above scaling process proceeds in the other way
around from previous approaches that project the recon-
structed mesh in physical size onto image space [28, 29].

4.4. Training

Following the literature in the field [15, 28, 29, 35], we
use a mixed-training strategy using several different training
datasets that contain samples with and without image-mesh
annotations. To train our model, we minimize the errors be-
tween the transformer predictions and the ground truths. In
contrast to previous approaches, 3D loss functions are ap-
plied on the results reconstructed in the image space and
model space. We apply L1 loss [28] to 3D mesh vertices
VIm, VM ∈ RN×3, 3D body joints JIm, JM ∈ RJ×3 and
2D body joints J2D ∈ RJ×2. In addition, a loss is cal-
culated from the 3D joint locations regressed from 3D ver-
tex coordinates using the pre-computed joint regressor, Jreg

Im

Jreg
M ∈ RJ×3. We also enforce regularizations on the pre-

dictions using the Laplacian operator similarly to [18, 23].
Position loss The positional losses consist of four terms:

LV
3D = (||VIm − V̄Im||1 + ||VM − V̄M||1)/N

LJ
3D = (||JIm − J̄Im||1 + ||JM − J̄M||1)/J

LJ
reg3D = (||Jreg

Im − J̄Im||1 + ||Jreg
M − J̄M||1)/J

LJ
2D = (||J2D − J̄2D||1 + ||Jreg

2D − J̄2D||1)/J

where V̄Im, V̄M ∈ RN×3, J̄Im, J̄M ∈ RJ×3 and J̄2D ∈
RJ×2 indicate the ground truths for 3D vertex positions
in image space/model space, 3D joint positions in image
space/model space and 2D joint locations, respectively.
Laplacian loss Let Lc be the cotangent Laplace operator
[18], then the Laplacian loss Llap is written as:

Llap =
1

N
(||Lc(VIm − V̄Im)||1) (4)

Total loss The total loss we minimize is as follows:

Ltotal = α(λV
3D(LV

3D + LJ
reg3D) + λJ

3DLJ
3D + λlapLlap)

+ βλJ
2DLJ

2D

where α and β are binary flags for each training sample,
which indicate the availability of 3D and 2D ground truths,
respectively. λV

3D, λJ
2D, λJ

3D and λlap are the weights for
controlling the relative strengths of respective terms.

Figure 4. Qualitative results on Human3.6M and 3DPW.

5. Experimental results
This section provides the main results of DeFormer. Ad-

ditional results are shown in supplementary materials.

5.1. Implementation Details

We implemented our models in Pytorch and used the
block sparse attention module from deepspeed [16]. We
use ResNet50 [20, 46] and HRNet [38] as our CNNs back-
bones. We also tested visual transformer backbone mod-
els [11, 17, 47, 50]. The backbone models are initialized
with the weights pre-trained on ImageNet, MPII or COCO
dataset. We found that initializing a backbone model by
pre-training on 2D human pose tasks (MPII or COCO) im-
proves the overall performance and training convergence,
instead of using ImageNet pre-trained weights. This is in
line with previous approaches [24, 52, 55]. The weights in
the transformer decoder are randomly initialized. We train
our models using the AdamW optimizer for 50 epochs with
an initial learning rate of 1×10−4 and lower it by a factor of
10 after 25 epochs, following [28,29,56]. All of our models
were trained on 8 NVIDIA A100 GPUs, which takes about
1 day for most of our models and finishes within 2 days.

5.2. Dataset and metrics

We train our model using publicly available datasets
which include Human3.6M [21], MuCo-3DHP [34], UP-
3D [27], COCO [30], MPII [8], following [15, 28, 29, 35].
For Human3.6M, we use the pseudo 3D mesh training data
from [15, 28, 29, 35]. We also use 3DPW [45] training data
to fine-tune on 3DPW following [14, 28, 29]. For evalu-
ations on Human3.6M, we follow the P2 protocol setting,
where subjects S1, S5, S6, S7 and S8 are used in training
and subjects S9 and S11 are used in testing.

We use the following three metrics for evaluation.
MPJPE: Mean-Per-Joint-Position-Error (MPJPE) mea-
sures the Euclidean distances between the ground truth
joints and the predicted joints. The unit is millimeter.
PA-MPJPE: PA-MPJPE, or the reconstruction error, is an-
other metric for 3D human pose estimation. Procrustes
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Table 1. Comparison of mesh transformer approaches using different backbones. Num. of vertex/joint queries are 431 and 14, respectively.

Method Epochs Input size Feat. resolution Backbone
Backbone H36M MPJPE ↓ #Params Inference

Pre-train dataset (PA-MPJPE ↓) Total / Backbone FPS

METRO [28]
200 224× 224 1 ResNet50 ImageNet 56.5 (40.6) 125.8M / 23.5M 32
200 224× 224 1 HRNet-w64 ImageNet 54.0 (36.7) 230.4M / 128.1M 14
50 256× 192 1 HRNet-w48 COCO 48.9 (35.8) 165.2M / 63.6M 16

Graphormer [29] 200 224× 224 {7, 1} HRNet-w64 ImageNet 51.2 (34.5) 226.5M / 128.1M 14

FastMETRO [14]
60 224× 224 7 ResNet50 ImageNet 53.9 (37.3) 48.4M / 23.5M 35
60 224× 224 7 HRNet-w64 ImageNet 52.2 (33.7) 153.0M / 128.1M 14

DeFormer
50 224× 224 {56,28,14,7,1} ResNet50 COCO 50.7 (36.3) 54.5M / 23.5M 41
50 256× 192 {64,32,16,8,1} HRNet-w48 COCO 44.8 (31.6) 93.5M / 63.6M 18
50 384× 288 {64,48,24,12,1} HRNet-w48 COCO 43.7 (30.7) 93.5M / 63.6M 15

Table 2. Comparisons with other SOTA methods on 3DPW and
Human3.6M.

^
indicates the methods fine-tuned on 3DPW.

Method
3DPW Human 3.6M

MPVE ↓ MPJPE ↓ PA- MPJPE ↓ PA-
MPJPE ↓ MPJPE ↓

HMR [22] — — 81.3 88.0 56.8
GraphCMR [26] — — 70.2 — 50.1

SPIN [25] 116.4 — 59.2 — 41.1
Pose2Mesh [15] — 89.2 58.9 64.9 47.0
METRO [28]^ 88.2 77.1 47.9 54.0 36.7

Graphormer [29]^ 87.7 74.7 45.6 51.2 34.5
PyMAF [52]^ 87.0 74.2 45.3 54.2 37.2

FastMETRO [14]^ 84.1 73.5 44.6 52.2 33.7
DeFormer^ 82.6 72.9 44.3 44.8 31.6

Analysis (PA) is first used to align the ground truth and
predicted result. Then, MPJPE is calculated. PA-MPJPE
measures the error of the reconstructed structure with the
effect of scale and rotation removed.
MPVE: Mean-Per-Vertex-Error (MPVE) measures the Eu-
clidean distances between the ground truth vertices and the
predicted vertices.

5.3. Comparisons to previous approaches

Table 1 shows the comparison results against previ-
ous transformer-based human mesh recovery approaches
[14,28,29]. Among the transformer-based approaches using
CNNs backbone models, DeFormer with the HRNet-w48
backbone achieves the best performance.

We compare DeFormer with other state-of-the-art tech-
niques on 3DPW and Human3.6M benchmarks. The re-
sults are shown in Table 2. On both datasets, DeFormer
outperforms previous works including parametric methods
that use multi-scale feature maps [52, 53] and transformer-
based approaches [14,28,29]. This indicates that DeFormer
can utilize multi-scale visual features more effectively and
map them to 3D vertex coordinates more accurately based
on its transformer decoder.

5.4. Ablation study

Multi-scale feature maps. Table 3 investigates the effec-
tiveness of multi-scale feature maps. It compares the perfor-
mance obtained by varying the number of feature maps to
be used. With the HRNet backbones, leveraging multi-scale

Table 3. MPJPE and PA-MPJPE by varying input feature map
resolutions. Here, W 1 = W 0/4, W 2 = W 0/8, W 3 = W 0/4
and W 4 = W 0/32 represent feature map widths where W 0 is the
input image width. Feature maps are visualized in Fig. 5.

Backbone- Feature map resolutions
Pre-train data W 4 W 3,4 W 2,3,4 W 1,2,3,4

R50-MPII 54.1 (39.6) 53.7 (38.6) 53.6 (38.4) 54.5 (39.1)
R50-COCO 50.5 (36.8) 51.2 (36.5) 50.6 (36.2) 50.7 (36.3)
HR32-MPII 56.9 (41.7) 52.2 (37.4) 49.9 (35.7) 49.5 (34.8)

HR48-COCO 50.9 (36.5) 47.5 (34.2) 46.6 (33.1) 44.8 (31.6)

Figure 5. Visualizations of multi-scale feature maps from
ResNet50 (top) and HRNet-w48 (bottom) backbones pre-trained
on COCO 2D keypoints and then trained for the human mesh re-
covery task for 50 epochs. Left to right: Input image and fea-
ture maps from backbone layers l = 1, 2, 3, 4. Feature maps are
summed along the channel dimension. HRNet produces meaning-
ful spatial feature maps at high resolutions.

feature maps improves the performance. Table 3 clearly
shows a decrease in the MPJPE and PA-MPJPE errors with
the introduction of high-resolution feature maps in the case
of HRNet. However, it is not the case with the ResNet50
backbone model. To see why it shows such a different be-
havior depending on the backbone model, we visualize the
feature maps extracted from them (Fig. 5). It is found that
the feature maps of ResNet50 have less meaningful spatial
patterns at higher resolutions, which is why its multi-scale
feature maps do not contribute much to the performance im-
provements. In contrast, HRNet produces meaningful spa-
tial feature maps for all resolutions. This is probably be-
cause its network architecture has multi-scale fusion layers
that promote interactions between feature maps at differ-
ent levels throughout the network, allowing high-resolution
feature maps to participate in.
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Table 4. DeFormer MPJPE ↓ (PA-MPJPE↓) scores using differ-
ent visual transformer backbones. All backbone models are pre-
trained on COCO. Input image size is 256× 192.

Backbone (#Params) MPJPE (PA-MPJPE) Total #Params
ViTPose-L (299.8M) 56.9 (39.0) 329.9M

Swin-L-FPN (186.6M) 49.7 (33.8) 216.7M
AggPose-L (87.4M) 43.6 (31.3) 117.5M

HRFormer-B (43.2M) 43.3 (30.0) 64.0M

Table 5. Ablation study on decoder cross attention (CA).
CA type MPJPE ↓ PA-MPJPE↓

Bilinear interp. ×3 48.3 34.3
Transformer CA ×3 50.7 37.1

MS deformable CA ×1 47.7 34.8
MS deformable CA ×3 44.8 31.6

Table 6. Ablation on self-attention (SA). Peak mem. usage indi-
cates per device memory usage for each GPU device. Benchmarks
are run on 8 Nvidia A100 GPUs. Training batch size is 16. Note
FPS has improved from Table 1 with some code optimizations.

SA type #Query
MPJPE ↓ Peak mem. Steps

FPS
( PA-MPJPE) usage per sec

Transformer
0.4K 44.8 (31.6) 7.2GB 4.33 19.8
1.7K 44.5 (30.3) 25.2GB 2.68 18.5
6.9K — — — 9.6
0.4K 45.2 (31.0) 6.1GB 4.43 19.6

Body Sparse 1.7K 44.3 (30.5) 8.4GB 3.40 19.2
6.9K 43.9 (30.7) 17.8GB 1.80 14.7

Backbone models. In Table 1, we show the comparison
results against METRO [28] with the HRNet-w48 backbone
pre-trained on COCO. With this change, METRO improves
PA-MPJPE by 1.4mm and MPJPE by 5.1mm from the orig-
inal version [28] that employs the HRNet-w64 model pre-
trained on ImageNet. DeFormer with the same HRNet-w48
backbone model performs better than METRO by 3.9mm in
PA-MPJPE and 4.3mm in MPJPE by exploiting multi-scale
feature maps via MS deformable attention.

Table 4 shows the results using four different visual
transformer backbone models. Using visual transformer
backbone models, DeFormer further gains improvements in
MPJPE and PA-MPJPE. Surprisingly, however, we found
that the improvements are dependent on their model archi-
tectures, irrespective of the model size. Even though ViT-
Pose [47] achieves SOTA performances in 2D human pose
detection tasks, it does not perform well with DeFormer,
because ViT does not produce multi-scale feature maps and
is known to work poorly in dense prediction tasks. Swin-
L-FPN [17] has an aggregation mechanism of multi-scale
feature maps based on feature pyramids [31]. It works
better than the ViT backbone but it is not as effective as
HRNet variants. AggPose [11] and HRFormer-B [50] pos-
sess multi-scale fusion layers similar to HRNet. Thus, De-
Former with them shows strong performances.
Decoder cross attention. Table 5 shows the compari-
son between the decoder cross attention with different fea-
ture sampling and aggregation approaches. Specifically, we

compare bilinear interpolation [53], standard cross atten-
tion [12] and MS deformable cross attention [56]. To con-
duct a fair comparison experiment, the above decoders are
comprised of three layers and we use the same backbone
model (HRNet-w48). We also tested a one-layer setting for
MS deformable attention. For bilinear interpolation, the de-
coder layers take feature maps similar resolutions with the
ones used in [53] i.e. {64, 32, 16}. Similarly, for the de-
coder with standard cross attention, a feature map with res-
olution of 8 is fed into the decoder following [14]. The
deformable attention decoder uses all feature maps from
{64, 32, 16, 8, 1} resolutions at each layer. As we can see
from Table 5, the deformable attention performs the best
among the three approaches by leveraging all level of multi-
scale feature maps at each decoder layer. By increasing the
number of decoder layers from one to three, it gains 3pt im-
provements in both MPJPE and PA-MPJPE.
Decoder self-attention. Table 6 shows the ablation on
the self-attention modules. Overall, the MPJPE and PA-
MPJPE scores are almost equivalent when using the full
self-attention and the body sparse attention. Due to high
memory consumption, it is not possible to train DeFormer
with the full transformer self-attention for the 6.9K query
setting using batch size of 16 on A100 GPUs with 40GB
memory. With the use of body sparse self-attention, De-
Former can be trained in less than 2 days even with 6.9K
queries. An increase in the number of vertex queries i.e.
the mesh resolution of the template provides approximately
+1pt improvements in the MPJPE and PA-MPJPE scores
from 44.8(31.6) to 43.9(30.7). In addition, inference FPS
can be evaluated for the 6.9K query setting. DeFormer with
BodySparse-SA is 1.5× faster than that with the standard
transformer self-attention. An increase in the speed is rela-
tively limited as we do not use an efficient local window at-
tention commonly used in language and image domain, due
to the irregular connectivity of a triangle mesh. Our cur-
rent implementation is also not optimized to fully exploit
the GPU block sparse computing of CUDA.

6. Conclusion
We presented DeFormer, a decoder-only transformer for

3D human mesh recovery, and addressed memory issues
of transformer attention by introducing the efficient mesh-
driven attention mechanisms: deformable mesh attention
and body sparse attention. DeFormer can thus leverage
multi-scale image feature maps and a dense human mesh
body model, achieving a SOTA performance in human
mesh recovery. We are interested in extending DeFormer to
learn expressive human body models that can capture fine-
grained details, such as facial expressions and finger poses.
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