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Abstract

Out-of-distribution (OOD) generalization is an impor-
tant issue for Graph Neural Networks (GNNs). Recent
works employ different graph editions to generate aug-
mented environments and learn an invariant GNN for gen-
eralization. However, the label shift usually occurs in aug-
mentation since graph structural edition inevitably alters
the graph label. This brings inconsistent predictive rela-
tionships among augmented environments, which is harm-
ful to generalization. To address this issue, we propose
LiSA, which generates label-invariant augmentations to fa-
cilitate graph OOD generalization. Instead of resorting to
graph editions, LiSA exploits Label-invariant Subgraphs of
the training graphs to construct Augmented environments.
Specifically, LiSA first designs the variational subgraph
generators to extract locally predictive patterns and con-
struct multiple label-invariant subgraphs efficiently. Then,
the subgraphs produced by different generators are col-
lected to build different augmented environments. To pro-
mote diversity among augmented environments, LiSA fur-
ther introduces a tractable energy-based regularization to
enlarge pair-wise distances between the distributions of en-
vironments. In this manner, LiSA generates diverse aug-
mented environments with a consistent predictive relation-
ship and facilitates learning an invariant GNN. Extensive
experiments on node-level and graph-level OOD bench-
marks show that LiSA achieves impressive generalization
performance with different GNN backbones. Code is avail-
able on https://github.com/Samyu0304/LiSA.

1. Introduction

Learning from graph-structured data is a fundamental
problem in various applications, such as 3D vision [50],
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knowledge graph reasoning [65], and social network analy-
sis [32]. Recently, the Graph Neural Networks (GNNs) [33]
have become a de facto standard in developing deep learn-
ing systems on graphs [10], showing superior performance
on point cloud classification [18], recommendation system
[56], biochemistry [29] and so on. Despite their remarkable
success, these models heavily rely on the i.i.d. assumption
that the training and testing data are independently drawn
from an identical distribution [9, 39]. When tested on out-
of-distribution (OOD) graphs (i.e. larger graphs), GNN usu-
ally suffers from unsatisfactory performances and unstable
prediction results. Hence, handling the distribution shift for
GNNs has received increasing attention.

Many solutions have been proposed to explore the
OOD generalization problem in Euclidean space [47],
such as invariant learning [3, 14, 38], group fairness [34],
and distribution-robust optimization [49]. Recent works
mainly resort to learning an invariant classifier that per-
forms equally well in different training environments [3,
16, 37, 38]. However, the study of its counterpart problem
for non-Euclidean graphs is comparatively lacking. One
challenge is the environmental scarcity of graph-structured
data [39, 53]. Inspired by the data augmentation literature
[48, 52], some pioneering works propose to generate aug-
mented training environments by applying different graph
edition policies to the training graphs [55,57]. After training
in these environments, the GNN is expected to have better
OOD generalization ability. Nevertheless, the graph labels
may change during the graph edition since they are sensi-
tive to graph structural modifications. This causes the label
shift problem of augmented graphs. For example, methods
of graph adversarial attack usually seek to modify the graph
structure to permute the model prediction [9]. Moreover,
a small structural modification can drastically influence the
biochemical property of molecule or protein graphs [30].

We formalize the impact of the label shift in augmen-
tations on generalization using a unified structure equa-
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tion model [1]. Our analysis indicates that the label shift
causes inconsistent predictive relationships among the aug-
mented environments. This misguides the GNN to out-
put a perturbed prediction rather than the invariant pre-
diction, making the learned GNN hard to generalize (see
Section 3 for more details). Thus, it is crucial to gener-
ate label-invariant augmentations for graph OOD general-
ization. However, designing label-invariant graph edition
is nontrivial or even brings extensive computation, since it
requires learning class-conditional distribution for discrete
and irregular graphs. In this work, we propose a novel label-
invariant subgraph augmentation method, dubbed LiSA, for
the graph OOD generalization problem. For an input graph,
LiSA first designs the variational subgraph generators to
identify locally predictive patterns (i.e. important nodes
or edges for the graph label) and generate multiple label-
invariant subgraphs. These subgraphs capture prediction-
relevant information with different structures, and thus con-
struct augmented environments with a consistent predictive
relationship. To promote diversity among the augmenta-
tions, we propose a tractable energy-based regularization
to enlarge the pair-wise distances between the distributions
of augmented environments. With the augmentations pro-
duced by LiSA, a GNN classifier is learned to be invariant
across these augmented environments. The GNN predictor
and variational subgraph generators are jointly optimized
with a bi-level optimization scheme [61]. LiSA is model-
agnostic and is flexible in handling both graph-level and
node-level distribution shifts. Extensive experiments indi-
cate that LiSA enjoys satisfactory performance gain over
the baselines on 7 graph classification datasets and 4 node
classification datasets. Our contributions are as follows:

• We propose a model-agnostic label-invariant subgraph
augmentation (LiSA) framework to generate aug-
mented environments with consistent predictive rela-
tionships for graph OOD generalization.

• We propose the variational subgraph generator to dis-
cover locally crucial patterns to construct the label-
invariant subgraphs efficiently.

• To further promote diversity, we further propose an
energy-based regularization to enlarge pair-wise dis-
tances between the distributions of different aug-
mented environments.

• Extensive experiments on node-level and graph-level
tasks indicate that LiSA enjoys satisfactory perfor-
mance gain over the baselines on various backbones.

2. Related Work
Graph Neural Networks. The Graph Neural Network

(GNN) has become a building block for deep graph learn-

ing [33]. It leverages the message-passing module to ag-
gregate the adjacent information to the central node, which
shows expressive power in embedding rational data. Vari-
ous GNN variants have shown superior performance on so-
cial network analysis [6], recommender system [56], and
biochemistry [63]. While GNNs have achieved notable suc-
cess on many tasks, they rely on the i.i.d assumption that the
training and testing samples are drawn independently from
the same distribution [11]. This triggers concerns about the
applications of GNN-based models in real-world scenarios
where there is a distribution shift between the training and
testing data.

Out-of-distribution (OOD) Generalization. Given
the training samples from several source domains, out-of-
distribution generalization aims at generalizing deep mod-
els to unseen test environments [3]. Recent studies fo-
cus on learning an invariant predictive relationship across
these training environments, such as invariant representa-
tion/predictor learning [3, 37, 38], and invariant causal pre-
diction [8, 24, 42]. They either learn a predictor that per-
forms equally well (also known as equi-predictive [37])
in different environments or seek a stable parent variable
of the label in the structural causal model (SCM) [28]
for the prediction. When the environment partition is
missing, many works resort to group robust optimization
[26, 43, 46], environment inference [16, 64], and data aug-
mentation [17,52]. Although domain generalization on Eu-
clidean data has drawn much attention, the focus on its
counterpart to the graph-structured data is comparatively
lacking [13]. Our work follows the data augmentation strat-
egy. Differently, we consider generating the augmentations
of graph-structured data, which is usually challenging due
to their discrete and irregular structures.

OOD Generalization on Graphs. Some pioneering
works [4,5] on graph OOD generalization study whether the
GNN trained on small graphs can generalize to larger graph
size [15]. Recently, researchers have extended OOD gener-
alization methods, such as invariant learning [38] to handle
the distribution shift on graphs [13,39]. The main challenge
is environmental scarcity, which makes the learned invari-
ant relationship insufficient for graph OOD generalization.
To this end, recent works [7, 55, 57] employ different graph
edition policies to generate augmented environments. Since
the graph label is sensitive to the graph structure, graph edit-
ing is prone to change the label of the augmented graph and
makes it difficult for graph OOD generalization

3. Graph Augmentation for Graph OOD Gen-
eralization

3.1. Problem formulation

Let Dtr = {(Gi, Yi)|1 ≤ i ≤ N} be the training
graphs which are sampled from the distribution p(G, Y ) =
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∑
e∈Etr

p(G, Y |e)p(e). Here, G ∈ G and Y ∈ Y are graphs
and their labels. e ∈ E represents the environment. The
goal of graph OOD generalization is to learn a graph neural
network (GNN) f : G → Y on Dtr, which can general-
ize to unseen testing environments. This is formulated as a
bi-level optimization problem, which minimizes the worst-
case risk across the training environments [3]:

min
f
Re(f), s.t.e = arg max

e∈Etr

Re(f). (1)

Here, Re(f) is the risk of f in environment e. A GNN
f which minimizes Eqn. 1 is called invariant GNN, and is
supposed to generalize to OOD graphs at testing time. Re-
cent works show that the performance drop on OOD graphs
is attributed to learning from spurious subgraphs, which is
unstable across different environments [13, 57]. Thus, they
aim to learn an invariant predictive relationship between the
causal subgraph Ginv and the graph label Y . A GNN lever-
aging such a predictive relationship is stable across different
environments and is supposed to generalize. However, the
training environments for graphs [13,39] are usually scarce,
making it difficult to learn a generalizable GNN.

3.2. Augmentation-based Graph OOD Generaliza-
tion

To address the environmental scarcity issue, some works
employ different graph editing policies to change the graph
structures for augmentation. For example, EERM [55] in-
troduces a graph extrapolation strategy, which adds new
edges to the training graphs with reinforcement learning.
DIR [57] exchanges part of graph structures within a train-
ing batch, which is known as the graph intervention strat-
egy. We elaborate more details on these methods in the ap-
pendix. While different augmentation strategies have been
proposed, they are likely to cause the label shift in aug-
mentations since graph labels are sensitive to structure edit-
ing. This introduces inconsistent predictive relationships
among the augmented environments, and brings negative ef-
fects on graph OOD generalization. To formalize this prob-
lem, we build a unified structural equation model (SEM) for
augmentation-based graph OOD generalization:

Y e
Aug ← I(Winv ·Ge

inv)⊕ I(Waug ·Ge
aug)⊕Ne

Ge
Aug ← Saug(G

e, Ge
aug)

Ne ∼ Bernoulli(q), q < 0.5

Ne ⊥ (Ge, Ge
aug)

(2)

Here, Ge
Aug and Y e

Aug are the augmented graph and its
label. Saug is the augmentation function, which generates
Ge

Aug given Ge and the augmented structure Ge
aug . The

formulation of Saug depends on the augmentation strategy.
For EERM, Saug represents appending Ge

aug to Ge. And
it denotes exchanging Ge

aug between batched Ge for DIR.

I(·) is the labeling function. Winv is the parameterized in-
variant prediction relationship within original graphs and
Waug is the perturbed prediction relationship introduced
by augmentations. Waug changes the original graph label
with a flipping probability paug , making I(Winv ·Ge

inv) ̸=
I(Waug · Ge

aug). Ne is the independent noise within the
training graphs. ⊕ is the XOR operation to summarize
the impacts of augmentations and noise on the graph label.
With the SEM model in Eqn. 2, we could compute the risk
R of any classifier W following prior work [1]:

R = EeEY e
Aug,G

e
Aug

[Y e
Aug ⊕ I(W ·Ge

Aug)] (3)

It is straightforward to verify that the label-invariant aug-
mentation (paug = 0) can guide the GNN to leverage the in-
variant predictive relationship by risk minimization. How-
ever, when paug ̸= 0, the invariant predictive relationship
could be sub-optimal, making the GNN classifier to lever-
age the perturbed predictive relationship.

Theorem 3.1. Denote the risk of W = Winv and W =
Waug as Rinv and Raug respectively. We have Rinv ≥
Raug when paug ∈ [ 0.5−q

1−q , 1] and Rinv < Raug when
paug ∈ [0, 0.5−q

1−q ).

The proof is in the appendix. When the label shift occurs
in augmentation, a GNN classifier may fail to generalize by
leveraging a perturbed predictive relationship. In this case,
the OOD generalization will be unsatisfactory. Thus, it is
important to maintain label-invariance in graph augmenta-
tion for OOD generalization.

4. Label-Invariant Subgraph Augmentation

In this work, we seek label-invariant augmentations to
enhance the graph OOD generalization performance.

Definition 4.1 (Label-invariance Augmentation). Denote
g ∈ G as the augmentation function and f : G → Y as
the labeling function. g is a label-invariant augmentation
function i.f.f. f(G) = f(g(G)).

Designing a label-invariant graph edition policy is usu-
ally difficult since it usually needs to model the class-
conditioned distribution for graphs p(G|y). This usually
requires learning a power conditional generative model to
simulate p(G|y), which introduces extensive computational
burden [31]. For graph-structured data, it is rather difficult
to learn such a generative model due to the discrete and
vast graph space [29]. To alleviate this issue, we propose
the label-invariant subgraph (LiSA) augmentation method
as shown in Figure 1. Instead of resorting to graph edition,
LiSA efficiently generates label-invariant augmentations by
exploiting label-invariant subgraphs of the training graphs.
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Figure 1. The whole framework of LiSA. LiSA obtains augmented environments by discovering label-invariant subgraphs with a set of
variational subgraph generators {gi}Ki=1. Moreover, LiSA employs a tractable energy-based regularization to promote diversity among
augmentations. With these environments, LiSA learns an invariant GNN for OOD generalization.

4.1. Discover Label-invariant Subgraph with Vari-
ational Subgraph Generator

Discovering the label-invariant subgraph of the input
graph is non-trivial since the subgraph space is exponen-
tially large [62]. We devise the variational subgraph gen-
erator to efficiently construct the label-invariant subgraph
with a collection of locally predictive patterns. This factor-
ization reduces the subgraph generation into selecting im-
portant nodes and edges to avoid directly searching in the
large subgraph space.

Given an input graph G = {A,X}, the variational sub-
graph generator first outputs a node sampling mask to distill
the structure information of G. Specifically, it employs a l-
layer GNN and a Multi-Layer Perceptron (MLP) to output
the sampling probability pv of node v:

H = GNN(A,X), pv = Sigmoid(MLP(hv)). (4)

Here, H is the node embedding matrix and hv is the em-
bedding of node v. The output of MLP is mapped into
[0,1] via the Sigmoid function. A large sampling proba-
bility guides the node sampling mask mv = 1 with a high
probability, which indicates that the corresponding node v is
important to the graph label. Since the node sampling pro-
cess is non-differentiable, we further employ the concrete
relaxation [19, 27] for mv:

m̂v = Sigmoid(
1

t
log

pv,gi
1− pv,gi

+ log
u

1− u
), (5)

where t is the temperature parameter and u ∼
Uniform(0, 1). With the node sampling masks, we further
obtain the edge sampling mask by averaging the adjacent
nodes. For example, given two adjacent nodes v and n, the

mask me for edge evn is computed as me = 0.5(mv+mn).
Finally, we mask the input graph G with the node and edge
mask to generate the subgraph Gsub. By introducing the
node sampling process, we decompose the subgraph gener-
ation process into the node sampling process, which greatly
reduces computational expenses. We employ the informa-
tion constraint [23,60] to restrict that the subgraph only con-
tains a portion of original structural information.

Linfo = I(G,Gsub)

= EG,Gsub
log

p(Gsub|G)

q(Gsub)
−KL[p(Gsub)|q(Gsub)]

≤ EG∼p(G)KL[p(Gsub|G)|G)|q(Gsub)].
(6)

Here, KL is the KL-divergence. The inequality is due
to the fact that KL-divergence is non-negative. The pos-
terior distribution p(Gsub|G, e = i) is factorized into∏

v∈G Bernoulli(pv) due to the node sampling process.
The specification of the prior p(Gsub|e = i) in Eqn. 6 is
the non-informative distribution

∏
v∈G Bernoulli(0.5) fol-

lowing [2], which encodes equal probability of sampling or
dropping nodes in prior knowledge.

We proceed to encode the label-invariance into the ob-
tained subgraph with a jointly trained GNN classifier f . In
each iteration, it is first updated with the labeled training
graphs. Then, it serves as a proxy to measure the gap be-
tween the graph label and the subgraph label.

Lcls = CE(f(g(G)), Y ), (7)

where CE is the cross-entropy loss. During the subgraph
generation process, the variational subgraph generator rec-
ognizes the label-invariant subgraph by jointly minimizing
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the following loss:

L = Lcls(f, g) + αLinfo(g). (8)

4.2. Graph OOD Generalization with LiSA

Existing works show that the performance drop in
graph OOD generalization results from preferring superfi-
cial knowledge, such as spurious subgraphs, for the predic-
tion [13, 57]. With locally easy-to-learn information, the
GNN classifier can achieve a low training risk without a
global understanding of the whole graph structure, mak-
ing it difficult for OOD generalization. Our work allevi-
ates this issue by first decomposing each training graph into
multiple label-invariant subgraphs using a set of variational
subgraph generators. Intuitively, different subgraph genera-
tors generate diverse label-invariant subgraphs to construct
the augmented training environments. Suppose we use n
variational subgraph generators; we can obtain n+ 1 train-
ing environments together with the original training graphs.
We treat the subgraphs produced by the same variational
subgraph generator as an augmented environment. And the
probability density function of n + 1 total environments is
p(G, Y ) = 1

n+1

∑n+1
i=1 p(G, Y |ei) and e is the environment

variable. Then, we aim to train an invariant GNN which per-
forms equally well on these environments. In this manner,
the GNN avoids from only preferring the spurious subgraph
for the prediction and give stable prediction on different lo-
cally crucial patterns.

Denote the GNN classifier as f . We employ the variance
regularization [38] to learn an invariant GNN:

min
f
Lcls(f) + Vare(Lcls(f)). (9)

The first term is the classification loss of GNN on all the
training environments and the second term is the variance
of classification losses in different environments. To jointly
optimize the variational subgraph generators and the GNN
classifier, we minimize the loss terms in Eqn. 8 and Eqn. 9
with a bi-level optimization framework:

min
f
Lcls(f, g

∗
i ) + Vare(Lcls(f, g

∗
i )), i = 1 ∼ n

s.t.g∗i = argmin
gi
Lcls(f, gi) + αLinfo(gi).

(10)

In practice, we first obtain a sub-optimal g∗ by optimizing
g for T steps in the inner loop. Then, we use the updated
g∗ as a proxy in the outer loop to optimize f . We provide
pseudo-code for optimizing Eqn. 10 in Appendix.

4.3. Enforcing Diversity Among Augmented envi-
ronments

Directly optimizing Eqn. 10 may lead to a sub-optimal
solution where different variational subgraph generators
generate similar subgraphs. Thus, we aim to enlarge the

distances between the distributions of different augmented
environments to promote diversity.

Energy-based Regularization. We propose a novel
energy-based diversity regularization to enlarge the dis-
tance between the underlying distributions of augmented
environments. We employ the energy-based model (EBM)
p(G|e) ∝ exp−Eθ(G|e) to specify the graph distribution.
Here Eθ : G → R is the energy score and θ is the model pa-
rameter. The energy score assigns the density of data points
in each environment. Thus, we can compute the distance
between the distributions of two environments based on the
energy scores of pair-wised samples:

d(ej , ek) =
1

2N

N∑
i=1

[Eθj (Gi|ej), Eθk(Gi|ek)]2. (11)

Directly computing the distance in Eqn. 11 requires esti-
mating the model parameters θj and θk of EBMs in two
environments, which is computationally inefficient. To this
end, we compute the energy scores with the predictive log-
its of the GNN classifier f . Recall that the GNN classifier
outputs the prediction by applying the Softmax function to
the predictive logits.

p(Y |G, ej) =
exp f(gj(G))[Y ]∑

Y ∈Y exp f(gj(G))[Y ]
, (12)

where f()[Y ] denotes the Y -th output of f . Following prior
work [21], we obtain the joint distribution p(Y,G|ej) =
exp f(gj(G))[Y ]

Z . Here Z is the partition function. Then, we

marginalize Y to obtain p(G|ej) =
∑

Y ∈Y exp f(gj(G))[Y ]

Z .
Combining Eqn. 12, the energy score is expressed using the
predictive logits:

Eθj (G|ej) = − log
∑
Y ∈Y

exp f(gj(G))[Y ]. (13)

Combining Eqn. 13 and Eqn. 11, we can compute pair-wise
distances among environments with the energy score:

Le =
2

N(N + 1)

N∑
j=1

N+1∑
k=j+1

d(ej , ek). (14)

Thus, the total loss of LiSA takes the following form:

min
f
Lcls(f, {g∗i }ni=1) + Vare(Lcls(f, g

∗
i )), i = 1 ∼ n

s.t.g∗i = argmin
gi
Lcls(f, gi) + αLinfo(gi) + βLe(gi).

(15)

4.4. Extension to Node-level Tasks

We proceed to introduce the extension of LiSA on node
classification tasks. Different from the graph classification
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Table 1. Performances of different methods on OOD graph classification tasks. We report the mean and standard deviation of Accuracy. In
the Spurious-Motif dataset, b is the indicator of spurious correlation.

Methods
SpuriousMotif

MUTAG MNIST-75sp DD0.33 0.5 0.7 0.9

ERM 0.509 ± 0.007 0.505 ± 0.004 0.490 ± 0.006 0.448 ± 0.004 0.903 ± 0.009 0.862 ± 0.015 0.718 ± 0.027
IRM 0.502 ± 0.003 0.501 ± 0.005 0.486 ± 0.007 0.443 ± 0.017 0.910 ± 0.015 0.875 ± 0.006 0.732 ± 0.017

V-Rex 0.526 ± 0.010 0.518 ± 0.010 0.484 ± 0.010 0.452 ± 0.017 0.900 ± 0.020 0.868 ± 0.006 0.730 ± 0.031
Attention 0.514 ± 0.038 0.484 ± 0.045 0.452 ± 0.049 0.430 ± 0.016 0.917 ± 0.012 0.878 ± 0.003 0.529 ± 0.053
TopKPool 0.439 ± 0.028 0.432 ± 0.038 0.482 ± 0.035 0.366 ± 0.006 0.913 ± 0.007 0.879 ± 0.003 0.663 ± 0.031

GIB 0.524 ± 0.024 0.492 ± 0.019 0.430 ± 0.062 0.355 ± 0.003 0.887 ± 0.053 0.865 ± 0.002 0.543 ± 0.178
DIR 0.468 ± 0.025 0.459 ± 0.030 0.427 ± 0.021 0.386 ± 0.011 0.895 ± 0.049 0.812 ± 0.031 0.741 ± 0.074

LiSA 0.530 ± 0.004 0.529 ± 0.003 0.501 ± 0.005 0.474 ± 0.009 0.937 ± 0.014 0.876 ± 0.008 0.746 ± 0.069

task, the nodes are associated with their neighborhoods in
the node classification task. Hence, we take a local view of
the nodes and relate them with 1-hop ego-graphs [55, 66].
For example, Ni is associated with Gi = (Ai, Xi), where
Ai is the adjacent matrix of the 1-hop subgraph centered at
Ni and Xi is the neighborhood node feature matrix. Then,
we generate multiple label-invariant subgraphs of Gi by op-
timizing the subgraph generators with Eqn. 8. The whole
framework of LiSA is optimized with Eqn. 15.

5. Experiments
In this section, we extensively evaluate LiSA on both

node-level and graph-level OOD generalization tasks with
different types of distribution shifts. We run experiments
on the server with Tesla V100 GPU and Intel(R) Xeon(R)
Gold 6348 CPU, and use the PyG for implementation. The
network architecture, sensitivity study of hyper-parameters,
and detailed information on datasets are in the appendix.

5.1. Graph-level OOD Generalization

We first evaluate LiSA on out-of-distribution (OOD)
graph classification tasks with various distribution shifts
such as the graph size, noise feature, and spurious motif.

Datasets. We employ Spurious-Motif [59], MUTAG
[44], D&D [36], and MNIST-75sp [36] datasets for OOD
graph classification. The Spurious-Motif dataset consists of
synthetic graphs with spurious motifs. Each graph is gen-
erated by attaching one base (Tree, Ladder, Wheel, denoted
as S = 0, 1, 2) to a motif (Cycle, House, Crane, denoted as
C = 0, 1, 2). The graph label Y is consistent with the class
of motif. For the training graphs, the base is chosen with
probability P (S) = b × 1(S = C) + 1−b

2 × 1(S ̸= C)
to create a spurious correlation. b is changed to impose dif-
ferent biases on the training graphs. For testing graphs, the
motifs and bases are randomly connected. The training and
testing data in D&D and MUTAG datasets vary in the graph
size. Specifically, we choose the graphs in the D&D dataset
with less than 200 nodes for training, those with 200-300

nodes for validation, and graphs larger than 300 nodes for
testing. For MUTAG, we select graphs with less than 15
nodes for training, those with 15-20 nodes for validation,
and graphs larger than 20 nodes for testing. For MNIST-
75sp, each image is converted as super-pixel graphs. The
features of testing data contain random noises. We report
accuracy (Acc) for these datasets.

Baselines. We compare our method with empirical risk
minimization (ERM), invariant learning methods, including
V-Rex [38] and IRM [3]; interpretable methods, such as
Attention-based Pooling [36], TopK-Pooling [20], and GIB
[61]; and augmentation-based invariant learning method
DIR [57]. We employ GIN [58] as the backbone for model-
agnostic baselines. Since there is only one domain for train-
ing, we randomly group graphs to mimic different domains
to instantiate V-Rex and IRM. We report the mean and stan-
dard deviation of testing performances in 10 runs for differ-
ent methods.

Performance. We report graph OOD classification per-
formance in Table 1. LiSA outperforms most baseline
methods on both synthetic and real-world datasets, with up
to 5% absolute performance gain. When compared with
ERM, IRM and V-Rex only achieve comparable perfor-
mance on most datasets. This shows that it is usually in-
sufficient to directly implement general OOD generaliza-
tion methods to handle the distribution shifts on graphs. For
interpretable methods, they somehow achieve performance
gain compared with ERM as they discover a prediction-
relevant subgraph for predictions. However, they underper-
form other methods when a large distribution shift occurs
in the dataset, such as b = 0.9 for Spurious Motif and DD.
Moreover, we find that DIR, an augmentation-based invari-
ant learning method for graphs, can sometimes underper-
form ERM or interpretable methods due to the label shift
problem in augmentation. Thus, it is important to maintain
label invariance during augmentation.
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Figure 2. We report performances of different methods with 3 source domain combinations on the Facebook-100 dataset: (a). John Hopkins
+ Caltech + Amherst; (b).Bingham + Duke + Princeton; and (c). WashU + Brandeis+ Carnegie. We report the mean and standard deviation
of Accuracy across different runs.

Table 2. Mean and standard deviation of Accuracy (Acc) on OGB-Arxiv dataset.

Test Domain 14-16 16-18 18-20

Backbone APPNP SGGCN APPNP SGGCN APPNP SGGCN

ERM 46.30 ± 0.35 40.52 ± 1.24 43.75 ± 0.40 38.23 ± 2.15 39.78 ± 0.41 34.62 ± 2.14
EERM 46.42 ± 0.46 42.37 ± 2.37 44.53 ± 0.54 39.91 ± 2.07 43.24 ± 0.79 37.73 ± 1.42
LiSA 47.50 ± 0.52 47.14 ± 0.34 45.10 ± 0.50 45.49 ± 0.37 41.216 ± 0.249 38.89 ± 0.71

5.2. Node-level OOD Generalization

We proceed to apply LiSA to the OOD node classifica-
tion, where the distribution shifts are spatial and temporal.

Datasets & Metrics. For the spatial shift, we adopt
Twitch-Explicit [45] and Facebook-100 [51] datasets for
evaluation. These datasets contain different social networks
which are related to different locations such as campuses
and districts. For example, Twitch-Explicit contains seven
social networks, including DE, ENGB, ES, FR, PTBR, RU,
and TW. Following the protocol in prior work [55], we em-
ploy DE for training, ENGB for validation, and the rest
five networks for testing. For the Facebook-100 dataset, we
choose different combinations of three graphs for training,
two for validation, and the rest three graphs for testing. We
report ROC-AUC and Accuracy (Acc) for Twitch-Explicit
and Facebook-100.

For the temporal shift, we use a citation network OGB-
Arxiv [25], and a dynamic financial dataset ELLIPTIC
[41]. For OGB-Arxiv, we employ the papers published be-
fore 2011 for training, from 2011∼2014 for validation, and
those within 2014∼2016/2016∼2018/2018∼2020 for test-
ing. For ELLIPTIC, we split the whole dataset into different
snapshots, and use 5/5/33 for training, validation, and test-
ing. The testing environments are further chronologically
clustered into 9 folders for the convenience of comparing
the performances of different methods. We report Test F1
Score and Accuracy (Acc) for ELLIPTIC and OGB-Arxiv.

Baselines. We compare the performance of the pro-
posed LiSA with ERM and the state-of-the-art node gen-
eralization method, Explore-to-Extrapolate Risk Minimiza-
tion (EERM) [55]. EERM generates augmentations by

adding new edges while LiSA generates diverse label-
invariant subgraphs. For a fair comparison, we generate 3
augmented domains for both EERM and LiSA. We further
plug different methods into various GNN backbones, such
as GCN [33], GraphSAGE [22], APPNP [35], SGGCN [54]
and GCNII [12], to extensively evaluate their performance.
We evaluate the model with the highest validation accuracy
and report the mean and standard deviation of 10-run per-
formance for each method.

Performance. We report the results on Twitch-Explicit
in Table 3. The proposed LiSA exceeds the baselines in
most testing environments. Since there is only one source
domain for training, ERM is difficult to generalize. EERM
outperforms ERM in 4 of 5 testing environments. In Fig-
ure 2, we compare different methods with the GCN back-
bone on the Facebook-100 dataset. We can see that LiSA
achieves performance gains in different training environ-
ments. Moreover, the performance variance of LiSA is low,
showing a more stable generalization performance com-
pared with EERM and ERM.

For the temporal shift on nodes, we first plug different
methods into APPNP and SGGCN backbones and evaluate
their performances on the OGB-Arxiv dataset. As shown in
Table 2, LiSA outperforms the baselines in five cases out of
six with stable results in different runs. Then, we report the
results on the Elliptic dataset in Figure 3. LiSA outperforms
the baseline methods in most testing folds with different
backbones and achieves up to 10% absolute performance
gain. Moreover, we observe using different backbones can
lead to different generalization performances. Neverthe-
less, LiSA still achieves better generalization performances
when using the same backbone as the baselines.
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Table 3. Test ROC-AUC on Twitch-Explicit dataset. Each method is trained in a single environment. For a fair comparison, both EERM
and LiSA generate 3 augmented environments.

GCN ES FR PTBR RU TW

ERM 52.50 ± 4.09 54.92 ± 2.60 48.78 ± 7.45 50.49 ± 1.82 48.95 ± 2.31
EERM 54.17 ± 5.04 54.10 ± 1.76 49.49 ± 7.96 51.34 ± 1.672 49.83 ± 3.15

LiSA-Rex 57.75 ± 3.75 53.77 ± 0.84 55.40 ± 9.04 52.47 ± 0.39 54.66 ± 0.53
LiSA 57.97 ± 2.96 55.87 ± 2.66 59.96 ± 2.12 52.73 ± 0.67 52.60 ± 2.64

LiSA w/o Le 57.28 ± 3.49 54.80 ± 1.37 57.73 ± 7.23 52.55 ± 0.93 52.67 ± 2.21
LiSA w/o Linfo 55.81 ± 2.21 54.94 ± 2.49 57.49 ± 2.17 51.76 ± 0.91 50.71 ± 2.47

Figure 3. Test F1-Score on 9 testing folds in the ELLIPTIC
dataset. LiSA achieves better OOD generalization performance
with different GNN backbones.

5.3. Discussions

Influence of Backbone on OOD Generalization. The
OOD generalization performance on graphs is sensitive to
GNN backbones. As shown in Table 2, using APPNP as
the backbone usually results in better generalization per-
formance for the node-level temporal shift. Moreover,
the generalization performances in Figure 3 behave differ-
ently when choosing different backbones. Thus, apart from
label-invariant augmentation, adopting an appropriate GNN
backbone is also essential for graph OOD generalization.

Ablation Study. We remove Linfo and Le from Eqn. 15
to study their effects on label-invariant augmentation. As
shown in Table 3, removing these terms leads to perfor-
mance drops in generalization, which validates that these
two terms are important to generate label-invariant sub-
graphs for augmentation. Notice that prior work [55] max-
imizes the variance of classifier in the augmented environ-
ments to promote diversity. We replace Le in Eqn. 15 with
the variance-based regularization, leading to LiSA-Rex. As
shown in Table 3, LiSA-Rex also achieves competitive per-
formance. LiSA-Rex outperforms EERM when they both
employ variance-based regularization for diversity. Thus,
it is important to maintain label-invariant augmentation for
graph OOD generalization. Moreover, using the proposed
energy-based regularization leads to better OOD generaliza-
tion performance than variance-based regularization since
LiSA outperforms LiSA-Rex.

On the Diversity of Augmentations. Moreover, we
study the augmentation performances of different meth-
ods. We compare the distance between the original train-
ing environment and 3 augmented environments, denoted
as d1 ∼ d3, and the average pair-wise distance across 3
augmented environments, denoted as dintra. We employ

Table 4. On the diversity of different augmentation methods. d1 ∼
d3 are distances between the original training environment and the
augmented environments. dintra is the average pair-wise distance
across augmented environments.

Distance d1 d2 d3 dintra

EERM 0.76 0.73 0.75 0.04
LiSA 0.67 0.70 0.64 0.52

the score-based distance in OOD detection [40] as the dis-
tance metric. As shown in Table 4, the augmented envi-
ronments generated by EERM are similar since they have a
small average pair-wise distance, which shows insufficient
diversity. LiSA produces augmented environments with a
large average pair-wise distance. Moreover, the augmented
domains are also far from the source domain. Hence, LiSA
can indeed generate more diverse augmentations to facili-
tate graph OOD generalization.

6. Conclusion
In this work, we have studied augmentation-based OOD

generalization for graphs. We show that the label shift
during augmentation makes the learned GNN hard to gen-
eralize, and thus it is crucial to maintain label-invariant
augmentation. We propose LiSA to efficiently generate
label-invariant augmentations by exploiting multiple label-
invariant subgraphs of the training graphs. LiSA con-
tains a set of variational subgraph generators to discover
label-invariant subgraphs efficiently. Moreover, a novel
energy-based regularization is proposed to promote diver-
sity among augmentations. With these augmentations,
LiSA can learn an invariant GNN that is expected to gener-
alize. LiSA is model-agnostic and can be plugged into vari-
ous GNN backbones. Extensive experiments on node-level
and graph-level benchmarks show the superior performance
of LiSA on various graph OOD generalization tasks.
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