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Abstract
Omnidirectional images (ODIs) have obtained lots of re-

search interest for immersive experiences. Although ODIs
require extremely high resolution to capture details of the
entire scene, the resolutions of most ODIs are insufficient.
Previous methods attempt to solve this issue by image
super-resolution (SR) on equirectangular projection (ERP)
images. However, they omit geometric properties of ERP in
the degradation process, and their models can hardly gener-
alize to real ERP images. In this paper, we propose Fisheye
downsampling, which mimics the real-world imaging pro-
cess and synthesizes more realistic low-resolution samples.
Then we design a distortion-aware Transformer (OSRT) to
modulate ERP distortions continuously and self-adaptively.
Without a cumbersome process, OSRT outperforms previ-
ous methods by about 0.2dB on PSNR. Moreover, we pro-
pose a convenient data augmentation strategy, which syn-
thesizes pseudo ERP images from plain images. This simple
strategy can alleviate the over-fitting problem of large net-
works and significantly boost the performance of ODISR.
Extensive experiments have demonstrated the state-of-the-
art performance of our OSRT.

1. Introduction
In pursuit of the realistic visual experience, omnidi-

rectional images (ODIs), also known as 360◦ images or

panoramic images, have obtained lots of research interest in

the computer vision community. In reality, we usually view

ODIs with a narrow field-of-view (FOV), e.g., viewing in a

headset. To capture details of the entire scene, ODIs require

extremely high resolution, e.g., 4K × 8K [1]. However, due

to the high industrial cost of camera sensors with high pre-

cision, the resolutions of most ODIs are insufficient.

Recently, some attempts have been made to solve this

problem by image super-resolution (SR) [12,15,28,39,40].

*Equal contribution
†Corresponding author (e-mail: chao.dong@siat.ac.cn)

Unseen LR LAU-Net [12] w/o Fisheye

OSRT w/o Fisheye OSRT w/ Fisheye

Figure 1. Visual comparisons of ×8 SR results on LR images1with

unknown degradations. Fisheye denotes that the downsampling

process in training stages is under Fisheye images.

As most of the ODIs are stored and transmitted in the

equirectangular projection (ERP) type, the SR process is

usually performed on the ERP images. To generate high-

/low-resolution training pairs, existing ODISR methods

[12, 15, 28, 39, 40] directly apply uniform bicubic down-

sampling on the original ERP images (called ERP down-

sampling), which is identical to general image SR settings

[24, 43]. While omitting geometric properties of ERP in

the degradation process, their models can hardly general-

ize to real ERP images. We can observe missing struc-

tures and blur textures in Fig. 1. Therefore, we need a

more appropriate degradation model before studying SR al-

gorithms. In practice, ODIs are acquired by the fisheye

lens and stored in ERP. Given that the low-resolution is-

sue in real-world scenarios is caused by insufficient sensor

precision and density, the downsampling process should be

applied to original-formatted images before converting into

other storage types. Thus, to be conformed with real-world

imaging processes, we propose to apply uniform bicubic

1Photoed by Peter Leth on Flickr, with CC license.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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downsampling on Fisheye images, which are the original

format of ODIs. The new downsampling process (called

Fisheye downsampling) applies uniform bicubic downsam-

pling on Fisheye images before converting them to ERP im-

ages. Our Fisheye downsampling is more conducive to ex-

ploring the geometric property of ODIs.

The key issue of ODISR algorithm design is to utilize

the geometric properties of ERP images, which is also the

focus of previous methods. For example, Nishiyama et al.
[28] add a distortion-related condition as an additional in-

put. LAU-Net [12] splits the whole ERP image into patches

by latitude band and learns upscaling processes separately.

However, the separated learning process will lead to infor-

mation disconnection between adjacent patches. SphereSR

[40] learns different upscaling functions on various projec-

tion types, but will inevitably introduce multiple-time com-

putation costs. To push the performance upper bound, we

propose the first Transformer for Omnidirectional image

Super-Resolution (OSRT), and incorporate geometric prop-

erties in a distortion-aware manner. Specifically, to mod-

ulate distorted feature maps, we implement feature-level

warping, in which offsets are learned from latitude condi-

tions. In OSRT, we introduce two dedicated blocks to adapt

latitude-related distortion: distortion-aware attention block

(DAAB), and distortion-aware convolution block (DACB).

DAAB and DACB are designed to perform distortion mod-

ulation in arbitrary Transformers and ConvNets. These

two blocks can directly replace the multi-head self-attention

block and convolution layer, respectively. The benefit of

DAAB and DACB can be further improved when being in-

serted into the same backbone network. OSRT outperforms

previous methods by about 0.2dB on PSNR (Tab. 2).

However, the increase of network capacity will also en-

large the overfitting problem of ODISR, which is rarely

mentioned before. The largest ODIs dataset [12] contains

only 1K images, which cannot provide enough diversity for

training Transformers. Given that acquiring ODIs requires

expensive equipment and tedious work, we propose to gen-

erate distorted ERP samples from plain images for data aug-

mentation. In practice, we regard a plain image as a sampled

perspective, and project it back to the ERP format. Then we

can introduce 146K additional training patches, 6 times of

the previous dataset. This simple strategy can significantly

boost the performance of ODISR (Tab. 4) and alleviate the

over-fitting problem of large networks (Fig. 9). A similar

data augmentation method is also applied in Nishiyama et
al. [28], but shows marginal improvement on small models

under ERP downsampling settings.

Our contributions are threefold. 1) For problem formula-
tion: To generate more realistic ERP low-resolution images,

we propose Fisheye downsampling, which mimics the real-

world imaging process. 2) For method: Combined with the

geometric properties of ERP, we design a distortion-aware

Transformer, which modulates distortions continuously and

self-adaptively without cumbersome process. 3) For data:

To reduce overfitting, we propose a convenient data aug-

mentation strategy, which synthesizes pseudo ERP images

from plain images. Extensive experiments have demon-

strated the state-of-the-art performance of our OSRT2.

2. Related Work

Single Image Super-Resolution (SISR). Deep learning

for single image SR (SISR) is first introduced in [13]. Fur-

ther works boost SR performance by CNNs [11, 14, 22, 24,

26,29,43], Vision Transformers (ViTs) [7,8,21,23] and gen-

erative adversarial networks (GANs) [20, 35, 36, 42]. For

instance, EDSR [24] removes Batch Normalization layers

and applies a more complicated residual block. RCAN [43]

introduces channel-wise attention mechanisms to a deeper

network. SwinIR [23] proposes an image restoration Trans-

former based on [25]. To improve perceptual quality, adver-

sarial training are performed as a tuning process to generate

more realistic results [35, 36]. Moreover, various flexible

degradation models are proposed in [35, 41] to synthesize

more practical degradations.

Omnidirectional Image Super-Resolution (ODISR).
Initially, ODISR models focus on the spherical assembling

of LR ODIs under various projection types [2–4, 17, 27].

Recent ODISR models are performed on plane images and

are fine-tuned from existing SISR models with L1 loss

[15] or GAN loss [30, 44]. The improvements are limited,

for they only concern the distribution gap between ODIs

and plain images. Since LAU-Net [12] found pixel den-

sity in ERP ODIs is non-uniform, many studies attempt

to design specific backbone networks to overcome this is-

sue. LAU-Net [12] manually splits the whole ERP im-

age into latitude-related patches and learns ERP distortion

over different latitude ranges separately. While LAU-Net

learns latitude-related ERP distortion somewhat, its non-

overlapped patches lead to disconnection in whole ERP im-

ages. Nishiyama et al. [28] treats area stretching ratio as

additional input. However, these conditions are tough to

be utilized with an unmodified SISR backbone network.

SphereSR [40] learns upsampling processes on various pro-

jection types to mitigate the influence of non-uniformity

in specific projection types. Although SphereSR improves

information consistency between various ODI projection

types by LIIF [9], they apply multiple networks to learn

the upscaling process of each projection type. Given that

all other projection types in SphereSR are converted from

ERP, patterns under various types are reusable when dis-

tortions are properly rectified. Moreover, the complex and

unstructured image data in polyhedron projection hinders

further research of ODISR.

2https://github.com/Fanghua-Yu/OSRT
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Deformable Mechanism. Dai et al. [30] first propose

deformable convolutions to obtain information out of its

regular neighborhood. Xia et al. [38] further verified that

Vision Transformers also benefit from applying deformable

mechanisms on self-attention blocks. In Video SR tasks,

the deformable mechanism can be adapted to align features

between adjacent frames [5, 6, 34].

3. Method
In this section, we first analyze the cause of ERP and

Fisheye distortions, as well as the relationship between

these two distortions (Sec. 3.1). Then, we discuss the de-

signs of Fisheye downsampling (Sec. 3.2), distortion-aware

Transformer (OSRT) (Sec. 3.3), and the convenient data

augmentation strategy (Sec. 3.4).

3.1. Revisiting Distortions in ODIs

(b) Dual Fisheye(a) Fisheye Plane

(d) ERP(c) Spherical Surface

Figure 2. Geometric explanation of transforming between ERP,

Fisheye, and the ideal spherical surface. To simplify, we discuss

the horizontal spliced Fisheye with an aperture degree of π.

As ODIs under each projection type are constrained

by different transforming equations, the distortion caused

by each type is inconsistent, indicating that applying ma-

trix operations under one projection type can introduce

unexpected changes when being converted to other types.

Specifically, applying uniformed bicubic downsampling on

ERP images will affect the distribution of pixel density

on Fisheye images, which are the original-formatted image

type of imaging process in real-world scenarios. To analyze

the specific effect of ERP downsampling on the Fisheye im-

age, we revisit the cause of distortions in ERP and Fisheye.

As we assume that viewing directions are uniformly dis-

tributed, the data points in an ideal ODI should be uniformly

distributed on a spherical surface. In practice, there is a

trade-off between the uniformity of the spherical surface

and the structural degree. ERP is the most convenient pro-

jection type for storage or transmission, but it is also the

projection type that suffers the heaviest distortion. To better

explain the causation of distortions, we follow the definition

of stretching ratio (K) in [31], which represents distortion

degree at different locations from the target projection type

to the ideal spherical surface. K is determined by area vari-

ation from one projection type to another. When the target

type is uniforming spherical surface, K is defined as:

K(x, y) =
δS(θ, ϕ)

δP (x, y)
=

cos(ϕ)|dθdϕ|
|dxdy| =

cos(ϕ)

|J(θ, ϕ)| , (1)

where δS(·, ·) and δP (·, ·) represent the area on the spher-

ical surface and the projection plane, respectively. |didj|
represents plane microunit. |J(θ, ϕ)| is the Jacobian deter-

minant from spherical coordinate to projection coordinate.

ERP distortion. The coordinate in ERP is defined as

x = θ and y = ϕ. ERP stretching ratio can be derived as:

KERP(x, y) = cos(ϕ) = cos(y), (2)

where x ∈ (−π, π), y ∈ (−π
2 ,

π
2 ).

From Eq. (2), we conclude that ERP distortion is only

determined by its latitude degree. KERP is reduced to

zero when the absolute value of latitude degree increases

to π/2, which represents that pixel density on the polar ar-

eas of ERP images is closer to zero. As shown in Fig. 2

(c), with the increasing of the absolutely value of latitude

degree (|ϕs|), the corresponding area on the spherical sur-

face of an ERP microunit is gradually decreased to zero. In

conclusion, ERP distortion is caused by variable stretching

ratios KERP, and is the heaviest in the polar areas.

Fisheye distortion. The coordinate in Fisheye can be

derived from θ = arctan ( yx ) and ϕ = (1−
√
x2 + y2)× π

2 .

The stretching ratios of Fisheye can be derived as3:

KFisheye(x, y) =
2
π sin (π2

√
x2 + y2)√

x2 + y2
, (3)

where
√
x2 + y2 ∈ (0, 1).

KFisheye is determined by distance from the fisheye cen-

ter. As (KFisheye)
−1 is bounded, fisheye projection is closer

to uniform distribution than ERP. Moreover, it introduces

much slighter distortion at the polar.

Relationship between ERP and Fisheye distortions.
To simplify, here we only discuss a typical Fisheye with an

aperture degree of π and a horizontal slicing plane4. In this

case, the ERP coordinates and Fisheye’s polar coordinates

correspond linearly. We can quantize the relationship by:

KERP|Fisheye(θ, ϕ) =
KERP(xE , yE)

KFisheye(xF , yF )
=

π

2
− |ϕ|, (4)

where θ, ϕ are spherical coordinates on the sphere, xE , yE
(xF , yF ) denotes the plain coordinate under ERP (Fisheye).

3Detailed derivative processes can be found in the supplementary file.
4The influence of Fisheye formats with arbitrary splicing plane is dis-

cussed in the supplementary file.
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Object Plane

Image Plane

Focal
Length

Imaging areaFisheye HRFisheye LR

ERP LR*
ERP HR

ERP
Downsampling

Fisheye
Downsampling

ERP LR

Figure 3. Downsampling process of ODIs (left) and imaging pro-

cess in real world (right). * denotes that LR images synthesized

from different downsampling processes are inconsistent.

From Eqs. (2) to (4), we conclude that when uniformed

downsampling is performed on ERP, the kernel size of

equivalent Fisheye downsampling is non-uniformed. Espe-

cially when fisheye projection is spliced horizontally, the

kernel size is proportional with π/2− |ϕ|.
3.2. Learning with More Realistic Degradation

As depicted in Fig. 3, the original-formatted projection

type in ODI acquiring process is fisheye projection. Given

that real-world low-resolution issues are caused by insuffi-

cient precision and density of sensors, we consider that the

degeneration process should be directly applied to original-

formatted images before the type conversion.

Ideally, as camera sensors are arranged in uniform ar-

rays, pixel density on original-formatted images is consis-

tent everywhere. Thus, for a realistic ODI, the pixel density

on Fisheye should be a constant. As discussed in Sec. 3.1,

applying uniformed downsampling on ERP means apply-

ing downsampling of variable kernel size on Fisheye. The

variable kernel size leads to variable Fisheye pixel density,

which results in unrealistic LR images. In conclusion, the

ERP downsampling in previous methods influences the in-

trinsic distribution of pixel density in original-formatted im-

ages, which leads to unrealistic ODIs. When the downsam-

pling process happens on Fisheye, the Fisheye pixel density

is unchanged, which fits the real-world imaging process and

synthesizes more realistic LR pairs.

Process of Fisheye downsampling. To generate more

realistic LR ODIs, we mimic the real-world imaging pro-

cess and apply bicubic downsampling on Fisheye images.

One single Fisheye image can only store information about

a hemisphere. Hence, ERP images are converted to dual

Fisheye images. Before downsampling, Fisheye images are

padded by a FOV larger than 180◦ to avoid edge discon-

nections. This padding operation will not influence the geo-

metric transforming relation between ERP and Fisheye. As

Fisheye data is unstructured and Fisheye distortion is more

complicated than ERP distortion, we still learn the upscal-

ing process under ERP. Thus we reconvert LR images to the

ERP format. The overall process of Fisheye downsampling

are described in Fig. 3.

3.3. OSRT: Modulate Distortion in ODIs

Overall. As discussed in Sec. 3.1, ERP images suf-

fer a distortion caused by a non-consistency area stretch-

ing ratio from an ideal spherical surface. Referred from

Eq. (2), for an LR input Xi ∈ R
C×M×N , the distortion

map Cd ∈ R
1×M×N is derived by:

Cd = cos

(
m+ 0.5−M/2

M
π

)
, (5)

where m is the current height of LR input.

Previous methods tend to treat Cd as an additional in-

put of Xi [28], or re-weighting parameters by Cd [18]. Al-

though these solutions can benefit from building awareness

of distortion, continuous and amorphous distortions cannot

be adequately fitted by scattering and structured convolu-

tion operations. While previous methods cannot fully ex-

plore the advantage of Cd, we intend to design a novel block

for learning distorted patterns continuously. In VSR tasks,

the deformable mechanism is proposed to align features be-

tween adjacent frames [32, 34]. Unlike standard DCN [10],

which calculates offsets from the input feature map, off-

sets are calculated from bi-directional optical flow in VSR

pipelines. Inspired by feature-level flow warping in VSR,

we find that the deformable mechanism is a feasible solution

for continuous mappings. Consequently, we modulate ERP

distortion by feature-level warping operations. As shown

in Fig. 4, Cd is only utilized to calculate the deformable

offsets θ. To keep compatibility with arbitrary ConvNets

and Transformers, we propose two blocks to modulate ERP

distortion, which can directly replace the multi-head self-

attention blocks in Transformers and the standard convolu-

tion layers in ConvNets, respectively.

Distortion-aware attention block (DAAB). As de-

picted in Fig. 4 (a), a distortion condition guided de-

formable self-attention is proposed to learn correlations be-

tween the distorted input Xi and its corresponding modu-

lated feature map X̃i. DAAB is formulated as:

θi = Hoffseti(Cd, Cw), X̃i = φ(Xi; p0 + θi), (6)

Xo = HSA(XiWqi , X̃iWki
, X̃iWvi), (7)

where Hoffseti(·) denotes the i-th convolution block to cal-

culate offset maps θi ∈ R
2×H×W , and HSA denotes stan-

dard self-attention formula. Hoffset(·) consists of 1 × 1
convolution block with two hidden layers. The input of

Hoffset(·) is concatenated by the latitude-related distortion

condition Cd ∈ R
1×H×W and the window condition Cw ∈

R
2×H×W . Cw is a linear position encoding within a self-

attention kernel. φ(·, ·) denotes a bilinear interpolation, and

Wqi ,Wki
,Wvi denote i-th weight matrix of query, key, and
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Figure 4. Overall illustration of OSRT. From SwinIR [23], we replace the standard multi-head self-attention block with DAAB and insert

DACB behind the end of the RSTB. Channel dimensions of θoffsets in DAAB and DACB are 2 and 18, respectively.

value, respectively. For multi-head self-attention blocks,

Hoffseti(·) is identical in calculations of parallel heads.

Distortion-aware convolution block (DACB). As

shown in Fig. 4 (b), we apply a standard deformable convo-

lution layer with a substituted input for offset calculation.

Modulated output Xo is extracted as:

θi = Hoffseti(Cd), Xo = HDCNi
(Xi, θi), (8)

where HDCN(X, θ) denotes standard deformable convolu-

tion layer in [46]. The architecture of Hoffseti(·) is identical

to that in DAAB. As the kernel size of DCN is 3 × 3 in

DACB, the output channel dimension of offsets maps is 18.

OSRT. In practice, we propose an Omnidirectional im-

age Super-Resolution Transformer, named OSRT. SwinIR

[23] is selected as the basic architecture for its strong re-

construction ability in the SISR task. To learn distortion

rectified representations, we stack a DACB after the last

convolution layer of each residual swin Transformer block

and replace all self-attention blocks as DAAB. The feature

dimension of OSRT is reduced from 180 to 156 to maintain

identical parameters with SwinIR.

3.4. Boosting ODISR Performance by Plain Images

As the capacity of OSRT is relatively large, it suf-

fers overfitting for large upscaling factors (Fig. 9). Given

that acquiring ODIs are expensive, we propose to generate

pseudo ERP images from 2D plain images to tackle this is-

sue. After being sampled by sliding windows, the patch of

plain images is treated as a plain perspective. By converting

from Perspective to ERP, plain images are distorted in the

same way as ERP. Considering that distortion of a Perspec-

tive is enlarged by its FOV degree, a relatively small FOV

degree of 90◦ is applied. For a given pseudo Perspective, θp
is fixed at 0 and ϕp is derived by:

Φp = ϕh + z0, (9)

where ϕh is determined by patch locations and z0 is orderly

sampled from {−15◦, 0◦, 15◦}.

To maximize the approximate data distribution of ODIs,

we horizontally split a plain image into three sub-images

and define ϕh as −30◦, 0◦, 30◦ respectively. Pseudo ERP

images are cropped to remove the black border. As shown

in Fig. 5, we get a new ERP dataset (called DF2K-ERP)

by implementing the augmentation pipeline on widely-used

plain image dataset DF2K [24,33]. The DF2K-ERP dataset

consists of 146K high-quality ERP image patches with a

patch size larger than 256.

Pseudo Perspective Image
Synthetic ERP Augmented patches

DF2K

Figure 5. Synthetic process of DF2K-ERP.
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Method Scale
ODI-SR SUN 360 Panorama

PSNR SSIM WS-PSNR WS-SSIM PSNR SSIM WS-PSNR WS-SSIM

Bicubic

×2

28.21 0.8215 27.61 0.8156 28.14 0.8118 28.01 0.8321
RCAN [43] 30.08 0.8723 29.49 0.8714 30.56 0.8712 31.18 0.8969

SRResNet [36] 30.16 0.8717 29.59 0.8697 30.65 0.8714 31.20 0.8953
EDSR [24] 30.32 0.8770 29.68 0.8727 30.89 0.8784 31.42 0.8995
SwinIR [23] 30.52 0.8819 29.87 0.8772 31.21 0.8852 31.78 0.9051

SwinIR† [23] 30.64 0.8821 30.00 0.8777 31.33 0.8855 31.98 0.9059

OSRT† 30.77 0.8846 30.11 0.8795 31.52 0.8888 32.14 0.9081

Bicubic

×4

25.59 0.7118 24.95 0.6923 25.29 0.6993 24.90 0.7083
RCAN [43] 26.85 0.7621 26.15 0.7485 27.10 0.7660 26.99 0.7856

SRResNet [36] 26.91 0.7597 26.24 0.7457 27.10 0.7618 26.99 0.7812
EDSR [24] 26.97 0.7589 26.30 0.7458 27.19 0.7633 27.10 0.7827
SwinIR [23] 27.12 0.7663 26.44 0.7523 27.39 0.7707 27.30 0.7901

SwinIR† [23] 27.31 0.7735 26.61 0.7589 27.71 0.7804 27.64 0.7996

OSRT† 27.41 0.7762 26.70 0.7609 27.84 0.7835 27.77 0.8020

Table 1. SR results under Fisheye downsampling. † denotes applying DF2K-ERP as augmented dataset. Best results are shown in Bold.

SUN360 (×4): 034

HR Bicubic RCAN [43] SRResNet [36]
PSNR/SSIM 24.38dB/0.6872 26.40dB/0.8137 26.21dB/0.7999

EDSR [24] SwinIR [23] SwinIR† [23] OSRT†

26.38dB/0.8072 26.77dB/0. 8234 27.34dB/0.8462 27.68dB/0.8561

SUN360 (×4): 095

HR Bicubic RCAN [43] SRResNet [36]
PSNR/SSIM 30.20dB/0.8506 33.59dB/0.9088 33.43dB/0.9043

EDSR [24] SwinIR [23] SwinIR† [23] OSRT†

33.64dB/0.9074 34.05dB/0.9119 34.41dB/0.9158 34.77dB/0.9187

Figure 6. Visual comparisons of ×4 SR results under Fisheye downsampling.

4. Experiments

4.1. Experimental Setup

ODI-SR dataset [12] and SUN360 Panorama dataset [39]

are used in our experiment. In the training phase, we follow

the data split setting in [12] and train on the ODI-SR train-

ing set. The resolution of the ERP HR is 1024 × 2048,

and the upscaling factors are ×2 and ×4. Fisheye down-

sampling is applied as our pre-defined downsampling ker-

nel. Loss is calculated by L1 distance and optimized by

Adam [19], with an initial learning rate of 2 × 10−4, a

total batch size of 32, and an input patch size of 64. We

train OSRT for 500k iterations and halve the learning rate

at 250k, 400k, 450k and 475k. In evaluation, we test on

the ODI-SR testing set and SUN360 dataset. PSNR [16],

SSIM [37], and their distortion re-weighted versions (WS-

PSNR [31], WS-SSIM [45]) are used as evaluation metrics.

4.2. Evaluation under Fisheye Downsampling

When the downsampling process is performed on Fish-

eye images, we train SRResNet [36], EDSR [24], RCAN

[43], and SwinIR [23] for comparison.

Quantitative results. As shown in Tab. 1, with the

help of additional DF2K-ERP training patches, OSRT out-
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Scale ×8 ×16

Method
ODI-SR SUN 360 Panorama ODI-SR SUN 360 Panorama

WS-PSNR WS-SSIM WS-PSNR WS-SSIM WS-PSNR WS-SSIM WS-PSNR WS-SSIM

Bicubic 19.64 0.5908 19.72 0.5403 17.12 0.4332 17.56 0.4638
SRCNN [13] 20.08 0.6112 19.46 0.5701 18.08 0.4501 17.95 0.4684
EDSR [24] 23.97 0.6417 22.46 0.6341 21.12 0.5698 21.06 0.5645
RCAN [43] 24.26 0.6628 23.88 0.6542 21.94 0.5824 21.74 0.5742
360-SS [30] 21.65 0.6417 21.48 0.6352 19.65 0.5431 19.62 0.5308

LAU-Net [12] 24.36 0.6801 24.02 0.6708 22.07 0.5901 21.82 0.5824
SphereSR [40] 24.37 0.6777 24.17 0.6820 22.51 0.6370 21.95 0.6342

OSRT 24.53 0.6780 24.38 0.7072 22.69 0.6261 22.13 0.6388

Table 2. SR results under ERP downsampling.

performs previous methods by 0.3dB on PSNR. Although

directly applying SwinIR on the ODISR task has already

reached SOTA performance, OSRT surpasses SwinIR over

0.1dB on two datasets for both ×2 and ×4 SR tasks, which

demonstrates the effectiveness of its distortion modulation

ability. The performance of RCAN degrades under Fish-

eye downsampling, which is caused by the incompatibility

between channel attention and Fisheye downsampling5.

Qualitative comparison. Fig. 6 shows the visualization

results of ×4 ODISR task. While other methods strug-

gle to understand the geometric transformation process in

distorted images, OSRT can reconstruct sharp and accurate

boundaries with the advantages of distortion modulation. It

is observed that OSRT is skilled at reconstructing rigid tex-

ture. Moreover, benefiting from the distortion modulation

ability, OSRT can preserve the original structure as most

when being projected to other projection types (Fig. 7).

4.3. Evaluation under ERP Downsampling

To compare with previous ODISR methods [12, 30, 40],

we train OSRT under the previous ERP setting. Regard-

less of over-fitting issues, we only train on the dataset pro-

vided by [12] for fairness. As shown in Tab. 2, OSRT still

outperforms LAU-Net [12] and SphereSR [40] under large

upscaling factor and ERP downsampling. Without a com-

plicated training pipeline and discrete inference process,

OSRT yields the best PSNR values and surpasses all previ-

ous methods on most SSIM-related metrics (three of four).

4.4. Ablation Study and Discussion

In this section, we prove the effectiveness of Fisheye

downsampling, OSRT components, and augmented DF2K-

ERP. We then explain the distortion modulation ability of

OSRT by visualizing offsets in deformable blocks.

Fisheye downsampling. As shown in Fig. 1, the SR

model trained under ERP downsampling is more likely to

generate blur details and missing structures in real-world

scenarios. These artifacts cannot be removed by a superior

backbone network, but can be eliminated by a more real-

istic imaging process. More importantly, ERP downsam-

pling directly covers the geometric property of ERP images

5The cause is discussed in the supplementary file.

feature
DACB DAAB

ODI-SR SUN360 Params.
dim PSNR SSIM PSNR SSIM (M)

60 × × 30.27 0.8739 30.78 0.8742 0.91
60 � × 30.41 0.8775 31.00 0.8793 1.16
60 × w/o Cw 30.31 0.8746 30.83 0.8755 1.00
60 × w/ Cw 30.32 0.8746 30.84 0.8753 1.01
60 � w/ Cw 30.44 0.8780 31.04 0.8800 1.26
72 × × 30.32 0.8748 30.85 0.8755 1.29

Table 3. Ablation study on OSRT components. All models are

trained on ×2 SR task under Fisheye downsampling.

and makes the ODISR task identical to the standard plain

image super-resolution task. The evidence is that a stan-

dard SISR model (SwinIR) trained on a plain image dataset

(DF2K) can outperform previous SOTA in the ODISR

task, which yields WS-PSNR results of 24.63dB/24.49dB

(22.68dB/22.13dB) on ×8 (×16) ODI-SR/SUN360 testing

set, respectively. In conclusion, when the intrinsic property

of ODIs is broken by ERP downsampling, the ODISR task

degenerates into a plain image super-resolution task with a

particular data distribution.

ODI-SR (×4): 003
Fisheye (Vertical, Right)

EDSR [24] SwinIR [23]

SwinIR† [23] OSRT†

SUN360 (×2): 062
Perspective (ϕ: 30◦; FOV: 90◦)

EDSR [24] SwinIR [23]

SwinIR† [23] OSRT†

Figure 7. Visual comparisons for SR of Fisheye and Perspective

images. † denotes applying DF2K-ERP as augmented dataset.
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DAAB
(29-th)

DAAB
(33-th)

DACB

Figure 8. Visualizations of offset maps in OSRT. Reference and

deformed points are depicted in green and red, respectively. The

deformable kernel is sparse in the polar area.

OSRT components. To study the effectiveness of each

component in OSRT, we propose a light version of OSRT

(OSRT-light) for ablation study, which corresponds with the

official SwinIR-light [23]. As proofed in Tab. 3, all compo-

nents in OSRT are beneficial for modulating ERP distortion.

The advantages of DACB and DAAB can be stacked when

being applied in the same network. Compared with simply

expanding the feature dimension of SwinIR to match the

network complexity, the overall improvements of OSRT is

more significant (+0.05dB vs. +0.2dB).

Offsets in OSRT. Offsets map in a well-trained OSRT

are visualized in Fig. 8. Deformable kernels in both DAAB

and DACB tend to gather at the equator and scatter at the

polar, which conforms to the geometric distribution of pixel

density in ERP images.
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20 60 100 140 180 220 260 300 340 380 420 460 500
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R
 (d

B
)

Training Iterations (K)

Original + DataAug + Distortion-aware
Original + DataAug
Original

Overfitting

Data
Augmentation

Distortion-aware

Figure 9. Training process of Transformers on ×4 ODISR task.

The overfitting issue is tackled by our augmentation scheme.

Backbone
Datasets

Training
Scale

SUN360
network scheme PSNR SSIM

SwinIR ODI-SR N/A

×2

31.21 0.8852
SwinIR DF2K/ODI-SR one-stage 31.26 0.8841
SwinIR DF2K-ERP/ODI-SR one-stage 31.33 0.8855
SwinIR DF2K-ERP/ODI-SR two-stage 31.17 0.8818
OSRT DF2K-ERP/ODI-SR one-stage 31.52 0.8888

SwinIR ODI-SR N/A

×4

27.39 0.7707
SwinIR DF2K/ODI-SR one-stage 27.59 0.7768
SwinIR DF2K-ERP/ODI-SR one-stage 27.71 0.7804
SwinIR DF2K-ERP/ODI-SR two-stage 27.74 0.7795
OSRT DF2K-ERP/ODI-SR one-stage 27.84 0.7835

Table 4. Ablation study on data augmentation. The results of ODI-

SR (In the supplementary file) are in the same trend as SUN360.

Pseudo ERP patches. In Sec. 3.4, we propose a dis-

torted dataset DF2K-ERP to tackle over-fitting issues. We

train a standard SwinIR on diverse datasets and training

schemes to study the influence of data augmentation sep-

arately. As shown in Tab. 4, while training on ODI-SR

and DF2K, distortion operations in DF2K lead to better per-

formance. Compared with fine-tuning on DF2K-ERP pre-

trained models (two-stage), training on two datasets jointly

(one-stage) shows better results. We infer that there is a do-

main gap between ODI-SR and DF2K-ERP, which is caused

by omitted Perspective distortion. Moreover, the advan-

tage of distortion modulation mechanisms in OSRT is en-

larged when additional training patches are applied. Fig. 9

proves that our data augmentation scheme overcomes the

over-fitting issue and improves the reconstruction ability.

5. Conclusion
In this paper, we find that the previous downsampling

process in the ODISR task harms the intrinsic distribution

of pixel density in ODIs, which leads to poor generalization

ability in real-world scenarios. To tackle this issue, we pro-

pose Fisheye downsampling, which mimics the real-world

imaging process to preserve the realistic density distribu-

tion. After refining the downsampling process, we design

a distortion-aware Transformer (OSRT) to modulate distor-

tions continuously and self-adaptively. OSRT learns offsets

from the distortion-related condition and rectifies distortion

by feature-level warping. Moreover, to alleviate the over-

fitting problem of large networks, we propose to synthesize

additional ERP training data from the plain images. Ex-

tensive experiments have demonstrated the state-of-the-art

performance of our OSRT.

Limitation. The process of sampling ERP images into

viewing types also requires careful design.

Acknowledgement.
This work was supported in part by the National Key

R&D Program of China (NO.2022ZD0160505), in part by

the National Natural Science Foundation of China under

Grant (62276251), the Joint Lab of CAS-HK, and in part

by the Youth Innovation Promotion Association of Chinese

Academy of Sciences (No.2020356).

13290



References
[1] Hao Ai, Zidong Cao, Jinjing Zhu, Haotian Bai, Yucheng

Chen, and Ling Wang. Deep learning for omnidirectional

vision: A survey and new perspectives. arXiv preprint
arXiv:2205.10468, 2022. 1

[2] Zafer Arican and Pascal Frossard. L1 regularized super-

resolution from unregistered omnidirectional images. In

2009 IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 829–832. IEEE, 2009. 2

[3] Zafer Arican and Pascal Frossard. Joint registration and

super-resolution with omnidirectional images. IEEE Trans-
actions on Image Processing, 20(11):3151–3162, 2011. 2

[4] Luigi Bagnato, Yannick Boursier, Pascal Frossard, and Pierre

Vandergheynst. Plenoptic based super-resolution for omni-

directional image sequences. In 2010 IEEE International
Conference on Image Processing, pages 2829–2832. IEEE,

2010. 2

[5] Kelvin CK Chan, Xintao Wang, Ke Yu, Chao Dong, and

Chen Change Loy. Basicvsr: The search for essential com-

ponents in video super-resolution and beyond. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4947–4956, 2021. 3

[6] Kelvin CK Chan, Shangchen Zhou, Xiangyu Xu, and

Chen Change Loy. Basicvsr++: Improving video super-

resolution with enhanced propagation and alignment. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5972–5981, 2022. 3

[7] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping

Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and

Wen Gao. Pre-trained image processing transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12299–12310, 2021. 2

[8] Xiangyu Chen, Xintao Wang, Jiantao Zhou, and Chao

Dong. Activating more pixels in image super-resolution

transformer. arXiv preprint arXiv:2205.04437, 2022. 2

[9] Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning

continuous image representation with local implicit image

function. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 8628–8638,

2021. 2

[10] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In Proceedings of the IEEE international confer-
ence on computer vision, pages 764–773, 2017. 4

[11] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and

Lei Zhang. Second-order attention network for single im-

age super-resolution. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages

11065–11074, 2019. 2

[12] Xin Deng, Hao Wang, Mai Xu, Yichen Guo, Yuhang Song,

and Li Yang. Lau-net: Latitude adaptive upscaling network

for omnidirectional image super-resolution. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9189–9198, 2021. 1, 2, 6, 7

[13] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Image super-resolution using deep convolutional net-

works. IEEE transactions on pattern analysis and machine
intelligence, 38(2):295–307, 2015. 2, 7

[14] Chao Dong, Chen Change Loy, and Xiaoou Tang. Acceler-

ating the super-resolution convolutional neural network. In

European conference on computer vision, pages 391–407.

Springer, 2016. 2

[15] Vida Fakour-Sevom, Esin Guldogan, and Joni-Kristian
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