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Abstract

Language models are capable of commonsense reason-
ing: while domain-specific models can learn from ex-
plicit knowledge (e.g. commonsense graphs [6], ethical
norms [25]), and larger models like GPT-3 [7] mani-
fest broad commonsense reasoning capacity. Can their
knowledge be extended to multimodal inputs such as im-
ages and audio without paired domain data? In this
work, we propose ESPER (Extending Sensory PErception
with Reinforcement learning) which enables text-only pre-
trained models to address multimodal tasks such as visual
commonsense reasoning. Our key novelty is to use rein-
forcement learning to align multimodal inputs to language
model generations without direct supervision: for example,
our reward optimization relies only on cosine similarity de-
rived from CLIP [52] and requires no additional paired
(image, text) data. Experiments demonstrate that ESPER
outperforms baselines and prior work on a variety of mul-
timodal text generation tasks ranging from captioning to
commonsense reasoning; these include a new benchmark
we collect and release, the ESP dataset, which tasks mod-
els with generating the text of several different domains for
each image. Our code and data are publicly released at
https://github.com/JiwanChung/esper.

1. Introduction

Collecting multimodal training data for new domains can
be a Herculean task. Not only is it costly to assemble mul-
timodal data, but also curated datasets cannot completely
cover a broad range of skills, knowledge, and form (e.g.
free text, triplets, graphs, etc.). Ideally, we want to endow
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Figure 1. The intuition of ESPER, Extending Sensory PErception
with Reinforcement learning. To better align knowledge in CLIP
and pretrained language models (PLM), we use CLIP as a reward
for the pairs of images and self-generated text.

multimodal models with diverse reasoning capacity (e.g.
ethics [25], commonsense [57], etc.) without undertaking
a separate multimodal annotation effort each time.

In this work, we propose Extending Sensory PErception
with Reinforcement learning(ESPER), a new framework that
enables a pre-trained language model to accept multimodal
inputs like images and audio. ESPER extends diverse skills
embodied by the pre-trained language model to similarly
diverse multimodal capabilities, all without requiring ad-
ditional visually paired data. In a zero-shot fashion, our
model generates text conditioned on an image: using this
interface, we show that ESPER is capable of a diverse range
of skills, including visual commonsense [50], news [39], di-
alogues [60], blog-style posts [28], and stories [22].

ESPER combines insights from two previously disjoint
lines of work: multimodal prompt tuning and reinforce-
ment learning. Like prior multimodal prompt tuning work,
ESPER starts from a base language-only model (e.g., GPT-
2 [53], COMET [6]), keeps most of its parameters frozen,
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and trains a small number of encoder parameters to map
visual features into the embedding space of the language
model [40, 45, 68]. Unlike prior works, however, ESPER
does not train these parameters using maximum likelihood
estimation over a dataset of aligned (image, caption) pairs.
Instead, it uses a reinforcement learning objective. During
training, the model is first queried for completions condi-
tioned on visual features. Then, the lightweight vision-to-
text encoder is updated using proximal policy optimization
(PPO) [59] to maximize a similarity score computed with a
secondary pre-trained image-caption model, CLIP [52]. As
a result, the frozen language model can interpret the mul-
timodal inputs in the same context as the text embedding
space without additional human-annotated paired data.

Reinforcement learning has two advantages over maxi-
mum likelihood objectives. First, RL bypasses the costly
process of collecting multimodal paired data by using a re-
ward model. This relaxation is especially favorable when
image/audio groundings rarely exist (e.g. ethics [25] and
knowledge graph [57]). The second major advantage of
RL is the maintenance of generalizability. Similar to prior
work, we freeze the parameters of the language model,
which helps keep its reasoning capacities. However, ESPER
goes a step further: Tsimpoukelli et al. [68] and Mokady
et al. [45] fine-tune their lightweight adapters using paired
visual-linguistic datasets such as Conceptual Captions [61]
or COCO Captions [38]. Because these literal scene de-
scriptions cannot match the textual variety of the large-scale
corpus GPT-2 is trained on, the supervised models may gen-
erate less richly styled language or be capable of as diverse
reasoning over input contexts [33, 73].

We experimentally compare ESPER to two classes of
prior methods that seek to adapt language models to ac-
cept visual inputs: (1) maximum likelihood prompt tun-
ing [45, 68]; and (2) decoding-time methods [67] that post-
process token probabilities of a frozen language model ac-
cording to estimated image similarity. For zero-shot im-
age/audio captioning, we find that ESPER outperforms all
prior unsupervised methods, both in terms of text qual-
ity (e.g., 14.6 point improvement in CIDEr over Laina et
al. [34] in COCO unpaired captioning) and inference speed
(e.g., 100× speedup vs. Tewel et al. [67], which relies on
per-token gradient optimization over partial decodings).

In addition, we show that ESPER can efficiently adapt
without paired resources on visual commonsense reason-
ing [6, 50], visual news [39], visual dialogue [11], and our
new zero-shot multimodal generation benchmark named
ESP (Evaluation for Styled Prompt dataset), which tests the
model’s capability to generate text of different domains for
the same image. Furthermore, ESPER also shows the capa-
bility to learn about audio inputs using an audio reward. We
hope the strong performance of ESPER presented here will
encourage researchers to consider RL-based training for fu-

ture multimodal prompt tuning work.

2. Method
ESPER consists of three components: 1) CLIP’s non-

generative image/text encoders [52];1 2) a left-to-right lan-
guage generator such as GPT-2 [53] or COMET [6]; and
3) an encoder that projects multimodal inputs into the sub-
word embedding space of the language generator.2 During
training, CLIP and the language generator’s parameters are
frozen; gradients are back-propagated through the frozen
language model to train the encoder parameters. We em-
ploy reinforcement learning (specifically, PPO [59]) to de-
rive these gradients: our reward is the similarity of the sam-
pled text to the input image, as estimated by CLIP. After RL
training, we evaluate ESPER in various zero-shot scenarios.
We use CLIP ViT-B/32 and GPT-2-base (12-layer) as de-
faults for our experiments. In this setting, ESPER features
8M trainable and 300M untrainable parameters.

2.1. Architecture

CLIP. Radford et al. [52]’s Contrastive Language Image
Pre-trained (CLIP) encoder plays two roles in our frame-
work: first, as a feature extractor for the input images, and
second, as an alignment reward between the images and the
model-generated text. First, the fixed CLIP image encoder
CLIP -I extracts single vector feature from the image xi;
second, the fixed CLIP text encoder CLIP -T is applied to
text samples the model generates; finally, we use the cosine
similarity of these two vectors as the reward signal.

Encoder. The encoder Fϕ is the only trainable module in
ESPER. Given the vector representation of an image xi ex-
tracted using CLIP, the module outputs a series of vectors
of length k to be passed on to the language model, i.e.,

hi = hi
1, . . . , h

i
k = Fϕ(CLIP -I(xi)) (1)

The output image representations hi work as the multi-
modal prompt and are concatenated to the embedded word
representations. For fair comparison in later experiments,
we use the same multimodal encoder architecture as CLIP-
Cap [45]: a lightweight, two-layer Multi-Layer Perceptron
(MLP), and set k = 10.

Pre-trained Language Model. ESPER employs a pre-
trained deep autoregressive language model such as GPT-
2 [53] as the backbone. Autoregressive language models

1While we describe image modeling here, we also experiment with au-
dio/text encoders, specifically Wav2CLIP [74], in § 3.4 that extend ESPER
to audio inputs.

2In principle, any model architecture with the same APIs could be used,
e.g., ALIGN [24] could be substituted for CLIP, or T5 [54] could be sub-
stituted for GPT-2
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Figure 2. Illustration of the proposed model, ESPER. We use a pre-trained language model (e.g. GPT-2 [53]) as the language generator.

parameterize likelihood of a text sequence y factored as text
tokens yj with length l using autoregressive decomposition.

pθ(y) =

l∏
j=1

pθ(yj |yj′<j) (2)

Inspired by prompt tuning in the text-only domain [40], we
concatenate hi with the output of GPT-2’s text embedding
lookup layer to prefix the conditioned text generation:

pθ(y
i|hi) =

l∏
j=1

pθ(y
i
j |hi, yij′<j) (3)

The initial text prompt can be as short as a single subword
token for free-form training or contain task-specific tem-
plates for zero-shot adaption to downstream tasks. The pa-
rameters of the language model θ are kept frozen.

2.2. Training

Reinforcement Learning. We propose to view CLIP as a
black-box model and apply reinforcement learning to max-
imize cosine similarity between the input image and gen-
erated text as a reward.3 From the RL perspective, our
language generator can be viewed as a policy, which pro-
duces actions (in the form of generations) given states (in
the form of text+image prompts). We use the clipped ver-
sion of Proximal Policy Optimization (PPO-clip) [59,63] as
the RL algorithm to optimize the reward: specifically, we
adapt the implementation of PPO from Stiennon et al. [63].
Stiennon et al. include an additional reward term that penal-
izes the KL divergence between the RL policy and the orig-
inal policy to ensure the generation stays fluent and mean-
ingful. Our value model has the same architecture as the
policy model (see Sec. 2.1). We use random sampling with
temperature 0.7 during training.

3Because CLIP does not provide differentiable per-token feedback (as
the model is only differentiable given a full caption) it’s not possible to do
gradient-based updates directly; we quantitatively compare against Tewel
et al. [67] who apply CLIP to partial decodings.

Given an input image x and the corresponding generated
text y, our reward is given by:

α

(
CLIP -I(x)

||CLIP -I(x)||
· CLIP -T (y)
||CLIP -T (y)||

)
+ β (4)

where α = 50, β = −10 are fixed normalizing factors that
empirically cause the reward function to have roughly zero
mean and unit variance during training. We defer the detail
of the PPO-clip algorithm to Appendix C.

Language Model Stability. Reward hacking can poten-
tially occur [30] if the agent discovers incoherent texts that
nonetheless achieve high rewards. To prevent this, we in-
corporate auxiliary rewards to stabilize the training process.
First, we compute the KL divergence between pθ and a sep-
arate (fixed) text-only GPT-2 model to maintain language
generation capability. We also find it beneficial to con-
sider text-only likelihood as an additional reward. Finally,
as reported in previous literature [20, 72], language models
often falsely assign high likelihoods to repetitive phrases.
We introduce an explicit repetition penalty against this phe-
nomenon. Refer to Appendix C for the details.

2.3. Adaptation on Pretrained Language Model

ESPER can also adapt to domain-specific language mod-
els. We use the unpaired text data to train the domain-
specific backbones such as COMET [6] via standard super-
vised learning. Then, we build the multimodal text gen-
erator (e.g. ESPER-COMET) by finetuning the backbone
using RL without any paired data. ESPER-Domain de-
notes an overarching term for the domain-specific types of
ESPER. In all our experiments, we build the text backbones
by finetuning GPT-2 4 with domain-specific text data such
as ATOMIC [57], News [39] and Dialog [39], alongside
the corresponding prompts (e.g., "news:", "dialog:",
etc.). On the other hand, ESPER also extends the zero-shot

4Again, ESPER can utilize any generative text model architecture, e.g.,
T5 [54].
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SocialMedia : @janew Look how shiny is my daughter's hair! The AAA conditioner really works!
News : It's been hard on kids since the lockdowns during the pandemic. They're so used to going to school, 
it's hard for them to stay home all the time. …
Blog : Teaching my daughter to brush her hair by herself has been a challenge. Now, I have finally gotten to 
the point where I sit and talk with her while she combs her hair instead of me doing it for her.
Instruction : Brush hair in even strokes. Use a detangling spray if there are knots that are hard to get out. 
Spraying only a few spurts of the detangling spray will be sufficient.
Story : Abbie realized she had to look good. She took out her comb and start strengthening her hair. It was 
easy for she usually does it without help. The hair she strengthened flattened smoothly.

Figure 3. A sample in Evaluation for Styled Prompt dataset (ESP dataset).

Model Domain B@4 M C Time
Pseudo-Align [34] ✓ 5.2 15.5 29.4 -
RSA [21] ✓ 7.6 13.5 31.8 -
Unpaired [34] ✓ 19.3 20.1 63.6 -
ZeroCap [67] 2.6 11.5 14.6 65s
ZeroCap-CaptionLM ✓ 7.0 15.4 34.5 65s
CLIPRe [64] ✓ 4.9 11.4 13.6 -
MAGIC [64] ✓ 12.9 17.4 49.3 3s
ESPER-GPT 6.3 13.3 29.1 0.65s
ESPER-CaptionLM ✓ 21.9 21.9 78.2 0.65s

Table 1. Unpaired captioning experiments in COCO test split.
B@4 denotes Bleu-4, M METEOR, and C CIDEr score. Running
time entails each step of inference, including image loading and
feature extraction. Domain indicates domain-specific text-only
pre-training. CLIPRe is a retrieval-based approach using CLIP.

Model Zero-shot B@4 M C
CLIPCap-MLP 27.4 22.4 94.4
CLIPCap-Full 32.2 27.1 108.4
ESPER-CaptionLM ✓ 21.9 21.9 78.2
ESPERInit-MLP 31.2 25.4 103.1
ESPERInit-Full 33.1 27.7 111.1

Table 2. Finetuning experiment in COCO Captions test split. We
omit the zero-shot baselines here for readability.

adaptability of general language models (GPT-2) to multi-
modal inputs. ESPER-GPT is an instance of the general-
purpose models that do not utilize task-specific text data.

3. Experiments

Our main goal is to extend the diverse knowledge in
pre-trained language models to multimodal domain. Ex-
periments in Sec. 3.1 test whether ESPER can align vision
and language, and those in Sec. 3.2 and Sec. 3.3 check that
ESPER maintains textual diversity in the backbone. As GPT
is a general-purpose language model, we want to show that
ESPER can likewise work as a general-purpose multimodal
text generator on diverse tasks such as commonsense rea-

soning, news, and dialogue. Finally, we extend ESPER to
another modality of audio in Sec. 3.4.

3.1. Evaluation of Visual Alignment

We first evaluate strength of the alignment between an
input image and the generated text in ESPER using the
MSCOCO captioning corpus [38]. While ESPER could ben-
efit from a more diverse set of unpaired images, for fair
comparisons with the baselines, we limit our data to COCO
training set images (unpaired with their captions).

3.1.1 Zero-Shot Image Captioning

Following previous works on unpaired captioning [13, 34],
we split the pairing between image and caption and train
them separately using ESPER for unsupervised evalua-
tion. We split COCO Captions dataset [38] with Karpathy
split [26]. Models are evaluated with BLEU-4 [49], ME-
TEOR [2], and CIDEr [69]. The models in Table 1 use
greedy decoding to generate descriptions at inference time.

In Table 1, without any explicitly paired MSCOCO data,
we show that ESPER outperforms a variety of prior works
in unpaired captioning [21, 34], and CLIP-based decoding
methods [64,67]. Domain-specific language generators im-
prove conditional generations: ESPER-GPT, which does not
know COCO caption text, falls behind ESPER-CaptionLM
(which is pre-trained on unaligned COCO captions, with
the prefix caption:). Also, at inference time, ESPER is
faster than decoding time methods like Tewel et al. [67].

3.1.2 RL helps, even in supervised finetuning

As our encoder shares the same architecture with MLP-
variant CLIPCap [45], we can directly evaluate the benefit
of ESPER’s RL training, even if supervised data is available.
We experiment two supervised variants: ESPERInit-MLP,
which finetunes only the encoder, and ESPERInit-Full, which
finetunes the encoder and language model jointly. Table 2
shows that initializing with ESPER’s RL-trained encoder
outperforms random initialization when performing usual
maximum likelihood training; this promising result shows
that RL and MLE training can complement each other.
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(a) Visual Commonsense Graph (VCG)
Model Zero-shot B@4 M C
Retrieval [52] ✓ 0.3 7.0 5.6
ZeroCap-COMET [67] ✓ 3.0 10.0 13.1
CLIPCap [45] ✓ 0.0 6.4 0.9
VisualCOMET [50] 12.5 10.7 16.5
Text-VCGLM ✓ 9.9 9.5 12.8
ESPER-VCGLM ✓ 13.0 10.5 16.4

(b) COCO Captions + COMET
Val Test

Model B@4 M C B@4 M C
Retrieval [52] 15.2 19.5 17.3 15.3 19.5 18.0
ZeroCap-COMET [67] 8.8 13.1 8.0 8.4 13.2 8.0
CLIPCap [45] 10.9 12.3 17.3 10.5 12.4 17.6
Text-COMET 17.8 18.9 3.3 17.7 18.9 3.3
ESPER-COMET 28.3 23.6 28.9 28.3 23.6 29.7

Table 3. Commonsense reasoning experiments in (a) unpaired
Visual Commonsense Graph validation split [50] and (b) COCO
Captions with commonsense extension of text-only COMET [6].

(a) News
Model Zero-shot B@4 M C
Show Attend Tell [75] 0.7 4.1 12.2
Text-Only ✓ 0.2 2.7 1.3
ZeroCap-News [67] ✓ 0.3 0.2 0.0
CLIPCap [45] ✓ 0.2 3.8 1.6
ESPER-NewsLM ✓ 0.8 4.4 4.6
ESPERInit-MLP 1.3 4.8 15.7

(b) Dialog
Model Zero-shot NDCG MRR R@1
ViLBERT [42] ✓ 11.6 6.9 2.6
ViLBERT-Head 19.7 9.8 3.4
Text-Only ✓ 19.3 18.3 5.7
ESPER-DialogLM ✓ 22.3 25.7 14.6

Table 4. Downstream task evaluation in (a) VisualNews [39]
test split and (b) VisDial [11] validation split.5 NDCG denotes
Normalized Discounted Cumulative Gain, MRR Mean Reciprocal
Rank and R@1 Recall at top 1.

Model B@4 M C
Retrieval [52] 0.71 6.46 2.49
ZeroCap-CaptionLM [67] 1.29 5.91 6.21
ESPER-GPT-2-Audio 0.32 4.62 2.84
ESPER-CaptionLM-Audio 3.40 9.47 7.92

Table 5. Audio alignment experiment in AudioCaps [27] test split.

5We use the validation set for evaluation for fair comparison against
previous zero-shot baseline results [47]

ATOMIC

Visual Commosense Graph

GT : A kid playing with a frisbee in the yard 

xNeed to have a frisbee. 

ZeroCap : Parkour raises PersonX’s hat.

HinderedBy Person X’s child is sprinkling water all 

over PersonX’s head.

ESPER : PersonX goes to the park to play frisbee 

xWant to have fun with the kid.

(Prompt) 1 is trying pieces of cake with a fork while 2 

watches her before

GT : pick the cake up. 

ZeroCap : see 2 make a good impression.

ESPER : order a cake.

Figure 4. Examples for zero-shot commonsense reasoning experi-
ments; ATOMIC [57] and Visual Commonsense Graph [50].

3.2. Fusing Domain-specific Language Models

Going beyond standard image captioning setups, we
evaluate ESPER’s capacity to adapt to text generators with
domain-specific knowledge such as commonsense. First,
we extend i) commonsense graphs to multimodal inputs.
We then evaluate ii) news and iii) dialogue domains, which
have existing public corpora.

3.2.1 Visual Commonsense Graph

While general language models (e.g. GPT-2) embody im-
plicit commonsense, commonsense knowledge graphs offer
explicit structures to represent commonsense. For instance,
ATOMIC [57] connects two everyday events with nine
types of If-then relations (e.g. cause and effects). We evalu-
ate ESPER on commonsense graphs with a text-only dataset
(ATOMIC) and a visual-language dataset (Visual Common-
sense Graph [50]). Figure 4 shows examples and model
output of ESPER in the selected commonsense datasets.

We first use Visual Commonsense Graph (VCG)
dataset [50] to show that ESPER can extend commonsense
graphs to visual inputs. Given an image and the correspond-
ing event description, VCG evaluate commonsense reason-
ing capability to generate text description on what happens
before, what will happen after the event, and why the event
took place. As in other experiments, ESPER-VCG uses un-
paired data with image and caption decoupled. We com-
pare ESPER-VCG against a supervised baseline of Visual-
COMET (trained with VCG) as well as a text-only finetuned
GPT-2. Note that all compared methods use event descrip-
tion as the only text context, discarding place annotation.

Results in Table 3-(a) show that ESPER improves over
the text-only baseline and even performs on par with Visu-
alCOMET, a baseline trained with image-caption pair infor-
mation not provided in ESPER-VCG. Hence, ESPER training
can substitute supervised training in commonsense graphs.

Next, we turn to a more complex task of adapting a
text-only dataset without any visual annotation. Here, we
fuse commonsense knowledge in ATOMIC [57] to visual
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Figure 5. Human evaluation of captions for each domain prompt. We take the average of 5-point Likert-scale ratings from three annotators.
V denotes visual relevance, I is informativeness, and F is fluency. Domain denotes domain-specific backbones described in Section 2.3.
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stimuli. For evaluation purposes, we instead build visually
aligned validation set using ATOMIC and COCO captions.
We defer the detail of evaluation set in appendix.

In Table 3-(b), we show that ESPER outperforms
retrieval-based and CLIP-based decoding methods. Thus,
ESPER trains a visually-conditioned commonsense model
successfully even when the text data is collected outside of
a visual context.

3.2.2 Visual News

VisualNews [39] includes 1.08 million news images along
with the associated image captions and articles. For a fair
comparison, we compare against models that rely only on
image inputs, 6 e.g., Show Attend Tell [75], from Liu et
al. [39]. We also include the text-only backbone as another
baseline (Text-Only).

Results are in Table 4-(a): zero-shot ESPER outperforms
not only the text-only baseline but also the supervised base-
line in Bleu-4 and METEOR scores. However, it lags be-
hind the supervised model in CIDEr. While various proper
nouns appear in news articles, CLIP has no knowledge of
most of them. Since CIDEr takes rarity of terms into ac-
count, this difference in data extends to performance degra-
dation in news texts generated from ESPER. By finetuning
the adaptor, ESPER overcomes the knowledge gap and ex-
ceeds the baselines even in CIDEr.

6Other baselines for VisualNews use the article text or keywords as
inputs and hence are not directly comparable to our framework.

3.2.3 Visual Dialogue

VisDial [11] is a dataset of iterative dialogues conditioned
on an image. The model output should be the ranking of
the given 100 next-response candidates. The reported met-
rics (NDCG, MRR, and R@1) compare the model order-
ing of the next response with the human ordering: refer to
the dataset paper [11] for details on the evaluation scheme.
After training ESPER with the unpaired dialogue-domain
generator, we rank the answer candidates by their likeli-
hood. The baselines consist of zero-shot ViLBERT [42] and
frozen ViLBERT finetuned with a linear head.

Table 4-(b) shows the VisDial dataset re-ranking results.
Zero-shot ESPER improves the baselines by a large margin.
It even outperforms the supervised ViLBERT-Head, show-
ing that ESPER can discern likely visual dialogues.

3.3. From One Image to Many Domains

While we observe that ESPER-GPT can generate diverse
image-related texts, we still need to prove that this textual
diversity is controllable by text prompts; a null hypothesis
is that there are identifiable and consistent features found,
e.g., only in news images, and that ESPER cannot produce
diverse captions for the same image.

ESP dataset. To benchmark ESPER-GPT’s capability to
generate diverse domain-specific language from the same
image, we collect and release a novel dataset, ESP dataset
(Evaluation for Styled Prompt dataset): a benchmark for
zero-shot domain-conditional caption generation. It com-
prises 4.8k captions from 1k images in the COCO Captions
test set [38]. We collect five text domains with everyday
usage: blog, social media, instruction, story, and news, as
illustrated in Figure 3. We defer the dataset details and the
collection process to Appendix D and E, respectively.

Automatic evaluations on ESP dataset Figure 6 shows
that ESPER generates conditional text depending on the do-
main prompts. ESPER outperforms CLIPCap-MLP [45],
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a COCO-supervised model, showing that ESP dataset re-
quires domain conditioning. Also, the text-only baseline
(which generates random domain-specific texts) is substan-
tially worse, indicating the importance of visual-linguistic
alignment. Finally, ESPER-Domain improves over ESPER-
GPT, demonstrating the effect of explicit domain condition-
ing. For fine-grained results, refer to Table 6 in Appendix F.

Human evaluations on ESP dataset We conduct a hu-
man evaluation on ESPER, ZeroCap [67],7 and ZeroCap-
Domain generated descriptions as well as ground truth
captions that cover six domain prompts in ESP dataset.
We choose 100 random images from ESP dataset and ask
English-proficient human annotators to provide a 5-point
Likert-scale if the sentences: 1) are visually relevant to the
image (Vis), 2) provide informative and interesting content
for the prompt (Inf), 3) and sound fluent and human-like
(Flu). Each sample is evaluated by three annotators us-
ing the Amazon Mechanical Turk platform. The results are
shown in Figure 5. On average, ESPER provides more visu-
ally relevant and informative content than ZeroCap. We also
measured Krippendorff’s alpha for each category (Vis:0.61,
Inf:0.50, Flu:0.31), which indicates high agreement be-
tween annotators. While ZeroCap is rated as slightly more
fluent (Flu), we suspect this is due to their short text length
leaving less room for grammatical errors.

3.4. Evaluation of Auditory Alignment

We extend ESPER to audio by replacing CLIP with its
audio variant Wav2CLIP [74]. For the audio captioning
dataset, we use the unpaired AudioCaps [27]. We follow an
identical protocol as in § 3.1, but use audio modality. For
baselines, we consider ZeroCap [67] and Retrieval, which
first samples text using fixed prompt (e.g. Sound of a)
and then retrieves ones with maximal CLIP score. Zero-
Cap here used Wav2CLIP as ESPER does. The results are
in Table 5:8 ESPER outperforms the baseline models. As
in the visual experiments, text-only pre-training in ESPER-
Domain further improves CIDEr by 5. Wav2CLIP (and
early experiments with other audio encoders [18, 74, 81],
also pre-trained on a classification dataset [8, 16]) provides
noisier training signal for ESPER compared to image CLIP
pre-trained on image caption dataset [52]. We expect this
variation is not only because Wav2CLIP’s datasets are rela-
tively small [81] but also because the datasets have less rich
language than image-text datasets. For samples on audio
captioning, refer to Appendix I.

7We use a version of GPT2-base size model to generate descriptions to
be comparable to our generation framework.

8With audio, we cannot compare to previous unpaired captioning meth-
ods [21, 34] directly, as these methods require visual object detectors.

(a) Caption : A cat sits on a chair in a park.

Blog : Hey, I've got my cat, a cat that I call "Shelby," and 

I'm not sure if it's a name I've ever heard before.

Social Media : she is sitting on the bench, and she's 

looking at me.

Dialogue : A: what color is the cat B: brown A: is it a cat 

or a dog? B: a brown cat

News : A cat that was found in a park in the city of New 

South Wales has been reunited with its owner. The cat, 

named 'Tiger', was discovered by …

ZeroCap : Image of a pet

MAGIC : A cat sitting on chairs in a living room.

(b) Caption : A skateboarder is riding a skate board in the air. 

Blog : picture of a skateboarder in a park. The video was 

posted on YouTube on March 25, 2013. 

Social Media : I like to skateboard. I'm a big fan of the 

skateboarding scene.

Dialogue : A: is the skateboarder a man B: yes A: what 

color is his helmet? C: black

News : What is the best way to skateboard? Get to know the 

pros: Discover the top pros in skateboarding.

ZeroCap : Image of a Flying saucer is seen in San 

Francisco on the morning of the the first of the year.

MAGIC : A skateboarder performs a trick on a ramp.

(c) 
Caption : The weather is clear and the man is walking.

Blog : I was walking down the street in the rain. I saw a 

man walking in front of a building

Social Media : The weather is so cold and rainy.   

http://tinyurl.com/l4wj4

Dialogue : A: Is it raining? B: no

News : The man who was walking down the street in the 

rain: News, Local, Provincial, Canada, World

ZeroCap : Image of a pedestrian.

MAGIC: A yellow umbrella sitting on top of orange wire.

ESPER : 

ESPER : 

ESPER : 

Figure 7. ESPER Zero-shot captioning examples on various
prompts. The conditioning prompt is denoted in bold(i.e. “text”).
We mark visually relevant points with green and errors with red.

3.5. Qualitative Results

Figure 7 gives zero-shot captioning results on COCO
images generated by ESPER-Domain and ZeroCap base-
line [67].9 Conditioning on both image and prefix, ESPER
usually generates various visually sensible and informative
captions. However, it is not perfect, e.g. in example (c),
while the monk is holding an umbrella, it is not raining.
Interestingly, ESPER is not internally consistent and, for
the same image but a different prompt, correctly says the
weather is clear. While ESPER sometimes generates factual
dialogues, it sometimes has difficulty counting, e.g., in ex-
ample (d) Dialogue A: how many people are there B: 3.

Figure 8 shows generation results on the “recipe” task
prompt that was not previously pre-trained as a domain
prompt. ESPER generates not only a sensible cake recipe
(Fig 8 (b)), but also reasonable “recipes” even when it is
not conditioned on a food image (Fig 8 (a),(c)); similar per-
formance is observed for “My favorite poem” and “lyrics”

9We used their public demo for qualitative results.
https://replicate.com/yoadtew/zero-shot-image-to-text
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(a) ESPER : (Recipe : ) 1. Make a bag of luggage. 2. Put the luggage in the bag. 3. 
Take the suitcase to the airport. 4. Go to your hotel. 5. Get a ticket to go to a restaurant. 
6. Eat at the restaurant and pay for your meal. 7. Return to where you left off. 8. Pay for 
the meal at your destination. 9. You're done. 10. Repeat steps 1-5 until you've paid for 
all your meals.
ZeroCap : (Recipe : ) Camp Out Nowak Parking - The Easy Way (with Video!)
MAGIC : (Recipe : ) I made a recipe for lasagna. It was very easy to make. I put the 
ingredients in the blender. When I was ready to serve, I took it out of the blender. My 
son was surprised by how much I used up the ingredients.

(b) ESPER : (Recipe : ) This is a cake made with a mixture of the following 
ingredients:  1 cup of sugar 1/2 cup flour 1 teaspoon baking powder 1 tablespoon baking 
soda 1 egg 1 1⁄2 cups of milk 1 large egg yolk 1 tsp vanilla extract 1 ½ cups (1 stick) 
unsalted butter, softened 1½ cups sugar 2 teaspoons vanilla 1¼ cups powdered sugar. 
ZeroCap : (Recipe : ) cake car is made with car. 
MAGIC : (Recipe : ) I made a recipe for chicken noodle soup. I put it in the blender 
and blended it until smooth. Then I added the chicken broth and stirred it in. …

(c) ESPER : (Recipe : ) 1. Place the bus in the middle of the street. 2. Turn the corner 
and walk to the right. 3. Walk to your left and turn right again. 4. Go to a building on 
your right and go to another building. 5. Turn right at the building and continue to 
walk. 6. At the end of the walk, you will see a door.
ZeroCap : (Recipe: ) The Lazy Busway Trip Home
MAGIC : (Recipe : ) I made a new recipe last night. It was for chicken noodle soup. I 
was trying to get it to be spicy, but my friend said it was delicious.  …

(b) (a) (c) 

Figure 8. Samples with unseen text domain prompt; (Recipe: ).

that GPT-2 can generate. In most cases, ZeroCap produces
short generations and does not generalize well to custom
text prompts. Yet another strong baseline, the story mode of
MAGIC [64], fails to capture the visual topic and prompt.

4. Related Work
Visual-Language Pretraining. Successful vision-
language models pre-trained on large-scale image-text
corpora have been proposed, e.g. BERT-style [12] mod-
els [9, 36, 66, 80], encoder-decoder style [24, 71, 82], and
contrastive models [23, 52]. Vision-text models are also
extended to audio [79, 81]. TAPM [76] adapts a visual
encoder and GPT with a self-supervised objective that
predicts the order of the story. ESPER extend the models by
training on self-generated text without any image-text pair.

Multimodal prompt tuning. Prefix tuning [37] and
Prompt tuning [35] simplify finetuning large models by a
fraction of the parameters. Tsimpoukelli et al. [68] adapt
prefix tuning to images via maximum likelihood train-
ing a small image-to-text adapter using Conceptual Cap-
tions [61]. Like ESPER, CLIPCap [45] combines GPT +
CLIP image features to generate image captions. We use
the same architecture as in CLIPCap and fix GPT weights
likewise, effectively following the setup of p-tuning [40].

Reinforcement learning for language tasks. In image
captioning, RL helps close the gap between training and

GT : A woman and a man talking as another man talks softly 

and papers shuffle in the background.

ESPER : The man is talking to a woman in the background.

GT : Water running from a flushed toilet.

ESPER : A toilet is flushed and flushed again.

GT : Bells ring followed by humming and vibrations as a 

train passes while blowing a horn.

ESPER : A train is passing by a train station.

(a)

(b)

(c)

Figure 9. ESPER samples given audio inputs. Each image is the
keyframe of the original video for illustration purposes. ESPER-
Audio uses only audio without visual input.

inference data [4, 55] or optimize discrete metrics di-
rectly [56]. Storytelling models employ RL to maintain
coherence in the story [65] or incorporate human feed-
back [43]. RL is also used in goal-driven dialogue [1], inter-
active QA [77], and grounded generation in text games [19,
70]. Recently, Instruction GPT [48] shows RL improves the
prompt-conditioning strength of pre-trained language mod-
els. To the best of our knowledge, ESPER is the first method
to use multimodal rewards. While Cho et al. [10] use CLIP
rewards as well, they finetune an already finetuned caption-
ing model while ESPER builds on text-only backbones.

5. Conclusion

ESPER combines language generation capability in a pre-
trained language generator with knowledge in CLIP to align
multimodal inputs to text without any supervision: we train
via reinforcement learning instead of maximum likelihood
training. ESPER offers strong visual alignment and fast in-
ference speed while maintaining the text domain. We hope
ESPER initiates further research on using RL for multimodal
language modeling, and ESP dataset invites work on ex-
tracting diverse contexts from the same image.
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