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Abstract

Despite the tremendous progress on data-free knowledge
distillation (DFKD) based on synthetic data generation,
there are still limitations in diverse and efficient data syn-
thesis. It is naive to expect that a simple combination of
generative network-based data synthesis and data augmen-
tation will solve these issues. Therefore, this paper proposes
a novel data-free knowledge distillation method (Spaceship-
Net) based on channel-wise feature exchange (CFE) and
multi-scale spatial activation region consistency (mSARC)
constraint. Specifically, CFE allows our generative net-
work to better sample from the feature space and efficiently
synthesize diverse images for learning the student network.
However, using CFE alone can severely amplify the un-
wanted noises in the synthesized images, which may result
in failure to improve distillation learning and even have
negative effects. Therefore, we propose mSARC to assure
the student network can imitate not only the logit output but
also the spatial activation region of the teacher network in
order to alleviate the influence of unwanted noises in di-
verse synthetic images on distillation learning. Extensive
experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet, Im-
agenette, and ImageNet100 show that our method can work
well with different backbone networks, and outperform the
state-of-the-art DFKD methods. Code will be available at:
https://github.com/skgyu/SpaceshipNet.
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1. Introduction

Knowledge distillation (KD) aims to train a lightweight
student model that can imitate the capability of a pre-trained
complicated teacher model. In the past decade, KD has been
studied in a wide range of fields such as image recogni-
tion, speech recognition, and natural language processing.
Traditional KD methods usually assume that the whole or
part of the training set used by the teacher network is ac-
cessible by the student network [17, 24, 34]. But in practi-
cal applications, there can be various kinds of constraints
in accessing the original training data, e.g., due to pri-
vacy issues in medical data [1, 2, 5, 20, 28, 35] and portrait
data [3], and copyright and privateness of large data vol-
ume such as JFT-300M [40] and text-image data [37]. The
traditional KD methods no longer work under these sce-
narios. Recently, data-free knowledge distillation (DFKD)
[4,7,10,13,14,22,25,27,29,43,46] seeks to perform KD by
generating synthetic data instead of accessing the original
training data used by the teacher network to train the student
network. Thus, the general framework of DFKD consists of
two parts: synthetic data generation that replicates the orig-
inal data distribution and constraint design between student
and teacher network during distillation learning. Synthetic
data generation methods in DFKD mainly consist of noise
image optimization-based methods [4, 26, 31, 44] and gen-
erative network-based methods [8,9,12,13,27,29,45]. The
former approaches optimize randomly initialized noise im-
ages to make them have the similar distribution to the orig-
inal training data. These methods can theoretically gener-
ate an infinite number of independent and identically dis-
tributed images for student network learning, but they are
usually extremely time-consuming, and thus are difficult
in generating sufficient synthetic data with high diversity.
The later approaches learn a generator to synthesize im-
ages that approximate the distribution of the original train-
ing data. These methods can be much faster than the image
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optimization-based approach, but the diversity of the syn-
thesized data is usually limited because the generation of
different images are not completely independent with each
other.

Despite the encouraging results achieved, DFKD re-
mains a challenging task, because the synthetic data may
have a different distribution from the original data, which
could potentially result in bias in student network learn-
ing. The possible reason is that the noises in the synthe-
sized images can easily lead to the bias of the network’s
region of interest. In addition, the widely used KL diver-
gence constraint between student and teacher networks in
existing DFKD methods may not work well with synthetic
data [4].

This paper proposes a novel DFKD method that utilizes
channel-wise feature exchange (CFE) and multi-scale spa-
tial activation region consistency (mSARC) constraint to
improve knowledge transfer from the teacher network to
the student network. The proposed method enhances the
diversity of synthetic training data and the robustness to un-
wanted noises in synthetic images during distillation. Un-
like previous generative network-based methods that em-
ployed multiple generators to synthesize images [27] or
reinitialization and retraining of generator [13] to enhance
the synthetic training data diversity, our method improves
the synthetic training data diversity by using the features
of early synthetic images to perform CFE. When our gen-
erative network and those of other methods have learned
to generate the same number of synthetic images, the pro-
posed method can produce more diverse training data for
distillation. However, CFE also amplifies unwanted noise
in synthetic images, which may hinder distillation learning
(traditional data augmentation methods also suffer from this
problem, e.g., CutMix [47] and Mixup [50]). To address
this issue, we propose the mSARC constraint, which en-
ables the student network to learn discriminative cues from
similar regions to those used by the teacher network, effec-
tively overcoming the limitations of the traditional KL di-
vergence loss when applied to synthetic images during dis-
tillation learning. Moreover, combining our mSARC with
traditional data augmentation methods [47,50] can still sig-
nificantly improve distillation learning with synthetic data.

We evaluate our method on a number of datasets, includ-
ing CIFAR-10 [19], CIFAR-100 [19], and Tiny-ImageNet
[21]. Our approach demonstrates superior performance
compared to the state-of-the-art DFKD methods. More-
over, we observe that the student networks trained using our
DFKD method achieve comparable performance to those
trained using original training data. Additionally, we eval-
uate our method on subsets of ImageNet [11] with 10 and
100 classes and a resolution of 224 × 224, validating the
efficacy of our method on generating high-resolution syn-
thetic images for distillation learning. In our ablation study,

we verify the effectiveness of the key components (CFE and
mSARC), we find that mSARC plays a particularly impor-
tant role when strong data augmentation is applied to the
synthetic images.

2. Related Work

2.1. Data-free Knowledge Distillation

DFKD aims at transferring knowledge from pre-trained
teacher model (usually a big model) to a student model
(usually a lightweight) without access to the original train-
ing data. Lopes et al. [26] first tried to utilize the teacher
model and its metadata to reconstruct the original training
data for KD, but it is unlikely to obtain the metadata in prac-
tice. Unlike [26], many subsequent works studied DFKD
without relying on metadata prior. Some methods opti-
mized randomly initialized noise images to generate syn-
thetic data [4,31,44]. Nayak et al. [31] modeled the teacher
network’s output as a Dirichlet distribution and used it as
a constraint when optimize the noise images to obtain syn-
thetic images. Yin et al. [44] regularized the distribution
of the synthesized images according to the statistics stored
in the batch normalization layers of the teacher network.
Since the optimization process of each image is indepen-
dent the computations of different images are not shared.
Thus, these methods can be extremely slow in synthetic im-
age generation [44].

Instead of optimizing randomly initialized noise images,
some method obtain synthetic images based on generative
network to synthesize training data, i.e., methods based on
generative networks [8, 9, 12, 13, 27, 29, 45]. According
to different types of network input, these methods can be
grouped into two categories, i.e., non-conditional genera-
tive network-based methods [8,9,12,13,29] and conditional
generative network-based methods [27, 45]. The former
typically generates synthetic images by sampling random
noises in a generative network. The latter combines random
noises and a conditional vector to generate synthetic im-
ages, and thus is able to better control the class of the syn-
thetic images. While generative network-based approaches
are more efficient, the diversity of the synthetic images can
be limited [12].

CDFKD-MFS [14] aimed to solve different DFKD prob-
lem, i.e., distilling knowledge from multiple teacher net-
works (teachers with different parameters) without access-
ing original data. They use a student network with addi-
tional parameters. The student network uses multi-level
feature-sharing to learn from multiple teachers, and the pre-
dictions of multi-student headers are aggregated to improve
performance.
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2.2. Data Augmentation via Data Mixing

Data mixing (DM) in image domain [39, 41, 47, 50] and
DM in feature domain [6, 42] has been widely explored to
improve model generalization ability.

Image domain data mixing usually include linear inter-
polation [50] and spatial level substitution [39, 41, 47] be-
tween different images. Compared with DM method in
image domain, there are some differences expected in the
objectives of our method. Our approach is to increase the
diversity of training data by mixing the data of synthetic
images through channel mixing at the feature level. More-
over, in terms of mechanisms of DM in image domain, these
methods may work better for natural images than synthetic
data. CutMix [47] has been shown to be effective in direct-
ing the model to focus on the less discriminative parts of
the object. However, since our image synthesis is guided by
the classification network only, the details contained in the
synthesized images are consistent with the information of
interest to the classification network.

Compared with some DM methods in feature domains
[6,42], they do share some similarities with our approach in
that we are both operating at the feature level. While most
DM in feature domains method is an interpolation operation
on the features of two samples, except Cao et al.’s [6] pro-
posed method, which is a mixing operation on the feature
channels just like ours. But their work differs from our ap-
proach in terms of motivation and implementation. In terms
of motivation, our feature exchange aims to enrich the diver-
sity of synthetic images used for DFKD, their work is more
of a regularization approach embedded inside the classifi-
cation network (like dropout [38] does). In terms of imple-
mentation, since their method requires the help of shallow
parameters of the classification network for feature gener-
ation, this makes their method unable to make the shallow
part of the classification network benefit from this regular-
ization approach. In contrast, our feature exchange is per-
formed in the generative network, so there is no such prob-
lem. It is worthwhile to discuss additionally that the feature
mixing in Mixmix [23] is different from the aforementioned
DM in feature domain, where “Mix” means loss-optimized
mixing, i.e., using multiple pre-trained models to invert the
same image through the loss function.

2.3. Feature-level Knowledge Distillation

Some KD work [16, 18, 29, 32, 49] differs from previ-
ous KD via logit distillation, in that they impose consis-
tency constraints on the middle layer features of the net-
work. These methods, like ours, are constrained for the
middle layer of the network to achieve KD. However, there
are differences between these methods and our approach in
terms of implementation and objectives, especially in terms
of objectives. Among them, Fitnets [32], OFD [16] and
FT [18] are more to constrain the intermediate layers of stu-

dent and teacher network to have similar responses to the
same image, rather than constraining the spatial region con-
cerned by the network to be consistent in the spatial region
of attention. The common feature-layer knowledge distilla-
tion is a stronger consistency constraint compared to logit
distillation, and they not only fail to improve the robustness
of knowledge distillation to noise but even have negative
effects (the results in Table 3 also confirms this). We find
that when data augmentation is performed on synthetic im-
ages, the noise in the synthetic data is further amplified to
the extent that knowledge distillation cannot be performed
properly, and our method can solve this issue, because the
optimal region of interest should always be aligned with the
edges of the classified objects.

3. Proposed Method
3.1. Problem Formulation

Let D = {X ∈ Rc×h×w,Y = 1, 2, ...,K} denote a
training dataset, in which xi ∈ X is an image, and yi ∈ Y
is its label. Let T (x; θT ) denote a pre-trained teacher net-
work on D. The goal of KD is to learn a lightweight student
classification network S(x, θS) that can imitate the classi-
fication capability of T (x; θT ) using D. Hinton et al. [17]
first proposed knowledge refinement to learn the weights of
student network with the object of minθsLcls+LKL, where
Lcls = Ex,y∼p(X ,Y)λCE(S(x; θS), y) is a cross-entropy
loss and LKL = Ex,y∼p(X ,Y)LKL(T (x; θT )||S(x; θS)) is
the Kullback-Leibler divergence (KL loss) between the out-
puts of the student and the teacher network. Different from
KD, the goal of DFKD is to learn a lightweight student clas-
sification network S(x, θS) that can imitate the classifica-
tion capability of T (x; θT ) without using D.

We follow a common solution of DFDK by generating
synthetic images and using them to learn a student network.
Specifically, our method contains three essential parts: op-
timizing the generative network using the teacher network,
training image generation using channel-wise feature ex-
change (CFE), and knowledge distillation using multi-scale
spatial activation region consistency (mSARC) constraint
(see Fig. 1). Using our CFE, the generator can effectively
generate diverse synthetic images for distillation learning.
Using mSARC, the student network can learn to imitate not
only the logit output but also the visual cues of the teacher
network. We detail our method as follows.

3.2. Optimizing the Generative Network Using
Teacher Network

We expect to learn a generative network G : z → X
to generate synthetic data {x̂, y} whose distribution is sim-
ilar to the data D = {X ,Y}. We first randomly initialize
a mini-batch of noise-label pairs (z, y) per epoch, where z
is a random noise sampled from a Gaussian distribution and
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Figure 1. The framework of our data-free knowledge distillation using proposed CFE and mSARC. G1,...,i and Gi+1,...,m represent the
layers of the generative network G ranging from 1 to i and i+ 1 to m, respectively.
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Figure 2. (a) Two basic cases of using channel-wise feature exchange (CFE) to increase the diversity of the synthesized images, i.e.,
increasing synthetic image diversity by performing CFE between intra-class samples and inter-class samples. (b) Image generation using
channel-wise feature exchange, in which e⃝ denotes CFE. The first two images in each row are images obtained by passing the randomly
sampled features from the feature pool through Gi+1,...,m. The last image of each row is obtained by performing channel-wise feature
exchange on the sampled features and then feeding the exchanged feature to Gi+1,...,m.

y ∈ {1, 2, ...K} is a random class label sampled from a uni-
form distribution. We feed the noise z into the generative
network G and obtain x̂ = G(z), in which a cross-entropy
loss Lcls between the generated image x̂ and the label y is
used to force the generated image x̂ be classified into a spe-
cific class by the teacher network T . In addition to using
the cross-entropy loss Lcls, we also use BN regularization
LBN [30,44], a commonly used loss in DFKD, to constrain
the mean and variance of the feature at the batch normal-

ization layer to be consistent with the running-mean and
running-variance of the same layer. After training the gen-
erative network G with Lcls and LBN , the synthetic data
is expected to approximate the distribution of the original
data.
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3.3. Training Image Generation using Channel-wise
Feature Exchange

As shown in the top of Fig. 1, we use the generative
network G to generate synthetic images to be used for dis-
tillation learning. Unlike previous DFKD methods, which
store synthetic images [7, 10, 13, 27, 29, 43], we use a fea-
ture pool to store the hidden features of the synthetic images
when optimizing G and use them to improve the diversity of
later training image generation. We propose a channel-wise
feature exchange (CFE) to make use of the stored hidden
features to improve the diversity of training image genera-
tion.

Specifically, to generate diverse synthetic images for
training the student network S, we first randomly sample
the features from the feature pool, e.g., F a

i and F b
i , in which

a and b are indexes of different synthetic images when op-
timizing G, and the stored feature is from layer i of G. Af-
ter sampling the features, we perform channel-wise feature
exchange by randomly swapping half of the feature chan-
nels between F a

i and F b
i to obtain two mixed features, i.e.,

F ab
i = cfe(F a

i , F
b
i ), and F ba

i = cfe(F b
i , F

a
i ) (see bot-

tom left part of Fig. 1). Next, we feed the mixed features
F ab
i and F ba

i to the deep layers of G ranging from i + 1 to
m. Finally, we can obtain two synthetic images that differ
from the conventional ones, i.e., x̂ab

i = Gi+1,...,m(F ab
i ) and

x̂ba
i = Gi+1,...,m(F ba

i ). F ab
i and F ba

i can be expected to
expand the diversity than the original features, resulting in
generated images being more diverse than those produced
by a conventional generation model. Fig. 2a illustrates how
CFE can improve the synthetic image diversity by obtain-
ing more dense and diverse sampling in the latent space.
Fig. 2b shows several examples of synthetic images from
the features of F a, F b, as well as F ab. We can see that CFE
does improve data diversity in image generation.

3.4. Knowledge Distillation using Multi-scale Spa-
tial Activation Region Consistency Constraint

Given the synthetic training images x̂ (such as x̂ab and
x̂ba), we minimize the Kullback-Leibler (KL) divergence
between the logits of the student network S and the logits
of the teacher network T using LKL.

However, if we only use the conventional KL divergence
constraint between the student and teacher network, we no-
tice the two networks may learn different image cues even
though their final predicted labels are the same. Fig. 3 gives
such an example, in which the teacher network learns cues
from red rectangle in the image, but the student network
under KL loss may learn cues from the orange rectangle
of the same image. This can lead to “shortcut learning”
of the model, and reduce the student network’s generaliza-
tion ability in unseen domains. Therefore, we introduce a
multi-scale spatial activation region consistency (mSARC)
constraint, to encourage the hidden layers at different stages

Ship

Automobile

Bird

Horse

Deer

AirPlane

(b) 

Teacher
(a)

Synthetic 

Images

       (c)   

   Student 

w/o 

       (d)   

   Student 

w/  

Figure 3. Comparisons of the CAMs of the teacher and student
networks on synthetic images with and without using our mSARC:
(a) synthetic images, (b) CAMs of the teacher network, (c) CAMs
of the student network with KL loss alone, and (d) CAMs of the
student network with both KL loss and our mSARC. (b) and (c)
show big inconsistencies in learning visual cues for classification
when only KL loss is used. (b) and (d) become much close to
each other when using both KL loss and our mSARC loss. All
displayed images are correctly classified by these three networks.

Algorithm 1 Proposed Method for DFKD.
Input: Pre-trained teacher network T and student network S.
Output: An optimized student network S.
1: Initialize a generative network G;
2: for epoch=0,1,...,max epoch do
3: Sample a minibatch of noise z;
4: for iteration=0,1,...,max g iterations do
5: Generate synthetic data x̂ = G(z);
6: Optimize generative network G using Lcls and LBN ;
7: Store the features after the i1-th, i2-th, and in-th layers

into the feature pool;
8: for iteration=0,1,...,max kd iterations do
9: Sample features F 1

i , F
2
i , ..., F

n
i from the feature pool;

10: Perform CFE on F 1
i , F

2
i , ..., F

n
i to obtain new features

F 1∗
i , F 2∗

i , ..., Fn∗
i with probability p;

11: Obtain synthetic training data x̂ from Gi+1,...,m(F ∗
i )

and feed them to S and T ;
12: Optimize student network S using LKL and

LmSARC ;
13: return the student network S.

of the student network S to “focus on” the same spatial re-
gions as the hidden layers of the teacher network T at the
corresponding stages. Specifically, we constrain the class
activation maps (CAMs) [51] of the feature at layer ik of
the student network S to be consistent with CAMs of the
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Dataset Teacher Student Test accuracy (%)
T. S. DAFL [7] ZSKT [29] ADI [43] DFQ [10] LS-GDFD [27] CMI [13] SpaceshipNet

CIFAR-10

ResNet-34 ResNet-18 95.70 95.20 92.22 93.32* 93.26 94.61 95.02 94.84 (94.39*) 95.39
VGG-11 ResNet-18 92.25 95.20 81.10 89.46 90.36 90.84 N/A 91.13 (90.93*) 92.27

WRN-40-2 WRN-16-1 94.87 91.12 65.71 83.74 83.04 86.14 N/A 90.01 (89.27*) 90.38
WRN-40-2 WRN-40-1 94.87 93.94 81.33 86.07 86.85 91.69 N/A 92.78 (92.08*) 93.56
WRN-40-2 WRN-16-2 94.87 93.95 81.55 89.66 89.72 92.01 N/A 92.52 (92.00*) 93.25

CIFAR-100

ResNet-34 ResNet-18 78.05 77.10 74.47 67.74 61.32 77.01 77.02 77.04 (74.25*) 77.41
VGG-11 ResNet-18 71.32 77.10 57.29 34.72 54.13 68.32 N/A 70.56 (68.45*) 71.41

WRN-40-2 WRN-16-1 75.83 65.31 22.50 30.15 53.77 54.77 N/A 57.91 (57.44*) 58.06
WRN-40-2 WRN-40-1 75.83 72.19 34.66 29.73 61.33 61.92 N/A 68.88 (65.33*) 68.78
WRN-40-2 WRN-16-2 75.83 73.56 40.00 28.44 61.34 59.01 N/A 68.75 (66.09*) 69.95

Tiny-ImageNet ResNet-34 ResNet-18 66.44 64.87 N/A N/A N/A 63.73 N/A 64.01 64.04

Table 1. DFKD results on CIFAR-10, CIFAR-100, and Tiny-ImageNet. ‘T.’ and ‘S.’ denote that the teacher and student network trained
using the labeled data in the training set, respectively, and this applies to other tables below. The results of DAFL, ZSKT, ADI, DFQ, and
LS-GDFD are from [13]. The results marked by “*” comes from running the code of [13]* under the setting used in their paper.

feature at layer jk in the teacher network T . The constraint
can be formulated as

LmSARC = Ex̂∼p(x̂)

t∑
k=1

||CAMik(S, x̂)−CAMjk(T, x̂)||22,

(1)
where k = 1, 2, ..., t, ik and jk denotes the layer index,
and CAM(·, ·) is computed using [33, 51] and a detailed
description can be found in the supplementary material. As
shown in Fig. 3, after using our mSARC, the CAMs of
the student and teacher networks become much close with
other. Such a property is important for avoiding the student
network to learn non-inherent cues for classification.

3.5. Overall Loss

The overall loss function for optimizing the generative
network G can be expressed as

LG = λclsLcls + λBNLBN , (2)
in which λcls and λBN are parameters balancing two loss
terms. The overall loss function for distillation learning can
be expressed as

LKD = λKLLKL + λmSARCLmSARC . (3)
in which λKL and λmSARC are parameters balancing two
loss terms. Specific coefficient settings and more training
details can be found in the supplemental materials. The
whole algorithm of the proposed DFKD method via CFE
and mSARC is given in Alg. 1.

4. Experiments
4.1. Settings

We evaluate our method using several different backbone
networks, i.e., ResNet [15], VGG [36], and Wide ResNet
[48] on three classification datasets, including CIFAR-
10 [19], CIFAR-100 [19], and Tiny-ImageNet [21]. For
CIFAR-10 and CIFAR-100, each contains 60,000 images,
of which 50,000 images are used for training, and 10,000
images are used for testing. CIFAR-10 and CIFAR-100
contain 10 and 100 categories, respectively, and the images

in both datasets have a resolution of 32×32. Tiny-ImageNet
contains 100,000 training images and 10,000 validation im-
ages, with a resolution of 64 × 64. The dataset has 200
image categories.

4.2. Comparisons with SOTA DFKD methods

Table 1 shows the DFKD results by our method and sev-
eral state-of-the-art (SOTA) methods, i.e., DAFL [7], ZSKT
[29], ADI [43], DFQ [10], LS-GDFD [27], and CMI [13])
when using the same teacher network. ADI is a noise im-
age optimization-based method, while all other methods
are generative network-based methods, including the pro-
posed method. ADI optimizes images slowly and has dif-
ficulty generating large amounts of data with limited com-
putational resources. In contrast, generative network-based
methods may lack sample diversity because the generated
samples can be highly correlated and limited in variation.
LS-GDFD and CMI only partially address the diversity is-
sues by using multiple generators. By using CFE instead
of hundreds of networks, our approach provides highly di-
verse training images. In addition, we use mSARC that is
important to our disllation learning when using CFE. Using
our proposed DFKD method, the accuracy on the CIFAR-10
test set of ResNet-18 even surpasses the ResNet-18 trained
by simple supervised learning methods using labeled data,
i.e., the CIFAR-10 training set.

4.3. Additional Experiments at Higher Resolution

To evaluate our method on datasets with higher image
resolutions (here, we use 224 × 224), we conduct experi-
ments on Imagenette and ImageNet100. Imagenette* is a
subset of 10 easily classified classes from ImageNet [11].
ImageNet100† is a subset of 100 random classes from
ImageNet-1k dataset. Since the existing complete open-
source SOTA methods do not report results on ImageNet or

*https://github.com/fastai/imagenette
†https : / / www . kaggle . com / datasets / ambityga /

imagenet100
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Dataset Test accuracy (%)
T. CMI [13] ZSKT [29] SpaceshipNet

Imagenette 81.30 77.55 41.91 80.59
ImageNet100 70.74 52.60 6.54 65.40

Table 2. DFKD results on high-resolution datasets (Imagenette
and ImageNet100) when using ResNet-34 as the teacher network
and ResNet-18 as the student network.

its subsets in their papers, we use two open-sourced meth-
ods CMI and ZSKT for comparison. As shown in Table
2, when evaluated on high-resolution datasets, CMI and
ZSKT-trained student networks perform significantly worse
than the teacher network, while the student network trained
by our method only has a small performance gap with the
teacher network. This suggests our method generalizes well
to DFKD with high-resolution images.

4.4. Ablation Study

To investigate the effectiveness of CFE and mSARC, we
conduct several ablation studies.

How Important is CFE? We show the effect of CFE by
discarding it during training. Results of (b) and (c) in
Table 3 show that the accuracy degrades from 77.41% to
62.05% when dropping CFE. This result shows that CFE
is helpful for improving distillation learning when using
mSARC. Replacing CFE with CutMix and Mixup leads to
an accuracy of 76.47% (Table 3 (d)) and 75.72% (Table
3 (e)), which are higher than the result without using any
diversity method (62.05%) but slightly lower than our
results. This suggests that CFE, CutMix, and Mixup are all
helpful for improving the diversity of the synthetic images,
but CFE may be more suitable for DFKD when using
mSARC.

How important is mSARC? We verify the effectiveness of
our mSARC from two aspects. We first discard mSARC
while still using CFE, CutMix, and Mixup. The results
in Table 3 (f, g, h) show discarding mSARC will greatly
harm the performance when using CutMix, Mixup, and
CFE. This is possibly because using these diversity meth-
ods alone can severely amplify the unwanted noises pro-
duced in the synthesized images, thereby limiting their ef-
fectiveness in improving distillation learning. Next, we
compare our mSARC with the feature-level constraint used
in several feature-level constraints used in recent KD meth-
ods [16, 18, 29, 32, 49]. These are strong constraints that
force the feature or attention map of the student and teacher
to be consistent, whereas mSARC only constrains them to
focus on the same spatial region. Replacing mSARC with
AT [49] and FitNets [32] lead to accuracy of 36.09% and
25.81% (Table 3 (i,j)), both of them are lower than our

Method Diversity
method

Distillation
constraint

Teacher: 78.05%
Student (%)

(a) None None 60.17
(b) CFE mSARC 77.41
(c) None mSARC 62.05
(d) CutMix mSARC 76.47
(e) Mixup mSARC 75.72
(f) CFE None 48.18
(g) CutMix None 65.24
(h) Mixup None 61.40
(i) CFE AT 36.09
(j) CFE FitNets 25.81

Table 3. Ablation experiments about CFE and mSARC in our
method on CIFAR-100 when using ResNet-34 as the teacher net-
work and ResNet-18 as the student network.

method. We conjecture that this is because when using CFE
to generate training images, the noise in the synthetic data
is amplified to the extent that these strong feature-level con-
straints cannot be performed properly. The above results
not only illustrate the importance of mSARC for improving
the robustness of DFKD, but also show that it is not fea-
sible to replace our mSARC by simply using the common
feature-level constraint.

5. Further Analysis

5.1. Impact of mSARC on CAMs

In the ablation study above, we show that mSARC is
able to improve the test accuracy of the student network.
In this section, we show that LmSARC promotes the stu-
dent network to focus on the same spatial region with the
teacher network. We compute the CAM difference between
the teacher network and the student networks trained with
and without LmSARC for the 10,000 images in the CIFAR-
100 test set. The results are shown in Table 4. As can
be observed, the CAM difference between the teacher net-
work and the student network drastically declines after us-
ing LmSARC . We also compute the CAM differences for
the 3,309 images in the CIFAR-100 test set that can be cor-
rectly classified to their ground-truth category by both the
student networks trained by our method and our method
without using LmSARC . The result are shown in Table 4.
The CAM difference still drastically declines after using
LmSARC . These results positively indicate that mSARC
can effectively reduce the CAM difference between the stu-
dent and teacher network. In other words, it promotes the
student network to learn discriminative cues from the same
spatial region with the teacher network. More details and
results on CIFAR-10 are given in the supplementary mate-
rial.
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Method (a) (b)
MAE MSE MAE MSE

SpaceshipNet 23.40 2419.44 18.77 1579.34
SpaceshipNet w/o LmSARC 56.04 8892.64 46.78 6744.43

Table 4. Difference of CAMs between the teacher network T and
the student networks S trained by our method with and without
using LmSARC for (a) the complete 10,000 images in the CIFAR-
100 test set and (b) a subset of 3,309 images in the CIFAR-100 test
set that can be correctly classified into their ground-truth category
by both student networks trained by our method with and without
using LmSARC .

Fraction of swapped channels from Fa
i * Test accuracy (%)

0% (w/o CFE) 62.05
10% 77.04
30% 77.11
50% 77.41

Table 5. The influence of performing CFE with different fractions
of the swapped channels. Columns marked with * represent the
proportion of channels in the feature F ab

i that are from F a
i , when

performing F ab
i = cfe(F a

i , F
b
i ). In other words, they are the

fractions of channels in F a
i used for performing cfe(F a

i , F
b
i ).

5.2. Impact of Fraction of Swapped Channels

In this section, we examine the impact of the number
of swapped channels in CFE on the performance of our
method. In previous experiments, we set the fraction of the
swapped feature channels as 0.5. Here, we consider differ-
ent fractions of swapped channels in features F a

i , i.e., 0, 0.1,
and 0.3. All the other settings remain the same with Section
4.2. The results on CIFAR-100 are shown in Table 5. As
can be observed, the proposed CFE can stably improve the
test accuracy using various fractions of swapped channels
(i.e., 77.04%, 77.11%, and 77.41% vs. 62.05%). When
10%-90% of channels of a feature are used for swapping,
the accuracy of the trained student network remains quite
stable, i.e., ranging from 77.04% to 77.41%. The results in-
dicate that the proposed CFE is effective for DFKD while
not sensitive to different fractions of exchanged channels.

5.3. Why CFE Improves DFKD?

When we have n noises z1, z2, ..., zn, we can get n im-
ages I1 = G(z1), I2 = G(z2), ..., In = G(zn) after
feeding z to the layers of generative network G, and then
have n corresponding features F 1

i = G1,...,i(z
1), F 2

i =
G1,...,i(z

2), ..., Fn
i = G1,...,i(z

n) from the i-th layer of
generative network G. Assume each feature F k

i contains
nc channels. Fig. 4a and Fig. 4b show the pipelines of gen-
erating images I from noise z without and with using CFE,
respectively. Theoretically, when we perform CFE between

(a)

(b)
Figure 4. The pipeline of training image generation (a) without
using CFE and (b) using CFE.

F p
i and F q

i (p + q = n + 1), the upper bound of the num-
ber of features we can obtain is C

nc
2

nc . If we feed these C
nc
2

nc

features to the (i + 1)-th to the m-th layers of the gener-
ative network G, we can get C

nc
2

nc different images. These
images constitute the image sampling space used to train
the student network. The number of samples in this space
is C

nc
2

nc , which far exceeds the size of the image sampling
space without using CFE (i.e., n). Therefore using CFE can
improve the result of data-free knowledge distillation.

6. Conclusion

Although tremendous progress has been made in data-
free knowledge distillation (DFKD), existing DFKD meth-
ods still have limitations in diverse and efficient data synthe-
sis due to the limitations of their image generation methods.
In this work, we propose a novel DFKD method (Spaceship-
Net) based on channel-wise feature exchange (CFE) and
multi-scale spatial activation region consistency (mSARC)
constraint to address these issues. Specifically, CFE allows
our generative network to better sample from the feature
space and efficiently generate diverse images for learning
the student network. However, we found that using strong
data augmentation methods (e.g., the commonly used Cut-
Mix and MixUp or our CFE) alone can severely amplify the
unwanted noises generated in the synthesized images, and
degrade distillation learning. Hence, we propose mSARC to
assure the student network can imitate not only the logit out-
put but also the spatial activation region of the teacher net-
work to alleviate the influence of unwanted noises in diverse
synthetic images on distillation learning. Combined with
our mSARC, using traditional data augmentation on syn-
thetic data can still significantly improve distillation learn-
ing. We obtained the best results on all three datasets com-
monly used for DFKD and validated our method on high-
resolution datasets (two subsets of ImageNet).
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