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Abstract

Recently, Multiple Object Tracking has achieved great
success, which consists of object detection, feature embed-
ding, and identity association. Existing methods apply the
three-step or two-step paradigm to generate robust trajec-
tories, where identity association is independent of other
components. However, the independent identity associa-
tion results in the identity-aware knowledge contained in
the tracklet not be used to boost the detection and embed-
ding modules. To overcome the limitations of existing meth-
ods, we introduce a novel Unified Tracking Model (UTM)
to bridge those three components for generating a positive
feedback loop with mutual benefits. The key insight of UTM
is the Identity-Aware Feature Enhancement (IAFE), which
is applied to bridge and benefit these three components
by utilizing the identity-aware knowledge to boost detec-
tion and embedding. Formally, IAFE contains the Identity-
Aware Boosting Attention (IABA) and the Identity-Aware
Erasing Attention (IAEA), where IABA enhances the consis-
tent regions between the current frame feature and identity-
aware knowledge, and IAEA suppresses the distracted re-
gions in the current frame feature. With better detections
and embeddings, higher-quality tracklets can also be gener-
ated. Extensive experiments of public and private detections
on three benchmarks demonstrate the robustness of UTM.

1. Introduction

Multiple Object Tracking (MOT) aims at locating and
identifying all of the moving objects in the video, which has
broad application prospects in visual surveillance, human-
computer interaction, virtual reality, and unmanned vehi-
cles. With the rapid development of object detection [12,
34, 35, 66], Tracking-By-Detection has became a favorite
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Figure 1. Comparison of different MOT frameworks in existing
methods. (a) Separate Detection and Embedding (SDE) [2]. (b)
Joint Detection and Embedding (JDE) [50]. (c) The proposed Uni-
fied Tracking Model (UTM) that constructed with Identity-Aware
Feature Enhancement (IAFE) module.

paradigm in MOT. Recently, a number of Tracking-By-
Detection approaches have been proposed, which can be
divided into two paradigms: Separate Detection and Em-
bedding (SDE) [1, 2, 4, 5, 8, 10, 16, 25, 38, 43, 52, 54], and
Joint Detection and Embedding (JDE) [15, 29, 45, 50, 64].

As illustrated in Figure 1(a), SDE can be divided into
three independent components: object detection, feature
embedding, and identity association1. Candidate bound-
ing boxes (bboxes) are obtained by standard detectors in
each frame first, then identity embedding of each bbox is
extracted by the re-identification algorithms, finally linked
across frames through identity association to generate tra-

1In this paper, identity association includes affinity computation and
data association.
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jectories. Therefore, SDE mainly exploits refining detec-
tion [2, 16], enhancing identity embedding [1, 25, 38, 52],
or designing robust association algorithms [5, 8, 54] to im-
prove tracking performance. With the maturity of multi-
task learning, some approaches [45, 50, 64] propose JDE
framework to reduce the computation cost. Different from
SDE, JDE applies the one-shot tracker to generate object
detections and corresponding visual embeddings simultane-
ously, thus treating MOT as two independent components,
shown in Figure 1(b). Since the identity association in the
above two paradigms is independent of object detection and
feature embedding, the significant clues contained in the
tracklet cannot be applied to enhance the detection and em-
bedding modules.

To address the above problem, a feasible idea is in-
troducing an auxiliary module to associate and propagate
identity-aware knowledge between the identity association
and the other two components. Therefore, we design a
novel Identity-Aware Feature Enhancement (IAFE) module
to achieve information interaction between different com-
ponents, shown in Figure 1(c). In detail, IAFE propagates
the identity-aware knowledge generated by identity asso-
ciation module to enhance the backbone feature of object
detection. Meanwhile, the enhanced backbone feature can
be utilized by the feature embedding module to generate
discriminative embeddings. With more accurate detections
and robust embeddings, the identity association module can
produce higher-quality tracklets. Therefore, object detec-
tion, feature embedding, and identity association are in-
volved with each other, thus forming a positive feedback
loop with mutual benefits.

As shown in Figure 2, the proposed Unified Tracking
Model (UTM) is composed of IAFE, detection branch,
embedding branch, identity association branch, and mem-
ory aggregation module. The detection and embedding
branches are applied to locate and identify each object of
the current frame, and the identity association branch ap-
plies graph matching to associate the candidate bboxes with
history tracklets. To achieve information interaction, IAFE
is proposed to bridge and benefit these three branches,
which utilizes the identity-aware knowledge to boost the
detection and embedding. Specifically, IAFE consists of
two modules: Identity-Aware Boosting Attention (IABA)
and Identity-Aware Erasing Attention (IAEA), where IABA
boosts the consistent regions between the current frame fea-
ture and identity-aware knowledge, and IAEA erases the
distracted regions in the current frame feature. With the
designed IAFE, UTM constructs a positive feedback loop
among all the three branches to improve the performance
of MOT. Furthermore, we introduce a memory aggregation
module to capture identity-aware knowledge through adap-
tively selecting features of history frames, which can allevi-
ate the effect of identity switches.

The main contributions of the proposed method can be
summarized as follows:

• We design an Identity-Aware Feature Enhancement
(IAFE) module to bridge and benefit different com-
ponents in MOT. Specifically, it utilizes the identity-
aware knowledge to boost backbone feature, which is
further used to enhance the detection and embedding.

• With the proposed IAFE, we construct a Unified
Tracking Model (UTM) to form a positive feedback
loop with mutual benefits.

• The evaluation of public and private detections on
three benchmarks verifies the effectiveness and gen-
eralization ability of the proposed UTM.

2. Related Work
MOT has been received more and more attention from

industry and academia in the past years. We review the most
relevant work of MOT, i.e., Separate Detection and Embed-
ding, Joint Detection and Embedding.

2.1. Separate Detection and Embedding

Separate Detection and Embedding(SDE) is the most
popular framework for MOT, which consists of three inde-
pendent components: object detection, feature embedding,
and identity association. Existing SDE methods exploit re-
fining detection [2, 5, 15, 16, 59] or the provided public de-
tections [11–13, 35] for MOT. Then, the appearance em-
bedding model [1, 2, 25, 38, 52, 62] is used to extract dis-
criminative feature for each candidate bbox, e.g., Bae et
al. [1] boost the representation learning by training the vi-
sual model on person re-identification datasets. Besides the
appearance model, the motion model [10, 15, 39, 52, 58] is
also applied to describe the motion information of each ob-
ject, e.g., the Kalman filter [22] is widely used in MOT. Fi-
nally, the matching algorithm is used to solve the problem of
identity association, e.g., Hungarian algorithm [24], multi-
cut [19, 20], min-cost max-flow network [61], and condi-
tional random field [55]. Except for the traditional matching
algorithms, more and more methods [5, 8, 16, 36, 49, 51, 54]
apply deep learning for identity association. Xu et al. [54]
propose a Deep Hungarian Network module to substitute
the Hungarian algorithm. Some approaches [5,8,16,49,51]
formulate identity association as a graph optimization prob-
lem. The work most related to ours is MPNTrack [5], which
treats each object as a graph node and applies the edge
feature for classification. The major difference is that we
construct the detection graph and tracklet graph for iden-
tity association according to high-order context informa-
tion, which brings the better performance of our model.

2.2. Joint Detection and Embedding

To construct a real-time tracker, Joint Detection and Em-
bedding (JDE) methods have begun to attract more atten-
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Figure 2. The overall framework of the proposed Unified Tracking Model (UTM). UTM is composed of identity-aware feature enhancement
module, detection branch, embedding branch, identity association branch, and memory aggregation module. Specifically, UTM leverages
the identity-aware knowledge to enhance detection and embedding, which in turn benefits identity association.

tion. JDE methods allow object detection and feature em-
bedding to be learned in a shared model, which can reduce
the computation cost. Specifically, JDE methods [29, 45,
50, 64] add an embedding head on top of different detec-
tors to output bboxes and corresponding appearance embed-
dings simultaneously, e.g., Track-RCNN [45] is designed
on top of Mask-RCNN [17], JDE [50] is introduced on
YOLOv3 [34] framework for real-time MOT, FairMOT [64]
proposes a simple baseline on CenterNet [67]. Furthermore,
Guo et al. [15] make position prediction and embedding as-
sociation benefit each other based on the JDE framework.
Specifically, they apply the target feature and distractor fea-
ture to generate the target attention and distractor attention
for reliable embeddings, which can reduce the occlusion
by pedestrians but cannot eliminate the background infor-
mation. To eliminate the background information, we pro-
pose an identity-aware erasing attention to suppress the dis-
tracted regions in the current frame.

Besides the JDE methods, many other methods [6, 7, 32,
33, 46, 53, 57, 68] have been proposed. Pang et al. [32] in-
troduce the bounding-tube to combine detection and associ-
ation in a short video clip, and utilize the IoU-based greedy
algorithm to link different bounding-tubes. Specifically, a
bounding-tube can be treated as the combination of three
bounding-boxes, e.g., start box, middle box, and end box,
from different video frames. Peng et al. [33] take adjacent
frame pairs as input and regress the paired bboxes for the
targets that appear in both adjacent frames, and also ap-
ply IoU matching between different adjacent pairs. More-
over, some online solutions [6, 7, 57, 68] apply Single Ob-
ject Trackers (SOT) for MOT, e.g., Yin et al. [57] simulta-
neously learn the SOT based object motion prediction and
affinity-dependent ranking model.

However, all of these methods are multi-step methods,
e.g., SDE methods conduct detection, embedding and iden-
tity association separately, and JDE methods jointly learn
object detection and feature embedding, where identity as-
sociation is still independent with others. Since informa-
tion cannot be propagated between independent modules,
the valuable identity-aware knowledge cannot be utilized

to enhance detection and embedding modules in the multi-
step methods. To address these problems, we introduce the
identity-aware feature enhancement module to form a uni-
fied tracking model, which can bridge and benefit the above
three components to form a positive feedback loop.

3. Methodology

As shown in Figure 2, UTM is composed of the Identity-
Aware Feature Enhancement (IAFE) module, detection
branch, embedding branch, identity association branch, and
memory aggregation module. Given the t-th frame, we first
apply the backbone network to obtain the backbone feature
Ft. Then, IAFE takes the efficient tracklet features as the
identity-aware knowledge to enhance the backbone feature
of each tracked object, where tracklet feature set and en-
hanced backbone feature are denoted as Et−1 and F̃t, re-
spectively. Next, the detection and embedding branches uti-
lize F̃t to obtain candidate bbox set Bt and object embed-
ding set F̂t. Then, the identity association branch utilizes
the high-order contextual information to associate the can-
didate bboxes and history tracklets. Finally, the memory
aggregation module is used to update the tracklet feature
that is applied to enhance the backbone feature with IAFE
in the next frame. In the following, we will describe the
detail of each module.

3.1. Identity-Aware Feature Enhancement

To construct a Unified Tracking Model, we propose
an Identity-Aware Feature Enhancement (IAFE) module to
bridge the detection, embedding, and identity association
branches to generate a positive feedback loop. Specifi-
cally, IAFE leverages the efficient tracklet features to boost
the detection and embedding branches, thereby generating
high-quality tracklets with the identity association branch.
As shown in Figure 3, IAFE consists of the Identity-Aware
Boosting Attention (IABA) and Identity-Aware Erasing At-
tention (IAEA), where IABA is utilized to boost the features
of consistent regions between history tracklets and current
frame, and IAEA is applied to suppress the features of dis-
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Figure 3. Illustration of the proposed IAFE module. BBL indi-
cates the block binarization layer, R and M represent the correla-
tion feature and binary mask.

tracted regions in the current frame.
Following Tracktor [2], we combine the corresponding

public detections and tracked objects in the previous frame
as the candidate proposals Pt of the current frame It. After
that, IAFE applies the tracklet features Et−1 to enhance the
backbone features of candidate proposals, where Et−1 =
{Et−1,1, ...,Et−1,m}, m is the number of history tracklets.
For example, given the candidate proposal Pt,∗ ∈ Pt along
with the backbone feature Ft,∗, we can leverage Et−1 to
generate the enhanced feature F̃t,∗ as follows:

F̃t,∗ = Ft,∗ ⊕ [f(Ft,∗,Et−1)⊖ g(Ft,∗,Et−1)], (1)

where ⊕ and ⊖ indicate element-wise addition and subtrac-
tion, f(Ft,∗,Et−1) and g(Ft,∗,Et−1) represent IABA and
IAEA, respectively. In the following, we give a detailed
description about the boosting attention module f(·) and
erasing attention module g(·).

The boosting attention module f(·) leverages Et−1 to
enhance the consistent feature between Et−1 and Ft,∗.
Given the proposal feature Ft,∗ ∈ RC×H×W and Et−1,
f(Ft,∗,Et−1) can be formulated as follows:

f(Fit,∗,Et−1) =

m∑
k=1

λ∗,k
∑

∀j h(F
i
t,∗,E

j
t−1,k)ρ(E

j
t−1,k)∑

∀j h(F
i
t,∗,E

j
t−1,k)

,

(2)
where Et−1,k ∈ Et−1 is the tracklet feature of the k-th
tracklet Tt−1,k, and Fit,∗,E

j
t−1,k ∈ RC(i, j ∈ [1, HW ])

are the features sampled from Ft,∗ and Et−1,k. h(xi,xj) =
eψ(xi)

Tφ(xj), where ψ,φ, ρ are convolution layers. λ∗,k is
an indicator and is defined as follows:

λ∗,k =

{
1 IoU(Pt,∗, Bt−1,k) > λiou,

0 otherwise,
(3)

where IoU(Pt,∗, Bt−1,k) is the geometric similarity be-
tween the candidate proposal Pt,∗ and the last bbox Bt−1,k

of Tt−1,k, and λiou is the geometric threshold.
To eliminate the background information, we apply the

tracklet features to erase distracted regions in the backbone

feature Ft,∗, which can be formulated as follows:

g(Ft,∗,Et−1) =

m∑
k=1

λ∗,kFt,∗ ⊙R(Ft,∗, ϕ(Et−1,k))

⊙M(Ft,∗, ϕ(Et−1,k)),

(4)

where ϕ indicates the average pooling layer, ⊙ is element-
wise product operation, R(xi,xj) and M(xi,xj) represent
the correlation feature and binary mask, respectively. The
correlation feature denotes the dot-produce similarity be-
tween tracklet feature and all the local features in Ft,∗.

R(Ft,∗[i, j], ϕ(Et−1,k)) = (Ft,∗[i, j])
Tϕ(Et−1,k), (5)

where Ft,∗[i, j] denotes the local feature of spatial location
(i, j) of Ft,∗.

After obtaining the correlation feature, we apply R(·) to
generate the binary mask M(·) between backbone feature
Ft,∗ and tracklet feature Et−1,k. Inspired by [21], we apply
a block binarization layer to generate the mask for erasing a
contiguous region in Ft,∗. We exploit a sliding block with
the size of 3 × 3 and strides = 1 to search the most high-
lighted continuous area in the correlation feature, and define
the correlation value of each block as the sum of the values
in the block. Then, we select the candidate block with the
highest correlation value as the block to be reversed, i.e., the
binary mask of correlation feature is obtained by setting the
values of the selected block to 0 and others to 1. Next, we
apply a softmax layer to generate a gate map for end-to-end
training, where gate map is obtained by the element-wise
produce operation between softmax-based correlation fea-
ture and binary mask. Finally, the erasing attention can be
obtained based on the gate map and binary mask.

3.2. Unified Tracking Model

The proposed IAFE in Sec. 3.1 utilizes the identity-
aware knowledge to achieve information interaction be-
tween different components in MOT, thus constructs a Uni-
fied Tracking Model (UTM) to form a positive feedback
loop. Except for IAFE, UTM also contains the detection,
embedding, identity association branches, and memory ag-
gregation module, which will be described in the following.

Detection Branch. Inspired by Tracktor [2], we adopt
Faster R-CNN [35] as the detection branch, where the re-
gression head and classification head are utilized to refine
bboxes and infer classes of objects inside boxes. Different
from the candidate proposals generated by RPN in Faster
R-CNN, we combine the public detections in the current
frame and the tracked objects in the previous frame as the
candidate proposals. Then the regression head is exploited
to predict candidate bboxes Bt = {Bt,1, ...Bt,n} based on
the enhanced backbone feature F̃t which obtained by IAFE,
and the classification head gives the confidence score for
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each bbox. Note that Bt,i indicates a bbox in Bt and n is
the number of candidate bboxes. It is worth noting that we
merely apply the regression head to refine the public de-
tections and tracked objects, while not generate new candi-
date bboxes. Simultaneously, the regression head is trained
with L1 loss on displacements, and the classification head
is learned with a cross-entropy loss.

Embedding Branch. After obtaining the candidate
bboxes Bt, the embedding branch targets to generate their
discriminative embeddings. Given the enhanced backbone
feature F̃t and a bbox Bt,i, the corresponding embedding
F̂t,i can be formulated as follows:

F̂t,i = E(F̃t, Bt,i), (6)

where E represents convolution layer on top of the ROI-
Align layer. Then, the embeddings of Bt can be denoted
as F̂t = {F̂t,1, ..., F̂t,i, ..., F̂t,n}. Furthermore, the em-
bedding branch is trained with the combination of cross-
entropy loss and triplet loss to learn the discriminative iden-
tity embeddings.

Identity Association Branch. In this paper, we formu-
late identity association as a graph matching problem be-
tween the candidate bboxes Bt and history tracklets Tt−1,
where Bt = {Bt,1, ..., Bt,n}, Tt−1 = {Tt−1,1, ..., Tt−1,m},
n and m represent the number of candidate bboxes and his-
tory tracklets, respectively. We first construct the detection
graph and tracklet graph to describe the relationships of dif-
ferent objects in the candidate bboxes and history track-
lets, respectively. Then, the cross-graph message passing
between the detection graph and tracklet graph is applied
to enhance the node features. Finally, the graph matching
layer applies high-order context information to associate the
detection graph with the tracklet graph.

The detection graph is defined as GD = (VD, ED).
VD = {(Bt,i; F̂t,i)}(i ∈ [1, n]) represents the node set,
where F̂t,i is the embedding of the i-th bbox Bt,i for the
t-th frame. ED = {[F̂t,i1 , F̂t,i2 ]} indicates the edge set,
where [·] indicates the concatenation operation. Similarly,
the tracklet graph is defined as GT = (VT , ET ). VT =
{(Bt−1,j ;Et−1,j)}, ET = {[Et−1,j1 ,Et−1,j2 ]}(j, j1, j2 ∈
[1,m]), where Bt−1,j and Et−1,j indicate the last bbox and
tracklet feature of the j-th history tracklet Tt−1,j .

To model the feature interaction between the detection
graph GD and the tracklet graph GT , we adopt the cross-
graph message passing to propagate the information across
these two graphs. Let F̂(0)

t,i = F̂t,i and E
(0)
t−1,j = Et−1,j be

the initial feature of each node in VD and VT , we analyze
the effect of three node aggregation rules.

(Type1) F̂
(l+1)
t,i = F̂

(0)
t,i ,

(Type2) F̂
(l+1)
t,i = Nv(F̂

(l)
t,i +

1

m

∑m
j=1 E

(l)
t−1,j),

(Type3) F̂
(l+1)
t,i = Nv(F̂

(l)
t,i +

∑m
j=1 w

(l)E
(l)
t−1,j),

(7)

where F̂
(l)
t,i and E

(l)
t−1,j are the features of the l-th propa-

gation, w(l) = cos(F̂
(l)
t,i ,E

(l)
t−1,j) + IoU(Bt,i, Bt−1,j) is

the combination of cosine similarity and geometric simi-
larity obtained by the Intersection over Union (IoU) of two
bboxes, and Nv represents learnable function, e.g., MLP.
The final feature of the node in VD can be denoted as
F̂t,i = F̂

(L)
t,i , where L is the total steps of the message pass-

ing. Meanwhile, the similar operation is also applied to the
tracklet graph GT .

After that, we utilize the first-order node-to-node similar-
ity and the second-order edge-to-edge similarity to compute
the affinity matrix M, where both of the similarities are de-
scribed with cosine similarity. Furthermore, two nodes be-
tween the detection graph and tracklet graph are matched if
the corresponding similarity in M is higher than an affin-
ity threshold γ. Finally, the optimal matching Y∗ can be
obtained with:

Y∗ = argmax
Y

YTMY, (8)

where Y∈{0, 1}n×m is a permutation matrix that denotes
the matching result between the detection and tracklet
graphs. The more details of the optimization of Y∗ can be
referred to [60]. Moreover, the identity association branch
is trained with weighted binary cross-entropy loss.

Memory Aggregation. The identity-aware feature en-
hancement module is described in Sec. 3.1, which applies
the efficient tracklet features to enhance the detection and
embedding branches. Although storing identity embed-
dings formed in the previous frames is an intuitive and ac-
cessible way to obtain tracklet feature, the identity embed-
dings may noisy due to occlusion and identity switches. To
enhance the robustness of tracklet feature, we introduce a
memory bank to aggregate effective tracklet feature for each
object, so that all of the object detection, feature embedding,
and identity association can be further boosted. Further-
more, the memory bank groups cached memories in differ-
ent memory units for different objects, each memory unit
can be denoted as Fmt−1,j = {F̂t−η,j , ..., F̂t−1,j}, where
Fmt−1,j and F̂t−1,j denote the memory and identity embed-
ding of the j-th object in the (t-1)-th frame, and η is the
memory length. Specifically, we adopt a learnable memory
aggregation module to adaptively select valid identity em-
beddings, which consists of a linear layer with a ReLU ac-
tivation function. Each tracklet feature Et,j can be updated
as follows:

Et,j = θ(Fmt−1,j , F̂t,j), (9)

where θ represents the memory aggregation operation.
Optimization. To achieve faster convergence, we adopt

a multi-step optimization strategy. Firstly, we jointly train
the detection branch, embedding branch, and memory ag-
gregation module. Specifically, the detection branch is
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constrained with L1 loss and cross-entropy loss, the em-
bedding branch and memory aggregation module are con-
strained with two discriminative identity losses that consists
of cross-entropy loss and triplet loss. Secondly, we utilize
the output of detection branch and embedding branch to
train the identity association branch while the detection and
embedding branches are fixed. Finally, we jointly fine-tune
all the components in the full unified model.

4. Experiments
Datasets and evaluation metrics. We conduct all the

experiments on three MOT benchmarks, e.g., MOT16 [31],
MOT17 [31], and MOT20 [9]. Following the CLEAR MOT
Metrics [3], IDF1 Score [37], and HOTA [30], we apply
some basic items for quantitative evaluation, e.g., Multiple
Object Tracking Accuracy (MOTA ↑), IDF1(↑), Higher Or-
der Tracking Accuracy (HOTA ↑), Mostly Tracked (MT ↑),
Mostly Lost (ML ↓), False Positives (FP ↓), False Negatives
(FN ↓), and Identity Switches (IDS ↓).

Implementation details. The proposed method is im-
plemented by Pytorch with RTX 3090. We adopt Faster
R-CNN [35] with Feature Pyramid Network (FPN) [27] as
the detection branch. For public detection, we pre-train
the backbone of ResNet101 [18] on COCO dataset [28].
For private detection, we pre-train the detection branch
on CrowdHuman [40] and MOT training datasets. Simul-
taneously, the embedding branch is pre-trained on Mar-
ket1501 [65] and CUHK03 [26] datasets. Then we refine
the whole model with the MOT training datasets. The initial
learning rate is set to 0.002 with a decay factor 0.5 at every
3 epochs up to 30 epochs. Adam optimizer [23] is used with
a mini-batch size of 2. We set the number of message pass-
ing steps L = 3, geometric threshold λiou = 0.7, affinity
threshold γ = 0.6, and the memory length η = 30.

4.1. Benchmark Evaluation

We compare the proposed Unified Tracking Model
(UTM) with several methods on three benchmarks, e.g.,
MOT16, MOT17, and MOT20. The benchmark evaluation
can be divided into public detection and private detection.

Public Detection. We compare the proposed method
with traditional tracking-by-detection methods that apply
Tracktor for refining detections on the public detection set-
ting for a fair comparison, and the comparison with other
refined detectors are provided in supplementary material.
Furthermore, the compared methods can be categorized into
online and offline tracking methods. As shown in Table 1,
the proposed method achieves better performance than ex-
isting online methods on most of the evaluation metrics.
Moreover, we compare UTM with two multi-step frame-
works to demonstrate its superiority. Compared with the
Separate Detection and Embedding (SDE) method Track-
tor [2], UTM obtains a higher HOTA, e.g., 8.5%, 7.7%, and

Methods Refined MOTA HOTA IDF1 FP FN IDS

MOT16
MPNT(O) [5] Tracktor 58.6 48.9 61.7 4,949 70,252 354
LPC(O) [8] Tracktor 58.8 51.7 67.6 6,167 68,432 435

GMTsI(O) [16] Tracktor 61.1 51.2 66.6 3,891 66,550 503
DeepMOT [54] Tracktor 54.8 42.2 53.4 2,955 78,765 645

GMT [16] Tracktor 55.9 48.9 63.9 2,371 77,545 531
Tracktor [2] Tracktor 56.2 44.6 54.9 2,394 76,844 617
ArTIST [39] Tracktor 56.6 - 57.8 3,532 75,031 519
LifTsI [19] Tracktor 57.5 49.6 64.1 4,249 72,868 335

TADAM [15] Tracktor 59.1 - 59.5 2,540 71,542 529
TMOH* [41] Tracktor 63.2 50.7 63.5 3,122 63,376 635

UTM Tracktor 63.8 53.1 67.1 8,328 57,269 428
MOT17

LifTsI(O) [19] Tracktor 58.2 50.7 65.2 16,850 217,944 1,022
MPNT(O) [5] Tracktor 58.8 49.0 61.7 17,413 213,594 1,185
LPC(O) [8] Tracktor 59.0 51.7 66.8 23,102 206,947 1,122

GMTsI(O) [16] Tracktor 59.0 51.1 65.9 20,395 209,553 1,105
GMT [16] Tracktor 56.2 49.1 63.8 8,719 236,541 1,778

Tracktor [2] Tracktor 56.3 44.8 55.1 8,866 235,449 1,987
ArTIST [39] Tracktor 56.7 - 57.5 12,353 230,437 1,756
TADAM [15] Tracktor 59.7 - 58.7 9,676 216,029 1,930
TMOH* [41] Tracktor 62.1 50.4 62.8 10,951 201,195 1,897

UTM Tracktor 63.5 52.5 65.1 33,683 170,352 1,686
MOT20

LPC(O) [8] Tracktor 56.3 49.0 62.5 11,726 213,056 1,562
MPNT(O) [5] Tracktor 57.6 46.8 59.1 16,953 210,384 1,210
Tracktor [2] Tracktor 52.6 42.1 52.7 6,930 236,680 1,648
ArTIST [39] Tracktor 53.6 - 51.0 7,765 230,576 1,531
TADAM [15] Tracktor 56.6 - 51.6 38,407 182,520 2,690
TMOH* [41] Tracktor 60.1 48.9 61.2 38,043 165,899 2,342

UTM Tracktor 64.4 53.3 65.9 82,726 98,974 2,592

Table 1. Comparison with modern methods on MOT16, MOT17,
and MOT20 benchmarks with the provided public detections. Best
results are marked in BLOD. “O” and * indicate the offline meth-
ods and post processing methods.

11.2% improvements on MOT16, MOT17, and MOT20.
Meanwhile, we compare UTM with the Joint Detection
and Embedding (JDE) method TADAM [15], the proposed
UTM obtains a higher IDF1, e.g., 7.6%, 6.4%, and 14.3%
improvements on MOT16, MOT17, and MOT20. Among
existing offline methods, the most related work to ours
is GMTsI [16], which utilizes a similar graph matching
method for identity association. The major difference and
novelty is that UTM leverages the identity-aware knowl-
edge to enhance the object detection and feature embed-
ding modules. Compared with GMTsI [16], UTM achieves
4.5% improvement of the MOTA metric on MOT17 dataset.
We attribute the performance improvement to the proposed
UTM generates a positive feedback loop with identity-
aware feature enhancement module.

Private Detection. To further verify the effectiveness
of the proposed UTM, we compare UTM with some algo-
rithms on private detection setting and summarize the re-
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Methods Detector MOTA HOTA IDF1 FP FN IDS

MOT16
FairMOT [64] CeneterNet 75.7 61.6 75.3 16,163 27,442 621
GRTU [48] CeneterNet 76.5 62.6 75.9 11,438 30,866 584
TLR [47] CeneterNet 76.6 61.0 74.3 10,860 30,756 979
UTM FRCNN 81.1 64.1 79.0 11,722 22,367 440

MOT17
FairMOT [64] CeneterNet 73.7 59.3 72.3 27,507 117,477 3,303
PermaTrack [44] CeneterNet 73.8 55.5 68.9 28,998 115,104 3,699
GRTU [48] CeneterNet 74.9 62.0 75.0 32,007 107,616 1,812
TLR [47] CeneterNet 76.5 60.7 73.6 29,808 99,510 3,369
MAA [42] FRCNN 79.4 62.0 75.9 37,320 77,661 1,452
ByteTrack [63] YOLOX 80.3 63.1 77.3 25,491 83,721 2,196
UTM FRCNN 81.8 64.0 78.7 25,077 76,298 1,431

MOT20
FairMOT [64] CeneterNet 61.8 54.6 67.3 103,440 88,901 5,243
MAA [42] FRCNN 73.9 57.3 71.2 24,942 108,744 1,331
ReMOT [56] CeneterNet 77.4 61.2 73.1 28,351 86,659 1,789
ByteTrack [63] YOLOX 77.8 61.3 75.2 26,249 87,594 1,223
UTM FRCNN 78.2 62.5 76.9 29,964 81,516 1,228

Table 2. Comparison on private detection setting of MOTChal-
lenge benchmarks. The best results are marked in bold.

lated results in Table 2. The compared methods based on
three different detectors, e.g., Faster R-CNN [35], Center-
Net [66], and YOLOX [14]. As shown in Table 2, UTM
achieves the better performance than existing methods on
most of the evaluation metrics. In terms of the most im-
portant evaluation metric MOTA, the proposed method ob-
tains an obvious improvement upon the current state-of-
the-art performance, e.g., 4.5% improvement on MOT16
dataset. Among the compared method, the most related
work to ours is FairMOT [64], which designs a joint de-
tection and embedding network based on CenterNet. The
major difference and novelty of ours is that we generate
a positive feedback loop with identity-aware feature en-
hancement module in UTM. Compared with FairMOT, the
proposed method obtains an obvious improvement, e.g.,
16.4% improvements on MOTA of MOT20 dataset. Com-
pared with MAA [42], which applies the similar detector
Faster R-CNN, UTM achieves a noticeable improvements
on MOT17 and MOT20 datasets. We attribute the perfor-
mance improvement to that the proposed UTM leverages
identity-aware knowledge to enhance the object detection
and feature embedding modules.

4.2. Ablation Study

To prove the effectiveness of the proposed components
in UTM, we conduct some ablation studies on the MOT16
validation dataset following [5].

Effect of UTM: To verify the benefits of the proposed
Unified Tracking Model (UTM), we conduct several com-
parisons between UTM and existing multi-step paradigms,
e.g., SDE and JDE. To make a fair comparison, we take
the SDE method Tracktor [2] as the baseline for these three
frameworks. As shown in Table 3, UTM (c) obtains a sig-
nificant improvement compared with SDE (a) and JDE (b),

Detector Embedding Association MOTA IDF1 HOTA

(a) Tracktor ResNet101 Hungarian 62.5 67.4 59.4
(b) JDE Hungarian 62.6 64.0 58.5
(c) UTM 64.5 73.1 63.8

Table 3. Effect of different paradigms for MOT.
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Figure 4. Illustration of the relation between the tracked objects
number and occlusion ratio. Wider gray bars show the occur-
rence of ground truth object bboxes in each occlusion level in-
terval, while narrower colored bars illustrate the percentage of ob-
jects tracked for their respective method. Note that occurrences
and tracked percentages are not drawn in the same unit.

e.g., 2.0% and 1.9% improvements on MOTA. We attribute
the performance gain to UTM which can generate a posi-
tive feedback loop with mutual benefits. To compare the
effectiveness of different methods on occlusion, we analyze
the ratio of successfully tracked objects with respect to their
occlusion ratio. The occlusion ratio is defined as the ratio
between the occluded area divided by its bbox area, and the
higher object occlusion ratio denotes the heavier occlusion.
From Figure 4, it can be observed that the proposed UTM
performs sufficiently well on most settings. Specifically,
the proposed method obtains a higher performance for the
severely occluded object, e.g., the object is occluded than
50%. The reason is that UTM can leverage identity-aware
knowledge to enhance the description of the occluded ob-
jects.

Effect of each component in UTM: We evaluate the
effectiveness of each component in the proposed UTM by
removing it from UTM in Table 4, i.e., IAFE, IABA, IAEA,
and memory aggregation module. Without considering
IAFE, the MOTA performance is dropped from 64.5% to
62.6%. The performance degradation is caused by the in-
creasing of FN without IAFE. Meanwhile, higher IDF1 and
HOTA indicate that UTM performs better in distinguishing
identities with IAFE. Compared with the model w/o IAFE,
introducing IABA without IAEA improves MOTA by 1.0%,
while applying IAEA alone leads to 1.3% higher MOTA.
The higher performance indicates that IABA and IAEA can
improve tracking performance on their own, while putting
them together obtains a higher improvement. Moreover,
we also conduct an experiment to show the benefit of the
memory aggregation module (w/o Memory). Instead of
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Figure 5. Effect of the message passing steps L, the geometric threshold λiou, the affinity threshold γ, and the memory length η.

Methods MOTA IDF1 HOTA MT ML FP FN IDS

w/o IAFE 62.6 65.9 59.8 172 126 629 40,262 366
w/o IABA 63.9 70.6 62.2 188 123 680 38,565 518
w/o IAEA 63.6 67.7 61.5 188 128 746 39,170 237
w/o Memory 64.2 72.7 63.5 184 118 787 38,434 370
UTM 64.5 73.1 63.8 186 117 878 38,002 285

Table 4. Effect of each component in the proposed UTM.

Methods MOTA IDF1 HOTA MT ML FP FN IDS

Hungarian 63.7 68.0 61.3 187 123 689 39,246 184
GM 64.5 73.1 63.8 186 117 878 38,002 285

Table 5. Effect of different matching algorithms.

using memory aggregation module, we simply utilize av-
erage pooling layer to generate the tracklet feature as the
input of IAFE. Without the memory aggregation module,
we observe the decrease on MOTA, IDF1, and HOTA. This
indicates that the discriminative memory aggregation ex-
actly obtain more robust identity-aware knowledge to bene-
fit IAFE, so that further boost the detection and embedding.

Effect of graph matching: To verify the effectiveness
of the graph matching layer, we compare it with the Hun-
garian algorithm [24]. As shown in Table 5, compared with
the Hungarian algorithm, graph matching (GM) obtains the
improvement of 5.1% in term of IDF1. The reason is that
the Hungarian algorithm ignores the second-order edge-to-
edge similarity that can model the group activity to generate
more reliable tracklets. Furthermore, the obvious improve-
ment on IDF1 demonstrates the robust association of the
graph matching with high-order context information.

Effect of node aggregation rules: We further analyze
the aggregation rules used for feature interaction. As shown
in Table 6, the node aggregation rule “Type 3” obtains the
best performance. The reason is that the network can focus
on the node with a high affinity score between the detection
graph and tracklet graph.

Effect of message passing steps L: As shown in Fig-
ure 5(a), we observe a clear upward tendency for both IDF1
and HOTA from 0 to 3 steps, and then they tend to be flat
after L = 3. Hence, we use L = 3 in this work.

Effect of geometric threshold λiou: We summarize the
results for the effect of the geometric threshold λiou in Fig-
ure 5(b), it can be observed that IDF1 and HOTA metrics
increase significantly from 0.1 to 0.7, and then decrease af-

Agg. MOTA IDF1 HOTA MT ML FP FN IDS

Type 1 63.4 63.8 58.4 181 126 746 39,257 496
Type 2 63.6 66.7 60.3 185 124 677 39,345 203
Type 3 64.5 73.1 63.8 186 117 878 38,002 285

Table 6. Effect of different types of node aggregation rules.

ter λiou = 0.7. Thus, we set λiou = 0.7 in IAFE.
Effect of affinity threshold γ: We also analyze the ef-

fect of the affinity threshold γ in graph matching and the
related results are summarized in Figure 5(c), it can be
observed that HOTA and IDF1 metrics first increase for
γ ∈ [0.1, 0.6] and then slowly decrease for γ > 0.6. Thus,
the proposed method works best when γ = 0.6.

Effect of memory length η: We conduct an experiment
to show the effect of memory length. As illustrated in Fig-
ure 5(d), the HOTA and IDF1 metrics reach the best perfor-
mance for η = 30.

5. Conclusion

In this work, we propose a Unified Tracking Model
(UTM) to generate a positive feedback loop with multi ben-
efits, which introduces the Identity-Aware Feature Enhance-
ment (IAFE) module to bridge and benefit object detection,
feature embedding, and identity association. IAFE lever-
ages the identity-aware knowledge to enhance the detection
and embedding modules, thereby generating reliable track-
lets by identity association. Specifically, IAFE consists of
identity-aware boosting attention and identity-aware eras-
ing attention, where the boosting attention and erasing at-
tention are utilized to enhance and suppress regions of the
current frame feature. The proposed method achieves the
best performances on three benchmarks, which illustrates
the effectiveness of UTM. In the future, we will optimize
the embedding branch to reduce the influence caused by the
small batch size for the end-to-end training.
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jects as points. arXiv preprint arXiv:1904.07850, 2019. 1,
7

[67] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
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