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Abstract

Attackers can deceive neural networks by adding hu-
man imperceptive perturbations to their input data; this
reveals the vulnerability and weak robustness of current
deep-learning networks. Many attack techniques have been
proposed to evaluate the model’s robustness. Gradient-
based attacks suffer from severely overestimating the ro-
bustness. This paper identifies that the relative error in cal-
culated gradients caused by floating-point errors, including
floating-point underflow and rounding errors, is a funda-
mental reason why gradient-based attacks fail to accurately
assess the model’s robustness. Although it is hard to elim-
inate the relative error in the gradients, we can control its
effect on the gradient-based attacks. Correspondingly, we
propose an efficient loss function by minimizing the detri-
mental impact of the floating-point errors on the attacks.
Experimental results show that it is more efficient and reli-
able than other loss functions when examined across a wide
range of defence mechanisms.

1. Introduction
AI with deep neural networks (DNNs) as the core [24]

has achieved great success in different research directions
and has been widely used in many safety-critical systems,
such as aviation [1, 8, 35], medical diagnosis [27, 49], self-
driving [4,26,47] , etc. However, a severe problem with cur-
rent DNNs is that they are vulnerable to adversarial attacks.
Adding human imperceptive perturbations to input data can
mislead the model to output incorrect results [16, 45]. Such
vulnerability poses a significant security risk to all DNN-
based systems. Therefore, increasing the models’ robust-
ness and providing efficient and reliable evaluation methods
are becoming increasingly urgent and vital.

*Corresponding author.
1https://robustbench.github.io/
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Figure 1. Comparison of the effectiveness of non-targeted and
multi-targeted PGD 100 iterations attacks using various loss func-
tions on the CIFAR-10 dataset. The best results were obtained
from RobustBench1 using an ensemble attack with a minimum of
4900 iterations. The defence model is from [59].

Numerous defence strategies [6, 10, 13, 16, 29, 31, 55] to
improve the model’s robustness and many attacks [2, 29,
33, 41, 50, 52, 54, 59] to evaluate these strategies have been
proposed. Currently, the most efficient attack method is
known as white-box attack, where the attacker has com-
plete knowledge of the target defending strategy, includ-
ing its model architecture, parameters, detail of the train-
ing algorithm, dataset, etc. A typical example is Projec-
tive gradient descent (PGD) [29] for evaluating the model’s
robustness. However, studies have shown that PGD with
cross-entropy (CE) loss fails to provide accurate evaluation
results [6, 41] and significantly overestimates the model’s
robustness(Figure 1). To enhance the evaluation accuracy,
recent powerful evaluation methods were proposed to en-
semble diverse attack algorithms [10, 30]. However, their
performance is at the cost of high computational overhead.

The research community attributes the failure of
gradient-based attacks to gradient masking [15]. The core
of gradient masking is that the calculated gradients are not
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necessarily efficient in guiding the generation of adversarial
examples. The causes of inefficient gradients may be related
to floating-point errors or other factors. This paper reveals
that the relative error in the gradients caused by floating-
point errors is one of the fundamental reasons for the failure
of gradient-based attacks, and the relative error is directly
affected by the value of the difference of the first and second
largest in logits(DFSL). Although it is hard to eliminate the
relative error in the gradients caused by floating-point errors
completely, we can control its effect on the gradient-based
attacks. Thus, we propose a new efficient loss function by
minimizing the impact of floating-point errors (MIFPE) on
gradient-based attacks. To summarize, our main contribu-
tions are as follows:

• We provide a comprehensive demonstration of how the
presence of floating-point errors leads to the failure of
gradient-based attacks due to the relative error in cal-
culated gradients.

• We show that the floating-point rounding errors may
lead to attack’s failure due to growing relative errors
as samples reach the classification boundary.

• We demonstrate that when the model’s robustness is
overestimated primarily due to floating-point errors,
the loss function discarding partial elements of logits
causes performance degradation in the gradient-based
attack.

• We show that minimizing the impact of floating-point
errors can improve the efficiency and accuracy of
gradient-based attacks.

• Empirical results demonstrate that MIFPE tends to
outperform the competing loss functions in terms of
attack performance and computational efficiency.

2. Preliminaries & Related Work
We define the classification model as fθ (x), where θ

represents the model parameters. fθ : x ⊂ RC×H×W →
z ⊂ Rk is a classifier that maps input data x to output logits
z, where C, H , and W are parameters that describe the in-
put data’s channel number, height, and width, respectively.
Additionally, K represents the number of classes from the
model’s output. We define the label of the input data as y.

Attackers aim to breach defence strategies by generating
adversarial examples x̂, which can maximize the loss func-
tion L (fθ (x̂) , y) and deceive the model into producing in-
correct results, argmax fθ(x̂) ̸= y. Achieving this requires
the attackers to find imperceptible perturbations δ = x̂− x
that satisfy the constraint ∥δ∥p ≤ ε, where ε is the mag-
nitude and p is the norm of the perturbation. Various per-
turbation options have been explored in literature, including
the one-pixel attack [44, 44], l2 attacks [6, 31, 45], and l∞

attacks [16, 29]. The attackers can find an adversarial ex-
ample x̂ ∈ I by maximizing the loss. This process can be
formulated as :

x̂ = x+ max
∥δ∥p∈ε

L (fθ (x+ δ) , y) , (1)

The white-box scenario is the most rigorous test for
defence strategies, as attackers have complete knowledge
about the models’ architecture, parameters, training data,
and algorithm implementation details. This is a highly chal-
lenging situation for defence strategies. Attackers can ex-
ploit nearly all vulnerabilities in the defence strategies and
perform tailored attacks. If defence strategies remain ro-
bust against white-box attacks, they can ensure the system’s
security even in the worst-case scenario. In practice, the
gradient-based method is commonly used to solve (1).

Many gradient-based white-box attacks methods have
been proposed, which include fast gradient-sign method
(FGSM) [16], basic iterative method (BIM) [23], projected
gradient descent (PGD) [29], momentum iterative method
(MIM) [13] and fast adaptive boundary attack (FAB) [9]
for ℓ∞-norm attacks. Carlini and Wagner (C&W) [6] and
DeepFool [31] can additionally carry out ℓ2-norm attacks.
PGD is one of the widely used methods to evaluate the
model’s robustness in the white box scenario, which finds
an adversarial example by performing the following itera-
tive update:

x̂i+1 = Pϵ,x (x̂i + αi sign (∇x̂i
Lce (fθ(x̂i), y))) , (2)

Initially, x̂0 = Pϵ,x(x + u), where u ∼ U ([−ϵ, ϵ]), i.e. u
is a uniform random noise bounded by [−ϵ, ϵ]. The func-
tion Pϵ,x : RC×H×W → I first clips the range of its input
into the ϵ-ball ℓp-distance neighbour of the original image
x and then clips its input into the range of I. The term
∇x̂i

Lce (fθ(x̂i), y) computes the gradient of the loss w.r.t.
the input x̂i. Finally, αi is the step size, and for each ele-
ment in the tensor g, sign(g) returns one of 1, 0 or −1, if
the value is positive, zero or negative, respectively.

CE is a commonly used loss function for training deep
neural network models and evaluating their robustness
in classification tasks. However, the presence of expo-
nential operations in CE makes it vulnerable to under-
flow and rounding errors with limited floating-point pre-
cision. Gradient-based attacks with the CE loss may ex-
perience vanishing/inefficient gradients and difficulty con-
verging while suffering from a severe overestimation of the
model’s robustness. [6, 10]. Recent attack methods use sur-
rogate losses for gradient computation [6, 18] and optimize
an alternative target by replacing Lce with a custom surro-
gate loss function. z = fθ (x̂) is output logits of the model,
and zi is the ith component of z, two typical examples
to replace the CE objective include the difference-of-logits
(DL) [6], also known as hinge loss, where i ∈ {1, 2, ...,K}
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and i ̸= y:

Lcw (z,y) = −zy +max
i ̸=y

zi, (3)

and the difference-of-logits ratio (DLR) loss [10]:

Ldlr (z,y) =
−zy +maxi ̸=y zi

zπ1 − zπ3
, (4)

where zπ1
and zπ3

respectively denote the 1th and 3th largest
components of z. It is clear that maximizing the alterna-
tive goals is consistent with the original objective of mak-
ing argmax f (x̂) ̸= y. In addition, since surrogate losses
avoid exponential operations, they are not prone to under-
flow, allowing gradient-based optimization to escape suf-
fering from the overestimation caused by the floating-point
underflow errors. However, the floating-point underflow er-
rors are not the sole reason for all overestimations related to
floating-point errors. At the same time, the new loss func-
tion discards some elements of z, reducing the effectiveness
of the attack and causing gradient-based attacks with surro-
gate losses to overestimate the model’s robustness.

Many auxiliary techniques can assist existing attack
methods to improve their performance. For example,
momentum-based updates can improve the attack’s conver-
gence rate and are widely used by white-box attacks [13,
18]. A step schedule with decreasing step size based on
the number of iterations can improve the overall success
rate [10, 18, 56]. Multi-target attacks can outperform non-
target attacks in the evaluation results at the cost of more it-
erations since they require enumerating multiple most likely
target labels [18, 33, 34]. In addition to the above strate-
gies, multiple restarts can also improve the effectiveness
of gradient-based attacks by adding different random ini-
tial perturbations to the input data to diversify the starting
point of the attack and reduce the impact of suboptimal
solutions [5, 46]. Finally, several recent publications have
shown that leveraging latent features in attacks can enhance
the transferability of black-box attacks [21,22] and the per-
formance of white-box attacks [56].

However, even with so many auxiliary strategies men-
tioned above, using any single attack is still challenging to
accurately evaluate the model’s robustness. Attackers start
using an ensemble of multiple attack strategies to improve
the attack’s performance by introducing diversity [5,10,28].
They often suffer from high computational costs. Even
though these ensemble strategies are more powerful than
any single attack, they still fail to provide an assessment
of the ensemble defence strategy’s robustness accurately
[48, 57].

3. Efficient Loss Function
Assuming that the input x̂ has the correct label y, we

compute z = fθ(x̂), where θ represents the model param-
eters. Next, we sort the values in z in a descending order,

where zπ1 is the maximum value. We define ∆ as the dif-
ference between the maximum and the second maximum
value, i.e., ∆ = zπ1 − zπ2 ≥ 0. The cross-entropy loss at z
becomes

CE (z,y) = − log py = − log
ezy−zπ1∑K
i=1 e

zi−zπ1

, (5)

∇x̂CE (z,y) = (−1 + py)∇x̂ (zy − zπ1)

+
∑
i̸=y

pi∇x̂ (zi − zπ1),
(6)

where pi = ezi−zπ1/
∑K

j=1 e
zj−zπ1 , i ∈ {1, 2, 3, ...,K}.

Exponential operations in Equation (5), specifically
ezπi−zπ1 , i ∈ {2, ...,K}, where zπi − zπ1 ≤ zπ2 − zπ1 =
−∆ ≤ 0, can cause floating-point underflow errors in the
CE loss gradient. To investigate this issue, we analyze the
properties of e−∆ and observe that when ∆ surpasses a
threshold value denoted by λ, e−∆ underflows and leads to
significant inaccuracies in the gradient calculation. Specif-
ically, when ∆ ≥ λ and zy = zπ1, the predicted probabil-
ity py = 1 and the calculated gradient ∇x̂CE (z,y) = 0.
The value of λ varies with different floating-point arith-
metic precisions, with approximate values of 16.64, 103.28,
and 744.44 for half-precision, single-precision, and double-
precision, respectively.

Based on the findings, we identify that the root cause of
the calculated gradient being equal to zero is the result of ∆
exceeding λ. To further investigate the relationship between
the value of ∆ and the overestimation of the model’s robust-
ness, we analyze the distribution of ∆ values in defence
models that tend to be overestimated by gradient-based at-
tacks under single-precision. The results in Figure 2 indi-
cate that the range of ∆ values varies significantly among
different defence models. Notably, the values of ∆ in 2a
and 2b do not exceed 10, which is significantly smaller than
λ ≈ 103.28 for single-precision. As a result, these mod-
els do not suffer from floating-point underflow errors. In
contrast, most of the ∆ values in 2c exceed the threshold
that leads to floating-point underflow errors. It is evident
that not all models suffer from floating-point underflow er-
rors, and other reasons associated with floating-point errors
cause gradient-based attacks to fail. This is because in ad-
dition to floating-point underflow errors, floating-point er-
rors have another component: floating-point rounding er-
rors when ∆ < λ. These errors result in a non-negligible
relative error in ∇x̂CE (z,y). We define the relative error
as δCE = δ (∇x̂CE (z,y)).

We know that δCE = 100% when ∆ ≥ λ. We need
to further analyze the change pattern of δCE when ∆ < λ.
A multi-iteration gradient-based attack involves adding per-
turbations to x̂ at each iteration, leading to constant changes
in z, ∆, and ∇x̂(zπi − zπ1) for i ∈ 1, 2, ...,K after each
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Figure 2. The distributions of ∆ = zπ1 − zπ2 for the defending models on the CIFAR-10 dataset are averaged across 100 bins.

modification. This makes it difficult to analyze how δCE

changes when ∆ < λ. However, we can indirectly exam-
ine the effect of floating-point errors on the attack’s per-
formance by analyzing the impact of such errors on a single
step. To do so, we introduce a scaling factor c and define the
scaled value of ∆ as T = c∆. By varying c while keeping
x̂, z, and ∇x̂(zπi − zπ1) fixed during gradient calculation,
we can investigate the relationship between δCE and T for
different values of T .

To compute the scale factor, we need to detach the gra-
dient information from ∆ since z contains the gradient in-
formation during the actual program running. Thus, we de-
fine the scale factor as c = T/∆detach. The use of the de-
tach operation in the calculation of c removes the gradient
information from the ∆detach, making it distinct from the
∆ that retains gradient information. When zy ̸= zπ1, the
model output is already incorrect. Therefore, we only focus
on the relationship between δCE and T when zy = zπ1,
at which point ∇ẑCE (cz,y) = c

∑
i ̸=y p

c
i∇x̂ (zi − zπ1) ,

where pci = ec(zi−zπ1)/
∑K

j=1 e
c(zj−zπ1).

To get a more intuitive picture of the relationship
between δCE and T , we plotted the figure of δCE

on the binary classification task with K = 2, At
this point, ∇ẑCE (cz,y) = c

∑
i̸=y p

c
i∇x̂ (zi − zπ1) =

cpc2∇x̂ (zπ2 − zπ1) ∝ cpc2. Therefore, δCE ∝ δ (cpc2).
In Figure 3, we can see that for the same x̂,when z and
∇x̂ (zi − zπ1) , i ∈ {1, 2, ...,K} are all fixed, δCE varies
with T . When T ≥ λ, δCE = 100% In contrast, When
T < λ, The relative error δCE caused by the floating-point
rounding errors is much more minor, varies continuously
with T, and reaches the minimum when T is approximately
1. But one thing that needs to be highlighted is that after the
relative error reaches the minimum, it starts to increase as
T gets closer to 0.

Following the same operation, we add a scale factor c to
∆ and hold T = c∆ constant during each iteration of the
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Figure 3. The relative error of the gradient information computed
using half-precision floating-point operations on a binary classifi-
cation task with the CE loss varies with T for a given adversarial
example within a single iteration.

multi-iteration attack. This technique, which we refer to as
FT-PGD, allows us to assess the model’s robustness with a
fixed T value. In Figure 4, we evaluate the model’s robust-
ness using FT-PGD at various T values. By comparing the
relative floating-point error in Figure 3 with the attack’s per-
formance in Figure 4, we observe a strong correlation be-
tween the relative error δCE and the attack’s effectiveness.
Thus, the relative error is a critical factor that contributes
to overestimating the model’s robustness. Furthermore, we
identify two distinct phases in the impact of floating-point
errors on gradient-based attacks due to the CE loss, which
depend on the relationship between T and λ.

(a) The attack failed due to floating-point underflow er-
rors. When T ≥ λ, floating-point underflow causes the
calculated gradient equal to zero and δCE = 100%. As a
result, the input perturbation becomes zero, and the model’s
robustness is measured to be equal to its clean accuracy,
which leads to a significant overestimation of the model’s
robustness.
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zero elements in the perturbation, leads to larger overestimations
when evaluating model robustness. We assess model robustness
using 100 iterations of FT-PGD with CE loss on the CIFAR-10
dataset under half-precision floating-point arithmetic. The model
is obtained from [59].

(b) The attack’s performance fluctuates with the small
relative error caused by floating-point rounding errors.
When 0 ≤ T < λ, the computed gradient’s relative error
due to the floating-point rounding error is small and has the
same variation pattern as the zero ratio and attack perfor-
mance. The smallest relative error occurs around T = 1.
However, it’s crucial to note that at the bottom left of Fig-
ure 3 and Figure 4, the relative error and its detrimental ef-
fect on the gradient-based attack increase as T approaches
zero after reaching the minimum.

It is straightforward to assume that since floating-point
errors cause the above problem, it should be possible to
solve the problem by simply increasing the precision of
floating-point arithmetics because it can effectively reduce
the floating-point errors. To test whether this simple idea
works, we evaluated the impact of different floating-point
arithmetics precisions, including half-precision, single-
precision, and double-precision, on the model’s robustness
against FT-PGD with 100 iterations. As depicted in Fig-
ure 5, the attack’s performance exhibits a similar variation
pattern across different precisions, and the model’s robust-
ness measured with PGD remains nearly unchanged. While
increasing the floating-point precision can delay attack fail-
ure due to floating-point underflow errors, it incurs signif-
icant computational overhead. Therefore, increasing the
floating-point precision is not a viable solution to address
the problem.

Surrogate loss functions(3,4) have been proposed [6, 10,
18] to work around floating-point underflow errors. They
avoid suffering from floating-point underflow errors by dis-
carding softmax operations. At the same time, they only use
partial z elements in the new loss function. To demonstrate
the effect of discarding elements of z on the attack’s per-
formance, We designed an experiment to make only a fixed
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Figure 5. The model’s robustness test results on the CIFAR-10
dataset under Float16, Float32, and Float64 follow a similar pat-
tern of variation, except that the thresholds that lead to the attack’s
failure are different, the model obtained from [59].

number of z elements participate in the calculation of the
gradients by exploiting floating-point underflow errors. To
achieve this goal we scale the logits zπ1 − zπi by a scale
factor c to make c (zπ1 − zπi) = λ, such that pcπj = 0 if
j ≥ i and pcπj > 0 if j < i, where i ∈ {2, 3, ...,K} and
j ∈ {1, 2, 3, ...,K}. So that only i − 1 number of z ele-
ments are involved in the gradient calculation, thus giving
PGD the ability to attack the network with a fixed num-
ber of z elements, which we now call FNZ-PGD. We use
FNZ-PGD with different numbers of z elements to evalu-
ate the model’s robustness which is overestimated mainly
due to floating-point errors. From Figure 6, we can see that
the more z elements involved in the attack, the more potent
the attack will be. So discarding the z element in the loss
function will impair the attack’s performance when model
robustness is overestimated mainly due to floating-point er-
rors.

In summary, the relative error in the calculated gradi-
ents due to the floating-point errors, which include floating-
point underflow errors and floating-point rounding errors,
is the critical factor contributing to the overestimation of
the model’s robustness. While floating-point errors are a
primary cause of gradient-based attacks’ failure, they are
not the sole cause. Reducing their impact can only address
the portion of model robustness that is overestimated due to
them. Therefore, it is unrealistic to expect that solely reduc-
ing the impact of floating-point errors alone will eliminate
all problems related to overestimating model robustness.

Although we cannot eliminate the relative error in the
gradients caused by floating-point errors, we can control it’s
side effect and significantly increase the power of gradient-
based attacks. As a result, we propose the Minimize the
impact of floating-point errors (MIFPE) loss, a small modi-
fication to the original CE loss, which scales the logits adap-
tively before the softmax operation. For untargeted and tar-
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the model was obtained from [59]. Here, n refers to the number of
z elements used.

geted attacks, the targets are as follows respectively:

LMIFPE (z,y) ≜ Lce (Tz/∆detach, y) , (7)

LMIFPE
target (z,yt) = −Lce (Tz/∆detach, yt) , (8)

Where yt is a predefined class target, t ∈ {1, 2, ...,K} and
yt ̸= y. In our experiments, the factor T was set to around
1 to minimize the detrimental effect of floating-point errors
on the gradient-based attacks.

The new surrogate loss LMIFPE has fourfold advantages.
First, it can eliminate the failure of gradient-based attacks
due to floating-point underflow errors. Second, it can min-
imize the impact of the small relative error due to floating-
point rounding errors and significantly improve the perfor-
mance of gradient-based attacks. Third, it provides the flex-
ibility to adjust the number of logit elements involved in
the attack simply by changing the value of T. Finally, un-
like the C&W or DLR loss, it still represents the original
CE loss faithfully, and all values in the logit vector can still
contribute to the gradient calculation.

4. Experiments
To ensure a fair comparison against other loss func-

tions in our evaluation and to make our evaluation as com-
prehensive as possible, we conducted tests on different
threat models and datasets. Specifically, we tested the ℓ∞-
norm bounded perturbation on the CIFAR-10 , CIFAR-100,
MNIST [25] and ImageNet datasets [11],and the ℓ2-norm
threat model on the CIFAR-10 dataset. For each test, we ran
the PGD with different loss functions, including the cross-
entropy (CE) loss function, the C&W loss function [6], the
DLR loss function [10], and our proposed MIFPE. We kept

all other settings the same across the tests. Firstly, we used
100 iterations for each test. Secondly, we adopted the same
step-size schedule with a linear decay [56], which updates
the perturbation boundary ϵ at each iteration i according to
the formula 2ϵ (1− i/I), where I denotes the total num-
ber of iterations. Thirdly, we employed momentum-based
updates [10] with a momentum factor of ν = 0.75 for
all tests. Lastly, we saved the best adversarial examples
generated during the attack. To demonstrate the effective-
ness of MIFPE in achieving near-state-of-the-art robustness
with only 100 iterations, we compare our results with the
best robust accuracy reported on RobustBench1, which uses
an ensemble of attacks and a minimum of 4900 iterations.
We also compared the attack performance of MIFPE with
GAMA PGD [43] under the same 100-iteration constraint.

In Table 1, we present a comprehensive comparison
showing that MIFPE outperforms CE, C&W, and DLR loss
functions on all tested models. Additionally, we found that
when PGD with momentum and step schedule using MIFPE
as the loss function outperforms GAMA PGD on all tested
models by at leat more than 0.1% under 100 iterations con-
straint, which is impossible when PGD with momentum and
step schedule using CE, C&W and DLR as the loss func-
tion. Remarkably, even with only 100 iterations, MIFPE
achieves results that are very close to the best results ob-
tained with at least 4900 iterations on some models, such
as Uncovering limits [17] and Proper definition [32] for CI-
FAR10, l∞, ε = 8/255. Our findings also reveal that C&W
and DLR perform even worse than CE in some cases, such
as on Robustness library [14] and Fast adversarial train-
ing [51] for CIFAR10, l∞, ε = 8/255. This suggests that
discarding partial logit elements in the loss function would
decrease the effectiveness of gradient-based attacks.

Faster convergence. We want to highlight that the effec-
tiveness of MIFPE is not achieved by increasing the com-
putational cost compared to other loss functions. We found
that minimising the effect of the floating-point errors leads
to faster convergence speed than competing loss functions.
Figure 7 shows that for all two defending models, MIFPE
loss performs more efficiently, and often with orders of
magnitude faster than other loss functions for successful at-
tacks. Finally, minimising the effect of floating-point error
operation introduces no overhead and imposes no impact on
the iteration time.

Boost the capability of existing attack strategies. Be-
cause MIFPE is a loss function, it can be easily integrated
with existing attack strategies by replacing the original loss
function. The results in Table 2 show that using MIFPE
boosts the attack’s effectiveness.

Ablation analysis. Our ablation experiments, presented
in Table 3, investigated the effect of momentum and step-
size schedule on PGD using different loss functions with
100 iterations. The results show that the MIFPE consis-
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Table 1. Comparing the proposed MIFPE loss (LMIFPE), against CE (Lce), C&W (Lcw), and DLR (Ldlr) losses. For each surrogate loss,
we use PGD-100 with the step-size schedule 2ϵ (1− i/I) and momentum ν = 0.75 . Models marked with † were trained with extra data.
Models marked with ‡, which used ε = 0.031 as originally reported by the authors. Numbers in parentheses indicate the improvement
w.r.t. the CE baseline. The best, calculated using an ensemble of attacks and a minimum of 4900 iterations, is reported from RobustBench1

to demonstrate how closely MIFPE can approach the lowest known robustness accuracy with only 100 iterations.

Defense method Architecture Clean CE (Lce) C&W (Lcw) DLR (Ldlr) GAMA PGD MIFPE (LMIFPE) Best
100 100 100 100 100 4900

MNIST, ℓ∞, ε = 0.3

Uncovering limits [17] WRN-28-10 99.26 96.55 96.64 (+0.09) 96.71 (+0.16) 96.69 (+0.14) 96.53 (−0.02) 96.31
MMA training [12] † LeNet5Madry 98.98 95.66 95.60 (-0.06) 95.56 (-0.10) 95.96 (+0.13) 95.50 (−0.16) 93.51
MMA training [12] LeNet5Madry 98.95 95.09 95.33 (+0.24) 95.59 (+0.50) 95.74 (+0.19) 94.88 (−0.21) 91.40
Neural level sets [3] SmallCNN 99.35 99.28 94.68 (-4.60) 95.09 (-4.19) 99.29 (+0.01) 94.67 (−4.61) 90.85
TRADES [59] SmallCNN 99.48 93.69 93.88 (+0.19) 94.49 (+0.80) 93.82 (+0.13) 93.67 (−0.02) 92.71
Robust optimization [29] SmallCNN 99.35 93.06 93.19 (+0.13) 93.63 (+0.57) 93.39 (+0.33) 92.88 (−0.18) 90.85
Fast adversarial training [51] SmallCNN 98.50 86.82 86.96 (+0.14) 87.42 (+0.60) 87.62 (+0.80) 86.57 (−0.25) 82.93

CIFAR-10, ℓ∞, ε = 8/255

Uncovering limits [17]† WRN-70-16 91.10 67.96 66.70 (-1.26) 66.78 (-1.18) 66.08 (-1.88) 65.96 (−2.00) 65.87
Fixing data augmentation [36] WRN-106-16 88.50 67.57 65.55 (-2.02) 65.61 (-1.96) 64.94 (-2.63) 64.75 (−2.82) 64.58
Fixing data augmentation [36] WRN-70-16 88.54 67.27 65.23 (-2.04) 65.32 (-1.95) 64.57 (-2.70) 64.46 (−2.81) 64.20
Proper definition [32] WRN-70-16 89.01 66.66 63.94 (-2.72) 64.01 (-2.65) 63.65 (-3.01) 63.49 (−3.17) 63.35
Uncovering limits [17] † WRN-28-10 89.48 65.59 63.62 (-1.97) 63.82 (-1.77) 63.05 (-2.90) 62.96 (−2.63) 62.76
Proper definition [32] WRN-28-10 88.61 64.66 61.55 (-3.11) 61.62 (-3.04) 61.19 (-3.47) 61.12 (−3.54) 61.04
Adversarial weight perturbation [53]† WRN-28-10 88.25 63.18 60.51 (-2.67) 60.60 (-2.58) 60.18 (-3.00) 60.09 (−3.09) 60.04
Unlabeled data [7]† WRN-28-10 89.69 61.60 60.47 (-1.13) 60.67 (-0.93) 59.82 (-1.78) 59.72 (−1.88) 59.53
HYDRA [40]† WRN-28-10 88.98 59.53 58.21 (-1.32) 58.30 (-1.23) 57.52 (-2.01) 57.38 (−2.15) 57.14
Misclassification-aware [50] WRN-28-10 87.50 61.60 58.03 (-3.57) 58.73 (-2.87) 57.20 (-4.40) 56.88 (−4.72) 56.29
Pre-training [19]† WRN-28-10 87.11 57.07 56.27 (-0.80) 57.07 (0.00) 55.22 (-1.85) 55.10 (−1.97) 54.92
Hypersphere embedding [33] WRN-34-20 85.14 61.43 55.35 (-6.08) 56.21 (-5.22) 54.37 (-7.06) 53.85 (−7.58) 53.74
Overfitting [37] WRN-34-20 85.34 56.85 55.22 (-1.63) 55.97 (-0.88) 53.87 (-2.98) 53.62 (−3.23) 53.42
Self-adaptive training [20]‡ WRN-34-10 83.48 56.12 54.30 (-1.82) 54.73 (-1.39) 53.64 (-2.48) 53.48 (−2.64) 53.34
TRADES [59]‡ WRN-34-10 84.92 55.21 53.94 (-1.27) 54.11 (-1.10) 53.38 (-1.83) 53.22 (−1.99) 53.08
Robustness library [14] RN-50 87.03 51.56 52.07 (+0.51) 52.81 (+1.25) 50.04 (-1.52) 49.84 (−1.72) 49.25
Neural level sets [3]‡ RN-18 81.30 79.12 40.07 (-39.05) 45.10 (-34.02) 79.69 (+0.57) 40.06 (−39.06) 39.77
YOPO [58] WRN-34-10 87.20 46.05 47.02 (+0.97) 47.55 (+1.50) 45.30 (-0.75) 45.19 (−0.86) 44.83
Fast adversarial training [51] RN-18 83.34 45.75 45.81 (+0.06) 46.89 (+1.14) 43.71 (-2.04) 43.57 (−2.18) 43.21

CIFAR-100, ℓ∞, ϵ = 8/255

Adversarial weight perturbation [54] WRN-34-10 60.38 33.09 30.74 (-2.35) 31.13 (-1.96) 29.44 (-3.65) 29.35 (−3.74) 28.86
Pre-training [19]† WRN-28-10 59.23 32.82 30.58 (-2.24) 31.83 (-0.99) 29.22 (-3.60) 29.02 (−3.80) 28.42
Progressive Hardening [42] WRN-34-10 62.82 26.18 26.69 (+0.51) 27.26 (+1.08) 24.97 (-1.21) 24.91 (−1.27) 24.57
Overfitting [37] RN-18 53.83 20.47 20.17 (-0.30) 20.30 (-0.17) 19.20 (-1.27) 19.16 (−1.31) 18.95

ImageNet, ℓ∞, ϵ = 4/255

Transfer Better [39] RN-50 64.02 38.44 37.26 (-1.18) 37.72 (-0.72) 34.94 (-3.50) 34.84 (−3.60) 34.96
Robustness library [14] RN-50 62.56 32.16 32.24 (+0.08) 32.80 (+0.64) 29.72 (-2.44) 29.60 (−2.56) 29.22
Transfer Better [39] RN-18 52.92 29.30 27.14 (-2.16) 27.40 (1.90) 25.56 (-3.74) 25.40 (−3.90) 18.95

CIFAR-10, ℓ2, ε = 0.5

Uncovering limits [17]† WRN-70-16 94.74 81.71 80.93 (-0.78) 80.94 (-0.77) 87.74 (+6.03) 80.57 (−1.14) 80.53
Uncovering limits [17] WRN-70-16 90.90 75.20 74.89 (-0.31) 74.95 (-0.25) 81.78 (+6.58) 74.56 (−0.64) 74.50
Adversarial weight perturbation [54] WRN-34-10 88.51 74.77 73.88 (-0.89) 73.89 (-0.88) 79.38 (+4.61) 73.67 (−1.10) 73.66
Robustness library [14] RN-50 90.83 69.65 70.13 (+0.48) 70.25 (+0.60) 78.15 (+8.50) 69.29 (−0.36) 69.24
Overfitting [37] RN-18 88.67 68.66 68.74 (+0.08) 69.03 (+0.37) 76.19 (+7.53) 67.87 (−0.79) 67.68
Decoupling direction and norm [38] WRN-28-10 89.05 66.56 67.00 (+0.44) 67.02 (+0.46) 74.61 (+8.05) 66.48 (−0.08) 66.44
MMA training [12] WRN-28-4 88.02 66.22 66.58 (+0.36) 66.60 (+0.38) 71.44 (+5.22) 66.16 (−0.06) 66.09

tently outperforms the other loss functions, and shows the
least variance across different setups. These findings sug-
gest that the effectiveness of the MIFPE should not be de-
pendent on the momentum and step-size schedule.

To analyze the reasons for the failure of the attack due
to floating-point rounding errors, we selected Z = zy −
maxi̸=y zi because its sign indicates if the attack is suc-
cessful or not. We compared the change of Z for samples

attacked by PGD-100 with CE loss but failed, and PGD-100
with MIFPE loss and succeeded. Figure 8 demonstrates that
for samples attacked with CE loss, the value of Z rapidly ap-
proaches 0 in the first few iterations and then remains pos-
itive afterwards. On the other hand, when attacked with
MIFPE loss Z smoothly drops below 0 after approaching 0.
This phenomenon suggests that the floating-point rounding
error primarily may cause attack failure when the samples

4062



25 50 75 100

Iterations

45

50

55

60

65

70

A
cc

u
ra

cy
(%

)

9

YOPO

MIFPE

C&W

DLR

CE

25 50 75 100

Iterations

55.0

57.5

60.0

62.5

65.0

67.5

70.0

A
cc

u
ra

cy
(%

)

8

TRADES

MIFPE

C&W

DLR

CE

Figure 7. We compare MIFPE to standard CE loss and other surro-
gate loss functions (C&W [6] and DLR [10]) on defenders [58,59].
The graph shows iterations on the horizontal axis and the percent-
age of unsuccessful examples on the vertical axis.

Table 2. The comparison of attack performances for FGSM [16],
PGD [29], APGD DLR [10] and AA [10] using original loss func-
tions versus MIFPE loss on CIFAR10 dataset and ε = 0.031 with
the model obtained from TRADES [59]. with the ∇ row repre-
senting the improvement achieved with MIFPE.

Attack
iteration

FGSM
1

PGD
100

APGD DLR
100

AA
4900

Original 79.83 79.79 45.90 40.22
MIFPE 49.76 40.06 40.49 39.89

∇ 30.07 39.73 5.41 0.33

Table 3. Ablation study on the effect of momentum and step-size
schedule on the PGD with different loss functions and under 100
iterations on CIFAR10 dataset with the model obtained from Neu-
ral level sets [3]. New components are added in consecutive rows.

Accuracy under
attack(%)

Loss Function
CE C&W DLR MIFPE

PGD 55.46 54.23 54.39 53.42
+Momentum 55.25 54.02 54.18 53.23
+Step-size schedule 55.21 53.94 54.11 53.22

become close to the classification boundary due to the rel-
ative error and its detrimental effect on the gradient-based
attack would increase as T approaches zero after reaching
the minimum.

5. Conclusion

This paper reveals that relative error in calculated gra-
dient caused by floating-point errors is a fundamental rea-
son why gradient-based attacks fail to accurately evaluate
the model’s robustness. To efficiently and accurately eval-
uate the model’s robustness, we introduce MIFPE , a new
loss function that minimises the impact of floating-point er-
rors on gradient-based attacks. Compared with other loss
functions, MIFPE enjoys higher accuracy and faster con-
vergence speed. Moreover, we find several surprising ob-
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Figure 8. The changing process of the value of Z = zy −
maxi̸=y zi with the number of iterations during the attack on the
CIFAR10 dataset using the model from TRADES [59] and single-
precision arithmetic. The horizontal axes show the number of iter-
ations used so far, and the vertical axes show the value of Z.

servations related to adversarial attacks: (1)Discarding par-
tial elements of logits in the loss will impair the attack’s
performance; (2)The floating-point rounding errors lead to
the attack’s failure by causing an increasing relative error as
the samples get closer to the classification boundary; (3)In-
creasing the precision of floating-point arithmetic cannot
solve the problem of overestimating the model’s robustness
caused by floating-point errors, etc. We hope that the above
observations will help discover more efficient and reliable
loss functions in the future. Finally, MIFPE is open source
with reproducible results 2.
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