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Abstract

Reconstructing two hands from monocular RGB images
is challenging due to frequent occlusion and mutual con-
fusion. Existing methods mainly learn an entangled rep-
resentation to encode two interacting hands, which are in-
credibly fragile to impaired interaction, such as truncated
hands, separate hands, or external occlusion. This pa-
per presents ACR (Attention Collaboration-based Regres-
sor), which makes the first attempt to reconstruct hands in
arbitrary scenarios. To achieve this, ACR explicitly miti-
gates interdependencies between hands and between parts
by leveraging center and part-based attention for feature
extraction. However, reducing interdependence helps re-
lease the input constraint while weakening the mutual rea-
soning about reconstructing the interacting hands. Thus,
based on center attention, ACR also learns cross-hand
prior that handle the interacting hands better. We eval-
uate our method on various types of hand reconstruction
datasets. Our method significantly outperforms the best
interacting-hand approaches on the InterHand2.6M dataset
while yielding comparable performance with the state-of-
the-art single-hand methods on the FreiHand dataset. More
qualitative results on in-the-wild and hand-object interac-
tion datasets and web images/videos further demonstrate
the effectiveness of our approach for arbitrary hand recon-
struction. Our code is available at this link 1.

1. Introduction
3D hand pose and shape reconstruction based on a single

RGB camera plays an essential role in various emerging ap-
plications, such as augmented and virtual reality (AR/VR),
human-computer interaction, 3D character animation for
movies and games, etc. However, this task is highly chal-
lenging due to limited labeled data, occlusion, depth am-
biguity, etc. Earlier attempts [1, 2, 36, 39] level down the
problem difficulty and focus on single-hand reconstruction.
These methods started from exploring weakly-supervised

*Corresponding author.
1https://github.com/ZhengdiYu/Arbitrary-Hands-3D-Reconstruction

Figure 1. Given a monocular RGB image, our method makes
the first attempt to reconstruct hands under arbitrary scenarios by
representation disentanglement and interaction mutual reasoning
while the previous state-of-the-art method IntagHand [15] failed.

learning paradigms [2] to designing more advanced network
models [31]. Although single-hand approaches can be ex-
tended to reconstruct two hands, they generally ignore the
inter-occlusion and confusion issues, thus failing to handle
two interacting hands.

To this end, recent research has shifted toward recon-
structing two interacting hands. Wang et al. [33] extract
multi-source complementary information to reconstruct two
interacting hands simultaneously. Rong et al. [27] and
Zhang et al. [35] first obtain initial prediction and stack in-
termediate results together to refine two-hand reconstruc-
tion. The latest work [15] gathers pyramid features and
two-hand features as input for a GCN-based network that
regresses two interacting hands unitedly. These methods
share the same principle: treating two hands as an integral
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and learning a unified feature to ultimately refine or regress
the interacting-hand model. The strategy delivers the ad-
vantage of explicitly capturing the hands’ correlation but in-
evitably introduces the input constraint of two hands. This
limitation also makes the methods particularly vulnerable
and easily fail to handle inputs containing imperfect hand
interactions, including truncation or external occlusions.

This paper takes the first step toward reconstructing two
hands in arbitrary scenarios. Our first key insight is lever-
aging center and part attention to mitigate interdependen-
cies between hands and between parts to release the input
constraint and eliminate the prediction sensitivity to a small
occluded or truncated part. To this end, we propose At-
tention Collaboration-based Regressor (ACR). Specifically,
it comprises two essential ingredients: Attention Encoder
(AE) and Attention Collaboration-based Feature Aggrega-
tor (ACFA). The former learns hand-center and per-part at-
tention maps with a cross-hand prior map, allowing the net-
work to know the visibility of both hands and each part be-
fore the hand regression. The latter exploits the hand-center
and per-part attention to extract global and local features as
a collaborative representation for regressing each hand inde-
pendently and subsequently enhance the interaction model-
ing by cross-hand prior reasoning with an interaction field.
In contrast to the existing method, our method provides
more advantages, such as hand detector free. Furthermore,
experiments show that ACR achieves lower error on the In-
terHand2.6M dataset than the state-of-the-art interacting-
hand methods, demonstrating its effectiveness in handling
interaction challenges. Finally, results on in-the-wild im-
ages or video demos indicate that our approach is promis-
ing for real-world application with the powerful aggregated
representation for arbitrary hands reconstruction.

Our key contributions are summarized as: (1) we take
the first step toward reconstructing two hands at arbi-
trary scenarios. (2) We propose to leverage both cen-
ter and part based representation to mitigate interde-
pendencies between hands and between parts and re-
lease the input constraint. (3) In terms of modeling for in-
teracting hands, we propose a cross-hand prior reason-
ing module with an interaction field to adjust the de-
pendency strength. (4) Our method outperforms exist-
ing state-of-the-art approaches significantly on the In-
terHand2.6M benchmark. Furthermore, ACR is the most
practical method for various in-the-wild application scenes
among all the prior arts of hand reconstruction.

2. Related Work
Single-Hand Reconstruction: Hand pose and shape re-
construction from monocular images has rapidly progressed
thanks to the development of the 3D hand parameterized
model (e.g., MANO [26] and DeepHandMesh [22]). How-
ever, hand-mesh annotations are expensive and difficult to

acquire, which constitutes the main obstacle for this task.
Existing works [1, 2, 36, 39] tackled the issue mainly by
exploiting weakly-supervised learning paradigms or synthe-
sizing pseudo data. For example, Boukhayma et al. [2] uti-
lized 2D/3D keypoints as weak supervision to guide MANO
parameter regression. Zhang et al. [36] and Baek et al.
[1] introduced segmentation masks as extra weak labels in
training by employing a neural mesh renderer [12]. Rather
than using standard 2D labels, Zhou et al. [39] leveraged
motion capture data for weak supervision and proposed an
inverse kinematics network to recover hand mesh from 3D
keypoints. Generating pseudo data is another effective way
to mitigate mesh-label scarcity. Kulon et al. [14] adopted a
parametric model-fitting approach to generate pseudo mesh
ground truth, enabling fully-supervised training for mesh
reconstruction. Ge et al. [7] created a synthetic dataset by
blending a rendered hand with a background image and fur-
ther trained a Graph CNN-based method with full super-
vision. Recently, with the emergence of new hand pose
and shape datasets (e.g., FreiHAND [42]), the latest work
focused on developing more advanced network models or
learning strategies to improve reconstruction accuracy. For
example, Moon and Lee [21] proposed an image-to-lixel
network that considers prediction uncertainty and maintains
the spatial relationship. In addition, Tang et al. [31] pro-
posed decoupling the hand-mesh reconstruction task into
multiple stages to ensure finer reconstruction. Though
these approaches have steadily improved hand reconstruc-
tion from monocular images, they are dedicated to the solo
hand and usually fail to work well on two-hand cases. In
contrast, our method explicitly addresses the challenge of
inter-hand occlusion and confusion and, therefore, can deal
with two interacting hands.

Two-Hand Reconstruction: A straightforward way to
deal with two-hand reconstruction is to locate each hand
separately and then transform the task into single-hand re-
construction. This strategy is commonly adopted in full-
body reconstruction frameworks [4, 6, 11, 34, 37, 40]. How-
ever, independently reconstructing two hands remains a
failure in addressing interacting cases, as the closer hands
usually inter-occlude and easily confuse the model predic-
tion. Earlier works successfully dealt with hand interac-
tion mainly relied on model fitting and multi-view or depth
camera setup. For instance, Taylor et al. [32] introduced a
two-view RGBD capture system and presented an implicit
model of hand geometry to facilitate model optimization.
Mueller et al. [24] simplified the system by only using a
single depth camera. They further proposed a regression
network to predict segmentation masks and vertex-to-pixel
correspondences for pose and shape fitting. Smith et al.
[28] adopted a multi-view RGB camera system to compute
keypoints and 3D scans for mesh fitting. To handle self-
interaction and occlusions, they introduced a physically-
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based deformable model that improved the robustness of
vision-based tracking algorithms.

Recent interest has shifted to two-hand reconstruction
based on a single RGB camera. Wang et al. [33] proposed
a multi-task CNN that predicts multi-source complemen-
tary information from RGB images to reconstruct two in-
teracting hands. Rong et al. [27] introduced a two-stage
framework that first obtained initial prediction and then per-
formed factorized refinement to prevent producing collid-
ing hands. Similarly, Zhang et al. [35] predicted the initial
pose and shape from deeper features and gradually refined
the regression with lower-layer features. The latest work
[15] introduced a GCN-based mesh regression network that
leveraged pyramid features and learned implicit attention
to address occlusion and interaction issues. However, these
methods primarily treat two hands as an integral and implic-
itly learn an entangled representation to encode two-hand
interaction. In contrast, our approach learns independent
features for each hand and exploits attention-conditioned
cross-hand prior with local and global cues to address in-
teracting challenges collaboratively.

3. Methodology

Unlike existing works [2, 5, 15, 20, 41] that rely on an exter-
nal detector to perform entangled bounding-box-level rep-
resentation learning. Fig. 2 presents the overview of our
method ACR. Given a single RGB image I as input, ACR
outputs 4 maps, which are Cross-hand Prior map, Parameter
map, Hand Center map, and Part Segmentation map. Based
on Parameter map, which predicts weak-perspective cam-
era parameters and MANO parameters for both left hand
and right hand at each pixel, ACR then leverages three
types of pixel-level representations for attention aggrega-
tion from Parameter map. First, ACR explicitly mitigates
inter-dependencies between hands and between parts by
leveraging center and part-based representation for feature
extraction using part-based attention. Moreover, ACR also
learns a cross-hand prior for handling the interacting hands
better with our third Cross-hand Prior map. Finally, after
aggregating the representations, we feed estimated parame-
ters Fout to MANO [26] model to generate hand meshes.

3.1. Preliminaries: Hand Mesh Representation

We use a parametric model MANO [26] to represent hand,
which contains a pose parameter ✓ 2 R16⇥3 and a shape
parameter � 2 R10. We utilize 6D representations [38]
to present our hand pose as ✓ 2 R16⇥6. The final hand
mesh M could be reconstructed via a differentiable MANO
model: M = W (�, ✓). Subsequently, 3D joints J3D 2
R21⇥3 can be retrieved from the mesh: ˆJ3D = RM , where
R is a pre-trained linear regressor and M 2 R778⇥3.

3.2. Representations of Attention Encoder
In this section, we will present the details of each output
map or AE (Attention Encoder) module and their represen-
tations as shown in Fig. 2. Given a monocular RGB im-
age, we first extract a dense feature map F 2 RC⇥H⇥W

through our CNN backbone. ACR then leverages three
types of pixel-level representations for robust arbitrary hand
representations disentanglement and mutual reasoning un-
der complex interaction scenarios. For clarity, we denote
the handedness by h 2 {L,R}.

Parameter map: Mp 2 R218⇥H⇥W can be divided into
two maps for left hand and right hand separately, where the
first 109 dimensions are used for left-hand feature aggrega-
tion and the rest for the right hand. For each of the map
M

h
p 2 R109⇥H⇥W . The 109 dimensions consist of two

parts, MANO parameter ✓ 2 R16⇥6, � 2 R10 and a set of
weak-perspective camera parameters (s, tx, ty) that repre-
sents the scale and translation for the 2D projection of the
individual hand on the image. This map serves as our base
module for aggregated representation learning.

Hand Center map: Ac 2 R2⇥H⇥W consists of two
parts for left hand and right hand, which can be repre-
sented as A

h
c 2 R1⇥H⇥W . Each of the maps is rendered

as a 2D Gaussian heatmap, where each pixel represents the
probability of a hand center being located at this 2D po-
sition. The center is defined as the center of all the visi-
ble MCP joints, the joints that connect fingers with palm.
For adaptive global representation learning, we generate
heatmaps by adjusting the Gaussian kernel size K accord-
ing to the bounding box size of the hand in data preparation
for supervision (details in Supplementary Material). As the
first representation of ACR, this map explicitly mitigates
inter-dependencies between hands and serves as an atten-
tion mask for better global representation learning.

Part Segmentation map: Ap 2 R33⇥H⇥W is learnt as
a probabilistic segmentation volume. Each pixel on the vol-
ume is a channel of probability logits over 33 classes which
consists of 1 background and 16 hand part classes for each
hand corresponding to the MANO model. Thus we have
A

h
p 2 R16⇥H⇥W . We obtain the part segmentation mask

obtained by rendering the ground truth MANO hand mesh
using a differentiable neural renderer [12]. As the second
representation of ACR, this map serves as an attention mask
for part representation learning.

Cross-hand Prior map: Mc 2 R218⇥H⇥W contains
two maps, M

h
c 2 R109⇥H⇥W . It is split into two sets

of parameters which are MANO parameter ✓ 2 R16⇥6,
� 2 R10 and 3 camera parameters for cross hand inverse
feature query. Empirically, the two hands’ pose will be
highly correlated when they are closely interacting within
the interaction field (IF), which is introduced in 3.4. As our
third representation, aggregating this module into our ro-
bustly disentangled representations is providing us with the
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Figure 2. ACR network architecture: ACR takes a full-person image and uses a feature map encoder to extract hand-center maps, part-
segmentation maps, cross-hand prior maps, and parameter maps. Subsequently, the feature aggregator generates the final feature for the
hand model regression based on these feature maps.

powerful mutual reasoning ability under severe interaction.

3.3. Robust Representation Disentanglement
Existing approaches for interacting hands reconstruction
[15, 23, 35] typically require that the input image must be
fixed to two closely interacting hands and occupy the most
region of the image. This will cause ambiguity and unnec-
essary input constraints as shown in Fig. 1. In contrast, our
first step towards building arbitrary hands representation
is - disentanglement by decomposing the ambiguous hand
representations. Thanks to the powerful pixel-wise repre-
sentation of Hand Center map, we are able to disentangle
inter-hand dependency and build an explicitly separate fea-
ture representation for the two hands. However, these fea-
ture representations could also be highly ambiguous when
the two centres are getting closer. Subsequently, for bet-
ter disentangled feature representation learning, inspired by
[30], we adopt a collision-aware center-based representa-
tion to further split the features of two hands by applying
Eq. 1. When the two hands are too close to each other with
a Euclidean distance d smaller than kL + kR + 1. The new
centers will be generated as follows:

ĈL = CL + ↵R, ĈR = CR � ↵R,

R =
kL + kR + 1� d

d
(CL � CR)

(1)

where CL, kL and CR, kR stand for two hand centers and
their kernel size. R means the repulsion vector from CL

to CR. In addition, ↵ refers to an intensity coefficient to
adjust the strength. Finally, the global representation F h

g 2
RJ⇤6+(10+3), is extracted by combing Hand Center map Ac

with parameter map Mp as:

F
h
g = fg(�(A

h
c )⌦M

h
p ) (2)

where �,� and fg are spatial softmax, pixel-wise multiply
and a point-wise Multi-Layer Perceptron (MLP) layer sep-
arately, and h 2 {L,R}.

With such global feature representation Fg , we have dis-
entangled inter-dependency. However, having only such
global representation will lead to instability under occlusion
and losing the ability to recover details, due to the unneces-
sary inner dependency of each hand part. Subsequently, we
need to further disentangle our representation utilizing our
Part Segmentation map Ap following [13]. For simplicity,
we ignore the h 2 {L,R} here, the two hands follow the
same formulation as:

F
(j,c)
p =

X

h,w

�(Aj
p)�M

c
p , (3)

where Fp 2 RJ⇥C is final part representation and F
(j,c)
p is

its pixel at (j, c). � is the Hadamard product. Thus, the
part segmentation maps after spatial softmax normalization
� are used as soft attention masks to aggregate features in
M

c
p . We follow prior arts to implement a dot product based

method by reshaping the tensor at first: Fp = �(A⇤
p)

T
M

⇤
p ,

where M
⇤
p 2 R

HW⇥C and A
⇤
p 2 R

HW⇥J are the param-
eter map Mp and reshaped part segmentation Ap without
background mask. Finally, the global feature representation
Fg and part representation and Fp are aggregated into our
Robust Inter and Inner Disentangled Representation.
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Figure 3. This compares our full model and a model without mu-
tual reasoning, which explicitly helps deduce and recover the cor-
relation between closely interacting hands with less confusion.

3.4. Mutual Reasoning of Interaction
Despite the powerful disentangled representations, it has
been explored that the states of two interacting hands are
highly correlated [15, 35] when they are interacting closely.
Simply disentangling inter and inner dependencies as the fi-
nal representation will weaken the mutual reasoning about
reconstructing the interacting hands. Subsequently, we
design a novel mutual reasoning strategy by reusing the
center-based attention via a inverse query:

F
R�!L
c = fc(�(A

R
c )⌦M

L
c ),

F
L�!R
c = fc(�(A

L
c )⌦M

R
c ),

(4)

where F
R�!L
c is the left-hand prior representation that is

deduced from right-hand attention and vice versa. Mc is the
output dense feature map from cross-hand-prior attention
blocks, Ac is our center based attention map, and L, R stand
for left hand and right hand. �,⌦ and fc are spatial softmax,
pixel-wise multiply and a point-wise MLP layer.

However, for two more distant hands or a single hand,
the correlation between them should be mitigated or elim-
inated. Subsequently, we also propose a new mechanism,
interaction field (IF) to adjust the dependency strength.
Specifically, by first computing the Euclidean distance d be-
tween the hands, when the two hands are too close to each
other and entering the field of IF= �(kL + kR + 1), where
� is a field sensitivity scale, and the interaction intensity
coefficient � will be computed as:

�(CL,CR) =

⇢
0, d > IF
IF�d
d ||CL � CR||1, d <= IF

The intensity coefficient � helps our cross-hand prior repre-
sentation to formulate an adaptive interaction field that can
better model the correlations of two hands while keeping

sensitive to close interaction and separation to avoid unnec-
essary feature entanglement. Finally, our final output self-
adaptive robust representation could be represented as:

F
h
out = fout(concat(F

h
g , F

h⇤
p ,�F

ĥ�!h
c )) (5)

where fout is point-wise MLP layers for regressing the final
representation F

h
out 2 R109, and F

h⇤
c 2 RJ⇤C is reshaped

part disentangled representation. Finally, the results are fed
into MANO model to regress the final hand mesh. For sim-
plicity, we represent the opposite hand by ĥ in Eq. 5.

3.5. Loss Functions
For training ACR with three types of powerful represen-
tation, our loss functions are divided into three groups, as
demonstrated in Fig 2. Specifically, ACR is supervised by
the weighted sum of all loss items for both left hand and
right hand: mesh recovery loss, center-based attention loss,
and part-based attention loss.

Center Attention Loss can be treated as a segmentation
problem, however, the Gaussian distribution on the image
is a relatively small area and there is an imbalance between
the positive and negative samples. Subsequently, we utilize
focal loss [18] to supervise our center map regressor as:

Lc =
X

h2{L,R}

f(Ah
c , Â

h
c ), (6)

where f is focal loss [18], h 2 {L,R} means left hand and
right hand, and Âh

c is the ground truth hand center map for
hand type h. For simplicity, here we abbreviate the formu-
lation of focal loss.

Part Attention Loss is used to supervise our Part-based
Representation learning. We only supervise this loss with
CrossEntropy loss in the first 2 epochs and continue to train
with other losses until it converges.

Lseg =
1

HW

X

h,w

CrossEntropy(�(Ahw
p ), ˆ

Ahw
p ), (7)

where Âp means GT part segmentation maps and ˆ
Ahw

p is
the ground truth class label at the location of (h,w). Differ-
ent from our part soft attention mask, Ahw

p 2 R33⇥1⇥1 here
means the probabilistic segmentation volume at the pixel
position of (h,w) and � means softmax along channel di-
mension. We do not need to omit the background class here.

Mesh Recovery Loss is applied for each hand, thus we
ignore the handedness h 2 {L,R} here for simplicity. Fi-
nally, the loss for left hand and right hand will be summed
into the total loss. Instead of relying on the ground truth
vertex positions, which could cause degeneration in gener-
alization ability, we decouple our mesh loss into 3 parts:

Lmesh = Lmano +Ljoint, (8)
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where Lmano is the weighted sum of L2 loss of the MANO
parameters ✓ and �, namely w✓L✓ + w�L� :

L✓ = w✓||✓ � ✓̂||22, L� = w� ||� � �̂||22, (9)

where Ljoint is the weighted sum of L3D, L2D and a bone
length loss Lbone to present better geometric constraint to
the reconstructed mesh, which is the L2 distance between
i
th ground truth bone length b̂i and predicted length bi:

L3D = wj3dLMPJPE + wpaj3dLPA�MPJPE ,

LPJ2D = wpj2d||PJ2D � ˆJ2D||22,

Lbone =
X

i

||bi � b̂i||22,
(10)

where LMPJPE is the L2 loss between ground-truth 3D
joints ˆJ3D and predicted ones J3D retrieved from predicted
mesh. LPA�MPJPE is computed as the Procrustes-aligned
mean per joint position error (PA-MPJPE). We do not su-
pervise camera parameters directly, instead, the network ad-
justs the camera parameters by computing the L2 loss be-
tween ground truth ˆJ2D and the projected 2d joints PJ2D

retrieved by a weak-perspective camera: PJ2D as xpj2d =
sx3D + tx, ypj2d = sy3d + ty . Finally, to compute Lmesh

as a weighted sum, we apply wj3d = 200, wpaj3d = 360,
wpj2d = 400, wbl = 200. For Lmano, we use wpose = 80,
wshape = 10 in our experiments.

Total Loss is the weighted sum of the described loss
above and can be represented as:

Ltotal = Lmesh + wcLc + wpLseg, (11)

where wc = 80, wp = 160 and Lmesh is already a weighted
sum. Each part is activated only when the corresponding
ground truth is available. Finally, all of these losses are
trained simultaneously in an end-to-end manner.

4. Experiments
Implementation details: We implement our network based
on PyTorch [25]. For the backbone network, we have
trained with both ResNet-50 [10] and HRNet-W32 [3], for
faster inference speed or better reconstruction results re-
spectively. Unlike existing approaches that require a hand
detector, our method can reconstruct arbitrary hands in an
end-to-end manner. Furthermore, our method does not limit
its input to two-hand. Given a monocular raw RGB image
without cropping or detection, all the input raw images and
segmentation maps are resized to 512⇥ 512 while keeping
the same aspect ratio with zero padding, then we extract the
feature maps f 2 R

(C+2)⇥H⇥W from the backbone net-
work with CoordConv [19]. The feature maps are finally
fed into four Conv blocks to produce the four maps.

Training: For comparison on InterHand2.6M dataset,
we train our model using Adam optimizer with a learn-
ing rate 5e-5 for eight epochs. We do not supervise Lseg

and LMANO when there is no MANO label valid because
our ground truth segmentation is obtained from rendering
ground truth MANO hand mesh using a neural renderer
[12]. For all of our experiments, we initialized our network
using the pre-trained backbone of HRNet-32W from [5] to
speed up the training process. We train our network using
2 V100 GPUs with batchsize of 64. The size of our back-
bone feature is 128⇥128 and the size of our 4 pixel-aligned
output maps is 64⇥ 64. We applied random scale, rotation,
flip, and colour jitter augmentation during training.

Testing: For all the experiments, if not specified, the
backbone is HRNet-32W. For comparison with state-of-the-
art, we use the full official test set for evaluation. The confi-
dence threshold is set to 0.25 with a max detection number
of one left hand and one right hand, as we only have one left
hand and one right hand in all the training and testing sets.

Evaluation Metrics: To evaluate the accuracy of the
two-hand reconstruction, we first report the mean per joint
position error (MPJPE) and the Procrustes-aligned mean
per joint position error (PA-MPJPE) in millimetres. Both
errors are computed after joint root alignment following
prior arts. We also studied the reconstruction accuracy of
handshape by mean per-vertex position error (MPVPE) and
the Procrustes-aligned mean per-vertex position error (PA-
MPVPE) on the FreiHand dataset. Please see details of the
metrics in supplementary materials.

4.1. Datasets
InterHand2.6M [23] is the only publicly available dataset
for two-hand interaction with accurate two-hand mesh an-
notations. This large-scale real-captured dataset, with both
accurate human (H) and machine(M) 3D pose and mesh
annotation, contains 1.36M frames for training and 850K
frames for testing. These subsets are split into two parts:
interacting hands (IH) and single hand (SH). We use the 5
FPS IH subset with H+M annotations.
FreiHand and HO-3D dataset. FreiHand [42] is a single
hand 3D pose estimation dataset with MANO annotation for
each frame. It has 4⇥32,560 frames for training and 3960
frames for evaluation and testing. HO-3D [8] is a hand-
object interaction dataset that contains 66K training images
and 11K test images from a total of 68 sequences.

4.2. Comparison to State-of-the-art Methods
Results on InterHand2.6M dataset: We first compare our
method with single-hand and interacting-hand approaches
on InterHand2.6M. We follow the official split to train our
model, and we report results on the official test split of the
InterHand2.6M dataset for a fair comparison. As the re-
ported result of IntagHand and [35] are obtained from a fil-
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Figure 4. Qualitative comparison with on InterHand 2.6M test dataset. Our approach generates better results in two-hand reconstruction,
particularly in challenging cases such as external occlusion (1), truncation (3-4), or bending one finger with another hand (6). More results
can be found in the Supplementary Material.

extra info. MPJPE MPVPE IH MPJPE IH MPVPE SH MPJPE SH MPVPE

(-) Zimmermann et al.[41] Box - - 36.36 - - -
(-) Zhou et al.[39] Box - - 23.48 23.89 - -

(-) Boukhayma et al.[2] Box - - 16.93 17.96 - -
(-) Spurr et al. [29] Box - - 15.40 - - -

Moon et al. [23] Box 13.98 - 16.02 - 12.16 -
Fan et al. [5] Box - - 14.27 - 11.32 -

IntagHand [15] Box 9.95 10.29 10.27 10.53 9.67 9.91
Ours - 8.09 8.29 9.08 9.31 6.85 7.01

Zhang et al. [35]* Box+scale 11.58 12.04 11.28 12.01 11.73 12.06
IntagHand [15]* Box+scale 9.18 9.42 9.40 9.68 9.0 9.18

Ours scale 7.41 7.63 8.41 8.53 6.09 6.21

Table 1. Comparison with state-of-the-art on InterHand2.6M[23]. (-) means single hand reconstruction method. Except for our approach,
all the others use ground-truth bounding boxes from the dataset. The single-hand results are taken from [35]. We report results on the
official test split of the InterHand2.6M dataset for a fair comparison. * means the results are obtained by evaluating their released model
on the official test split.

tered test set, we get the result on the standard test set by
running their released code. Tab. 1 presents comparison re-
sults on the Interacting hands (IH MPJPE), and Single hand
(SH MPJPE) subset, and the full-set (MPJPE). Not surpris-
ingly, we can observe that single-hand methods generally
perform poorly on the IH subset, as their method designs
dedicate to single-hand input. Next, we perform a compar-
ison with two state-of-the-art interacting-hand approaches
[35] and [15]. The first one adopted a refinement strategy
that predicted the initial pose and shape from deeper fea-
tures and gradually refined the regression with lower-layer

features. The latter IntagHand incorporates pyramid fea-
tures with GCN-based to learn implicit attention to address
occlusion and interaction issues, while IntagHand is our
concurrent work and outperforms [35]. However, our pro-
posed method constantly surpasses IntagHand without ex-
tra information needed. Specifically, our method obtained
the lowest MPJPE of 8.41 on the IH subset, demonstrat-
ing its effectiveness in handling interacting hands. It also
achieves a 6.09 MPJPE on the SH dataset that outperforms
IntagHand by a large margin, showing our method remains
superior on single-hand reconstruction.
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Figure 5. Qualitative comparison with IntagHand [15] on in-the-
wild images.

Method PA-MPJPE PA-MPVPE

Mesh Graphormer[17] 6 5.9
METRO[16] 6.8 6.7

I2L-MeshNet[21] 7.4 7.6
HandTailor[20] 8.2 8.7

ours 6.9 7.0

Table 2. Comparison with state-of-the-art on FreiHand [42].

Method Training Data Crop Joint Error # AUC "
Keypoint Transformer [9] HO3D Yes 2.57 0.54

ACR(Ours) InterHand2.6M+FreiHand No 2.14 0.61

Table 3. Comparison with state-of-the-art on HO-3D [8].

Results on FreiHand and HO-3D dataset: We also
compare our method with single-hand methods on the
single-hand dataset FreiHand [42]. We follow the official
split to train and test our model on this dataset. As in Tab.
2, the transformer-based method achieves the best result.
Nevertheless, our method obtains comparable performance
to the state-of-the-art single-hand approach, revealing its
potential to improve single-hand reconstruction. Moreover,
we test our model on HO-3D v2 dataset to demonstrate the
ability to handle hand-object occlusion and truncation. In
Tab. 3, we report the mean joint error after scale-translation
alignment and the Area Under the Curve (AUC), where we
can achieve 2.14 and 0.61 separately against [9] by only
performing generalization.

Qualitative Evaluation: We previously demonstrated
our method significantly outperforms IntagHand in quanti-
tative experiments. To gain insight into this result, we con-
duct a qualitative comparison between these two methods.
Interestingly, our approach generally produces better recon-
struction results over IntagHand in challenging cases such

MPJPE IH MPJPE SH MPJPE PAMPJPE

G(ResNet-50) 9.78 10.56 8.77 6.56
G(HRNet-32W) 9.56 10.35 8.65 6.41

P 8.70 9.76 7.26 5.59
G+C 9.1 9.88 8.11 6.08
G+P 8.52 9.69 6.87 5.49

G+C+P 8.09 9.08 6.85 5.21

Table 4. Ablation study on the part (P), global (G), and cross-hand
(C) prior representation. We do not use any extra information such
as bounding box and ground truth scale.

as external occlusion and truncated hands. Fig. 4 shows
some examples of these cases. This result indicates that our
method for two-hand reconstruction is less sensitive to some
impaired observation. We also try our method to reconstruct
in-the-wild images containing cases including single hand,
ego-view, hand-object interaction and truncated hands. Fig.
5 presents some representative images where hands are ac-
curately reconstructed, proving that our method has strong
generality and is very promising for real-world applications.

4.3. Ablation study
As introduced in Sec. 3, our Attention Collaboration-
based Feature Aggregator (ACFA) works mainly by col-
laborating three representations: Global representation (G,
baseline), Part-based representation (P), and cross-hand-
attention prior (C). Therefore, we investigate the effective-
ness of each module. We treat the center-based representa-
tion as a baseline and gradually add another module to see
their improvement. As shown in Tab. 4, we can clearly ob-
serve both part-based and cross-hand significantly improve
the baseline. More interestingly, the improvement of adding
C on the IH dataset is more significant than that on the SH
dataset. This demonstrates cross-hand-attention prior facil-
itates addressing interacting hand challenges.

5. Conclusion and Future Work
Conclusion: We present a simple yet effective arbitrary
hand reconstruction approach considering more challenges
such as interacting hands, truncated hands, and external oc-
clusion from monocular RGB image. To this end, we pro-
pose to leverage center and part attention to mitigate inter-
dependencies between hands and between parts to release
the input constraint and eliminate the prediction’s sensitiv-
ity to a small occluded or truncated part. Experiments show
that our method is a promising solution, which can serve as
a baseline to inspire more research on arbitrary hand pose
and shape reconstruction.
Limitation & Future Work: Our major limitation is the
lack of explicit solution for mesh collision, resulting in oc-
casional inter-penetration, which can be solved by leverag-
ing relative information or perspective camera model for ac-
curate depth reasoning and better simulation of translation.
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