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Abstract

Direct mesh fitting for 3D hand shape reconstruction is
highly accurate. However, the reconstructed meshes are
prone to artifacts and do not appear as plausible hand
shapes. Conversely, parametric models like MANO ensure
plausible hand shapes but are not as accurate as the non-
parametric methods. In this work, we introduce a novel
weakly-supervised hand shape estimation framework that
integrates non-parametric mesh fitting with MANO model
in an end-to-end fashion. Our joint model overcomes the
tradeoff in accuracy and plausibility to yield well-aligned
and high-quality 3D meshes, especially in challenging two-
hand and hand-object interaction scenarios.

1. Introduction

State-of-the-art monocular RGB-based 3D hand recon-

struction methods [6, 10, 17, 21, 22, 28] focus on recover-

ing highly accurate 3D hand meshes. As accuracy is mea-

sured by an average joint or vertex position error, recov-

ered hand meshes may be well-aligned in 3D space but

still be physically implausible. The 3D mesh surface may

have irregular protrusions or collapsed regions (see Fig. 1),

especially around the fingers. The meshes may also suf-

fer from incorrect contacts or penetrations when there are

hand-object or two-hand interactions. Yet methods that pri-

oritize physical plausibility, especially in interaction set-

tings [3,8,10,14,20,21], are significantly less accurate in 3D

alignment. In summary, the current body of work predom-

inantly favours either 3D alignment accuracy or physical

plausibility, but cannot achieve both.

A closer examination reveals that the trade-off between

3D alignment and plausibility is also split methodology-

wise. Methods that use the MANO model [30] produce

plausible hand poses and hand shapes [2, 7, 38, 40, 42] due

to the statistical parameterization of MANO. However, it

is challenging to directly regress these parameters, since

Figure 1. The vertex error vs. edge length error indicates that

existing methods trade-off alignment accuracy with plausibility.

MANO-based methods (triangles) vs. non-parametric model-

based methods (circles) have a trade-off between vertex error and

edge length error; our combined method (stars) can overcome this

trade-off to yield well-aligned and plausible meshes. Plot of re-

sults from InterHand2.6M [27]; visualization from FreiHand [42].

the mapping from an image to the MANO parameter space

is highly non-linear. As a consequence, MANO-based

methods lag in 3D alignment accuracy compared to non-

parametric methods.

Non-parametric methods [6, 10, 11, 17, 18, 21, 22, 28] di-

rectly fit a 3D mesh to image observations. Direct mesh

fitting is accurate but is prone to surface artifacts. In scenar-

ios with hand-object or hand-hand interactions, mesh pen-

etrations cannot be resolved meaningfully even with regu-

larizers such as contact losses [14] due to the unconstrained
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optimization. Attention mechanism [21, 32] can mitigate

some penetrations and artifacts, but the inherent problem

remains. As such, the favoured approaches for hand-object

and hand-hand interactions are still driven by MANO mod-

els [3, 8, 13, 14, 38].

In this work, we aim to recover high-quality hand meshes

that are accurately aligned and have minimal artifacts and

penetrations. To avoid a trade-off, we leverage direct mesh

fitting for alignment accuracy and guidance from MANO

for plausibility. Combine the non-parametric and paramet-

ric models is straightforward in terms of motivation. How-

ever, merging the two is non-trivial because it requires a

mapping from non-parametric mesh vertices to parametric

model parameters. This mapping, analogous to the map-

ping from an RGB image, is highly non-linear and difficult

to achieve directly [16].

One of our key contributions in this work is a method

to accurately map non-parametric hand mesh vertices to

MANO joint parameters θ. To do so, we perform a two-step

mapping, from mesh-vertices to the joint coordinates, and

joints coordinates to θ. In the literature, the common prac-

tice for the former is to leverage the J matrix in MANO and

linearly regress the joints from the mesh [17,20,21]. Yet the

J matrix was designed to only map MANO-derived meshes

to joints in a rest pose (see Eq. 10 in [25]). As we show in

our experiments, applying J to non-rest poses introduces a

gap of around 2 mm. Furthermore, we postulate that there is

a domain gap between the estimated non-parametric meshes

and MANO-derived meshes, even if both meshes have the

same topology. To close this gap – we propose a VAE cor-

rection module, to be applied after the linear regression with

J . To map the recovered joints from the mesh to θ, we use

a twist-swing decomposition and analytically compute the

θ. It has been shown previously in [20] that decomposing

joint rotations into twist-swing rotations [1] can simplify

the estimation of human SMPL [25] model pose parame-

ters. Inspired by [20], we also leverage the decomposition

and further verify that the twist angle has minimal impact

on the hand.

Note that obtaining ground truth labels for hand mesh

vertices is non-trivial. Our framework lends itself well for

weak-supervision. Since the estimated 3D mesh from the

non-parametric decoder is regressed into 3D joints, it can

also be supervised with 3D joints as weak labels (see Fig

2). At the same time, the parametric mesh estimated from

these joints can be used as a pseudo-label for learning the

non-parametric mesh vertices. Such a procedure distills the

knowledge from the parametric model and is effective with-

out ground truth mesh annotations. We name our method

WSIM 3D Hand, in reference to Weakly-supervised Self-

distillation Integration Model for 3D hand shape recon-

struction. Our contributions include:

• A novel framework that integrates a parametric and a

non-parametric mesh model for accurate and plausible

3D hand reconstruction.

• A VAE correction module that closes the overlooked

gap between non-parametric and MANO 3D poses;

• A weakly-supervised pipeline, competitive to a fully-

supervised counterpart, using only 3D joint labels to

learn 3D meshes.

• Significant improvements over state-of-the-art on

hand-object or two-hand interaction benchmark

datasets, especially in hand-object interaction on

DexYCB.

2. Related Work
Parametric Methods. Previous works [2, 3, 7, 13, 14, 35,

36, 38–40] in 3D hand shape reconstruction often used

the MANO model [30] to estimated 3D hand meshes.

Boukhayma et al. [2] first use a deep neural network to

regress the MANO parameters in single-hand reconstruc-

tion. However, directly estimating MANO parameters ac-

curately is challenging, as they sit in an abstract PCA space.

Moreover, previous MANO model-based methods ignore

the spatial information that limited their reconstruction ac-

curacy [5,10]. This work addresses the above drawbacks of

the MANO model by integrating a non-parametric model.

Non-parametric Methods Non-parametric 3D hand

shape methods [6, 10, 12, 17, 21–23, 28, 32, 37] directly

fit the mesh vertices either with graph convolutional net-

works [9, 11] or transformers [33]. Initially, spectral graph

neural networks were used [9] but as they are not able to

leverage deeper neighbourhood nodes’ information, spatial

graphs with spiral convolutions [17] were proposed instead.

Subsequently, works applied mesh transformers [22] and

other attention mechanisms [12, 23, 28] to facilitate inter-

action modelling. The estimated 3D pose and shapes of

non-parametric methods are highly accurate; however, their

many degrees of freedom also yield implausible 3D shapes

with artifacts. This work integrates non-parametric methods

with a MANO model to achieve both alignment accuracy

and plausibility.

Hand-Object and Two-Hand Interactions Hand inter-

actions add challenge to 3D shape reconstruction due to

the additional occlusion from the interacting object or hand

and possibility of surface collisions. For hand-object in-

teraction, previous works [3, 13, 14, 35, 39] leverage the

MANO model to ensure plausible hand shapes during the

interaction modelling. Similarly, for two-hand interac-

tions [27, 38], MANO has been applied to the left and right

hand individually to simplify the two-hand reconstruction
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into two single hand parameters estimation pipeline. By us-

ing MANO in the interaction setting, these above works are

able to estimate plausible 3D hand shapes, though the align-

ment accuracy generally lags compared to non-parametric

methods [6, 21, 32] that are less plausible. Different from

the above methods, we first use the non-parametric model

to learn the 3D joints and then convert these joints into ac-

curate MANO parameters in the interaction setting. There-

fore, our work overcomes the tradeoff between plausibility

and accuracy.

3. Method
Fig. 2 shows an overview of our method. It has three

components: the RGB encoder network, a non-parametric

pose decoder (Sec. 3.2) and a parametric mesh reconstruc-

tion (Sec. 3.3) based on the MANO model (Sec. 3.1). The

overall framework can be learned in a weakly-supervised

manner with self-distillation (Sec. 3.5). For hand-object

and hand-hand interactions, we add an interaction refine-

ment module to reduce the penetration (Sec. 3.4).

3.1. Preliminaries

MANO [30] is a statistical 3D hand pose and shape

model. It maps pose parameters θ ∈ R16×3 and shape pa-

rameters β ∈ R10 to a 3D hand mesh with model M(β, θ):

T (β, θ) = T̂ +BS(β) +BP (θ),

M(β, θ) = W (T (β, θ), J(β), θ,W).
(1)

The hand template T (β, θ) ∈ R778×3, also called the T-

template, is obtained by deforming a mean mesh T̂ ∈
R778×3 with shape and pose corrective blend shapes,

BS(β) and BP (θ). The hand template can be converted

into the reference ‘rest’ T-pose: J(β) ∈ R16×3 with a

linear regression using J(β) = J × T (β, θ), where the

J ∈ R16×778 matrix stores the regression weights. The

blend function W returns the mesh and joint from the T-

template, T-pose and θ parameters, where W ∈ R778×16

is a linear blend skinning matrix. With this MANO mesh

model, we can easily reconstruct a hand mesh by using spe-

cific shape parameters β and pose parameters θ.

An often overlooked point for MANO is that the regres-

sion weight in the matrix J is only designed for the rest or

T-pose J(β). It should not be applied to regress the pose

from arbitrary meshes M(β, θ), even though this is done by

several existing works [17,20,21]. In fact, these works also

apply it to non-MANO derived meshes. Our experimental

results show a nearly 2 mm gap when J is used in this way

(see Supplementary Section 2).

Twist-Swing Decomposition: Directly regressing the

pose parameters θ ∈ R16×3 is challenging due to the

MANO model uses the kinematic chain scheme to adjust

joint rotation, that the accumulated error raises the learning

challenge [5,10]. Furthermore, pose parameters θ ∈ R16×3

represent the rotation matrix of the hand joints J in SO3

space. However, directly regressing these rotation parame-

ters is an ambiguous problem due to these rotations being

non-continuous [41]. The previous work [1] showed that

twist-swing decomposition is an effective way for a ball-

and-socket joint system to reduce the learning difficulty.

Therefore, instead of directly regressing the pose parame-

ters θ, we leverage the twist-swing decomposition and com-

bine the hand joint locations to recover more accurate pose

parameters.

3.2. Non-parametric Pose Decoder

Like previous works [10, 17, 21], we adopt a

ResNet50 [15] as the backbone and encode the input im-

age I ∈ R256×256 into a latent feature z ∈ R1000. The

latent feature z is passed into a pose decoder to obtain the

hand joints Jpred ∈ R21×3.

Ĵ = J ×Mnp(V, F ), where Mnp(V, F ) = f(z). (2)

Specifically, a hand mesh Mnp = (V, F ) with vertices

V ∈ R778×3 and faces F ∈ R1538 is estimated from the la-

tent feature z with a non-parametric model f . The model f
can be any off-the-shelf non-parametric method, e.g. based

on GCNs [10, 17, 21], or transformers [22]. The mesh Mnp

must have the same topology as the MANO model. Fol-

lowing [17, 20, 21], we use the MANO J matrix to regress

hand joints Ĵ ∈ R21×3 from the mesh, even though it is not

intended as such and will introduce a performance gap. To

bridge this unwanted gap, we add a VAE module to refine

the Ĵ ∈ R21×3 to J̃ ∈ R21×3.

Our proposed VAE module consists of a full connection

layer as an encoder and symmetric full connection layers as

the decoder. Then, the pose decoder can be learned with the

following loss function:

Ljoint = ||Ĵ − J ||+ ||J̃ − J ||+ ||Ĵ − J̃ ||+ λ1 ∗LKL (3)

where J is the ground truth joints and LKL =
KL(q(z|Ĵ)||p) is the standard Kullback-Leibler divergence

loss used in VAE models, where z represents the latent vari-

ables encoded from input Ĵ . The term p = N (0, E) denotes

a Gaussian prior where E is an identity matrix.

3.3. Parametric Mesh Reconstruction

Directly regressing accurate MANO parameters is highly

challenging due to their abstract nature. Twist-swing de-

composition is an alternative way to learn these parameters

as we already discussed. Further, Li et al. [20] introduced

the use of twist-swing decomposition to overcome the chal-

lenge of the analogous SMPL [25] model for human body

pose and shape estimation. We follow their setting to infer

the MANO pose parameters by using the hand joints and
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Figure 2. Overview of our pipeline integrating a non-parametric model and a MANO model. Our proposed framework has an RGB image

encoder (a), a non-parametric pose decoder (b), and a parametric mesh reconstruction (c). We also show our proposed pipeline success

when used in two-hand interaction refinement in (d) and hand-object interaction refinement in (e).

twist parameters, like θ = f(ϕ, J̃), where ϕ ∈ R16×3 is the

hand joint twist rotation matrix.

An interesting finding from our experiments is that there

is no difference when using the joint or vertex as supervi-

sion for the MANO parameter learning. See Sec. 1 in the

Supplementary Material for more details.

These results further demonstrate the possibility of em-

ploying joints as weak labels for the learning of MANO

mesh. Therefore, we can utilize the estimated joint Jpred

and estimated twist rotation matrix ϕ to predict the MANO

pose parameter θ. After that, the estimated β and θ are fed

into the MANO model to obtain a final well-aligned and

plausible hand mesh. For the parametric mesh reconstruc-

tion, we use a regularized L1 loss with respect to the ground

truth:
Lshape = ||βpred − βgt||+ ||βpred||,
Ltw = ||ϕpred − ϕgt||+ ||ϕpred||,

(4)

where βgt and ϕgt are the ground truth shape parameters and

twist parameters, respectively.

3.4. Interaction Refinement

In our interaction setting, similar to previous works [3,8,

14, 31], we first estimate the two hands, or the hand and the

object, individually, then we add a refinement module. To

reduce the penetration for the two-hand interaction, same

as [3, 8, 31], we use a Signed Distance Field (SDF) from

one hand mesh to check whether the vertex on another hand

or object is inside this hand mesh. The SDF is obtained

by voxelizing the left and the right hand meshes (two-hand

interaction) or hand and object meshes (hand-object inter-

action) to a 32× 32× 32 3D grid. Then, the modified SDF

function φ for this hand mesh can be written as follows:

φ(x, y, z) = −min(SDF(cx, cy, cz), 0). (5)

For each cell in the 3D grid c = (cx, cy, cz), the φ(x, y, z)
takes positive values if the cell is inside the hand mesh, and

zero if outside.

For two-hand interaction, the loss is calculated as fol-

lows:

Lpene =
1

|V r
in |

∑
xV ∈V r

in

dist(v, Vr) +
1

|V l
in|

∑
xV ∈V l

in

dist(v, Vl),

(6)

where V r
in refers to vertices from the left hand which has

penetrated into the right hand, and vice versa for V l
in. The

dist(·) represents the minimal distance between the inside

vertex and the hand surface. As for the hand-object inter-

action, we use the same penetration loss in our hand-object

interaction refinement following [3],; please refer to [3] for

more details.

3.5. Weak Label & Self-Distillation

Obtaining ground truth 3D mesh vertices is non-trivial,

hence we propose a weakly-supervised approach that uses

the 3D joints instead. Recently, self-distillation has be-

come popular for unsupervised pose estimation [19,24,29].

547



We follow a similar approach, under the assumption that

the parametric reconstruction, which is strongly super-

vised with ground truth hand joints and MANO parame-

ters, yields more accurate 3D meshes which can be distilled

to the non-parametric branch. We use an L1 loss for self-

distillation:

Lvert = ||Vrefine − Vnon||, (7)

where the Vrefine ∈ R778×3 and Vnon ∈ R778×3 are

the hand vertices from our parametric mesh reconstruction

module and non-parametric model, respectively. The over-

all loss function of our proposed pipeline in single-hand

shape reconstruction is formulated as:

Ltotal = λ2Lshape + λ3Ltw + λ4Ljoint + λ5Lvert. (8)

In two-hand interaction and hand-object interaction re-

finement, we follow [14] and use the above loss function to

train the whole pipeline. After that, we use a small learn-

ing rate 1e−6 and Lpene to do the interaction refinement; the

interaction loss function can be written as follows:

Linter = Ltotal + λ6Lpene. (9)

4. Experimental Results
4.1. Implementation Details

Our network consists of three independent modules: im-

age feature extraction, a non-parametric pose decoder and a

parametric mesh reconstruction. To ensure a fair compari-

son, all of our experiments use the same pretrained ResNet

50 [15] as a backbone to extract the input image feature.

For the non-parametric pose decoder part, we consider three

state-of-the-art structures, i.e., a Graph Convolution Net-

work, a Mesh Transformer Network and a MANO layer net-

work, which are the same as in [6], [22], [14], respectively.

The parametric mesh reconstruction module consists of one

VAE network and one differentiable layer to calculate the

rotation matrix based on given joints. For the shape pa-

rameter and twist parameter prediction, two fully-connected

networks are used. The above hyper-parameters are set em-

pirically to λ1 = 0.001, λ2 = 10, λ3 = 10, λ4 = 100, λ5 =
100, λ6 = 10. The dimension of VAE latent space is 128.

4.2. Training Details

The Adam optimizer is applied to train all networks over

200 epochs with a batch size of 64. We start with an initial

learning rate of 10−4 for all training settings and lower it

by a factor of 10 at the 50th, 100th, and 150th epochs. Af-

ter JointVAE is trained, we apply this pretrained JointVAE

in our pipeline. We set all of the hypermeters λ empiri-

cally. In two-hand or hand-object interaction refinement,

same as [14], after training the whole pipeline, we use a

learning rate of 1e − 6 and a physical contact loss to refine

the two-hand and object interaction after the 10th epoch.

4.3. Datasets and Evaluation Metrics

Datasets. Our method is evaluated on three types of

RGB-based hand-object benchmarks, i.e., the One Single

hand shape reconstruction dataset on FreiHAND [42], to

evaluate the hand shape of our integrated model in single-

hand tasks. FreiHAND is a challenging multi-view RGB

dataset of hand-object interactions that contains 37k sam-

ples of hands manipulating objects. The second one is two-

hand shape reconstruction dataset on Interhand2.6M [27]

to evaluate our pipeline for mesh reconstruction on a two-

hand interaction dataset. Interhand2.6M is a two-hand

interaction dataset. We use a dataset setting similar to

that of [21], which consists of 366K training samples and

261K testing samples. The last one is hand-object inter-

action dataset, DexYCB [4], the latest large-scale RGB-

based hand-object dataset. It contains 582k samples of

hands grasping 20 YCB objects, and is used here to eval-

uate our proposed model on hand-object interaction. We

evaluate our method using the official “S0” split. The hand-

object images in this dataset contain 10 objects modeled

from YCB objects [34]. We compare our methods with

the state-of-the-art on both of these versions and report our

results through their leaderboards. All input images are

cropped and resized to 256 × 256 based on their 2D pro-

jection.

Metrics. To evaluate the accuracy of our predicted 3D

hand pose and surface, we use the mean-per-joint-position-

error (MPJPE) for 3D joints and the mean-per-vertex-

position-error (MPVPE) for mesh vertices. In addition, un-

like previous works that only focus on vertex accuracy for

mesh evaluation, we introduce the edge error distance (mm)

and normal error [10] as extra evaluation metrics to evalu-

ate the plausibility of hand mesh. Meanwhile, in two-hand

interaction, we calculate the penetration depth (PD) of each

hand vertices penetrating into the other hand in the 3D grid

(32 × 32) above. There are two types of penetration depth,

i.e., Average Penetration Depth (A-PD) and Maximum Pen-

etration Depth (M-PD). As for hand-object interaction, the

penetration distance calculation is the same as for two-hand

interaction.

4.4. Comparison with the State-of-the-Art

Quantitative Results. The comparison with state-of-the-

art non-parametric model-based methods [17, 21, 22] and

MANO model based methods [2,14,26,31,38,42] is shown

in Table 1, where the results is based on their released

source code and default parameters. Considering the hand

pose and shape accuracy, our integrated model (Ours GCN

or Ours Trans) obtains the lowest or second-best MPJPE

and MPVPE on all datasets. Especially compared to the lat-

est MANO model based methods, our method reduces the
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Dataset FreiHAND InterHand DexYCB

Method MPJPE MPVPE Edge Norm MPJPE MPVPE Edge Norm MPJPE MPVPE Edge Norm

Zhang et al. [38] - - - - 13.48 13.95 0.31 0.15 - - - -

Hasson et al. [14] 13.3 13.3 0.68 0.17 14.21 - - - - - - -

Moon et al. [26] - - - - 14.21 - - - - - - -

Rong et al. [31] - - - - 17.12 - - - - - - -

Li et al. [21] - - - - 8.79 9.03 0.51 0.12 - - - -

Li et al. [21] Baseline - - - - 9.97 10.63 0.51 0.12 - - - -

Boukhayma et al. [2] 13.08 13.40 0.64 0.17 16.93 17.98 0.31 0.15 12.88 12.98 . 48 0.15

MANO CNN [42] 8.69 8.83 0.54 0.16 13.87 14.27 0.32 0.16 10.68 11.61 0.30 0.14

GCN-Vert [17] 7.77 7.43 0.94 0.20 9.95 10.23 0.56 0.13 8.93 9.39 0.51 0.15

Transformer [22] 7.57 8.05 0.81 0.16 10.89 10.83 0.68 0.15 9.51 10.48 0.65 0.15

MANO-Joint [42] 8.84 9.10 0.55 0.17 13.98 14.35 0.32 0.17 15.44 16.15 0.42 0.22

GCN-Joint [17] 14.87 18.43 3.81 0.34 11.49 19.20 5.10 0.43 10.07 15.12 3.49 0.31

Ours (GCN) 7.42 7.43 0.51 0.15 9.68 9.89 0.27 0.12 8.92 9.12 0.25 0.12
Ours (Trans) 7.28 7.33 0.49 0.15 10.08 10.06 0.29 0.13 9.13 9.67 0.28 0.14

Table 1. Comparisons with state-of-the-art methods on the FreiHAND, InterHand and DexYCB test sets. Best and second-best scores.

Ours (GCN) and Ours (Trans) achieve the best or second-best holistic performance across all comparisons .

Figure 3. Hand shape reconstruction results. For each quartet, from left to right columns correspond to RGB input, MANO based method:

MANO CNN [42], non-parametric model based method: GCN-vert [17] and our method in camera view. Besides, vertex error and edge

length error are also reported for quantitative evaluation. Low vertex error and edge length error indicate well-aligned and plausible hand

meshes.

pose error MPJPE by nearly 10%. Our MPJPE is compa-

rable to Li et al. [21], despite the attention network used to

learn the two-hand features. However, compared to their

GCN baseline, our proposed model shows a higher pose

and shape accuracy. In addition, regarding the hand mesh

plausibility, our proposed model achieves the best holistic
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Figure 4. Two-hand reconstruction results. For each quartet,

left to right columns correspond to input RGB images, MANO

CNN [42], non-parametric model based method [21] and our

mesh. The red box highlights the penetration region and we re-

port the max penetration depth values for quantitative evaluation.

Our proposed method yields more plausible two-hand interactions.

Figure 5. Interaction refinement results. For each triplet, left to

right columns correspond to input RGB images, our meshes be-

fore and after interaction refinement. Red boxes highlight the in-

teraction refinement regions.

performance in terms of edge distance and normal error

across all comparisons. Especially compared to the non-

parametric model based methods, our method reduces the

edge distance error by at least 40%. The above quantitative

results verify the effectiveness of our integrated model in

obtaining well-aligned and plausible hand meshes.

Qualitative Results. The visualizations of our hand mod-

eling in Fig. 3 verify that our proposed model achieves well-

aligned and plausible hand reconstructions. Additionally,

Fig. 4 compares our method to state-of-the-art, demonstrat-

ing that our proposed method has lower penetration and

yields more plausible two-hand interactions, although [21]

achieved better MPJPE and MPVEP than our method by

using a complex attention network. Besides, these visual-

ization results also verify that the physical contact loss re-

finement is better than feature level refinement by using an

attention network. More qualitative results are available in

the Supplementary.

Interaction Refinement Results. We also show the quan-

titative results in Table 2 and qualitative results in Fig 4. Our

model (Ours Before) achieves the best or second-best per-

formance across all comparisons. In addition, as our pro-

posed model integrates the MANO model, we can leverage

the physical contact loss (Ours After) to refine our two-hand

or hand-object interactions and reduce M-PD by nearly

50%. This reveals the effectiveness of our proposed interac-

tion refinement and emphasizes the importance of physical

contact loss when compared to the attention feature learning

like [21] for interaction refinement.

Dataset InterHand DexYCB

Method MPVPE A-PD M-PD MPVPE A-PD M-PD

Li et al. [21] 9.03 1.04 17.61 - - -

MANO-CNN [42] 14.27 1.03 17.81 11.61 1.01 16.78

GCN-Vert [17] 10.23 1.03 17.95 9.39 0.98 16.95

Transformer [22] 10.83 1.04 18.37 10.48 1.05 17.54

GT 0 0.17 4.89 0 0.15 3.21
Ours (Before) 9.89 1.00 17.51 9.12 0.94 16.51

Ours (After) 9.92 0.51 7.62 9.33 0.45 6.73

Table 2. Comparisons between our model (before and after refine-

ment) versus state-of-the-art on InterHand2.6M and DexYCB test

sets. Best and second-best scores. Our model achieves the best in-

teraction performance across all comparisons. Note that the A-PD

and M-PD of InterHand and DexYCB ground truth data are non-

zero due to the rigid modeling of both the hand and the object.

4.5. Ablation Studies

VAE Module. We also compare among our baseline

models (Ours w/o VAE) in Table 3. Our model (w/o VAE)

is a pipeline without refining the joints, which directly

use a linear regress matrix to covert non-parametric model
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Dataset FreiHAND

Method MPJPE MPVPE Edge Norm

Ours(w/o VAE) 9.13 9.20 0.60 0.18

Ours(w/o Self-dis.) 8.63 8.66 0.58 0.16

Ours (full) 7.42 7.43 0.51 0.15

Table 3. Ablation study on FreiHAND test sets. Best scores are

highlighted in Bold.

meshes to the MANO model joints space. Our full model

outperforms this baseline by nearly 20%, which verifies the

effectiveness of the VAE refinement module.

Self-distillation learning. The impact of self-distillation

learning is shown in Table 3 (Ours w/o Self-dis.). Self-

distillation learning reduces pose and shape error by nearly

10%. Furthermore, our full model reduces the pose and

shape errors by nearly 50% compared to the non-parametric

model based method, i.e., GCN-joint in Table 1, which only

uses joint as supervision. This reveals the effectiveness of

our self-distillation learning and integrated strategy.

Analysis of the twist rotation. To evaluate the effec-

tiveness of the twist rotation, besides our estimated twist

from the network (Estimated Twist), we also set the twist as

zero (Zero Twist) or a random value from 0 to 1 (Random

Twist). The results are given in Table 4. Firstly, the perfor-

mance of the Zero Twist is comparable to that of our Esti-

mated Twist. These results are reasonable since most hand

joints’ twist rotation angles are close to zero. In contrast,

there is a considerable performance gap between the Ran-

dom Twist results and our Estimated Twist results, which

shows the necessity of twist rotation estimation.

Dataset FreiHand DexYCB

Method MPJPE MPVPE MPJPE MPJPE

Random Twist 12.68 13.90 11.78 12.52

Zero Twist 7.83 7.96 9.45 9.67

Estimated Twist 7.42 7.43 8.92 9.12

Table 4. Reconstruction error with different twist angles. Best

scores are highlighted in Bold.

4.6. Limitations

Our pose decoder pipeline uses a non-parametric model

to obtain the initial meshes. These initial hand meshes limit

our results compared to the ground truth (see Fig. 6). Al-

though our initial hand meshes are not well aligned, our out-

put meshes are close to the ground truth and better than our

initial hand meshes, which verifies the effectiveness of our

integrated model on the other side. These limitations can be

improved by considering other sources of information, like

rendered masks, to offer extra supervision to improve the

initial hand mesh accuracy.

Figure 6. Limitation results. For each row, the left to right columns

correspond to input RGB, ground truth, our non-parametric model

mesh and our final mesh. We are limited by our initial hand

mesh from our non-parametric model. Red boxes highlight the

not aligned regions.

5. Conclusion
This work proposes an effective integrated framework

of a non-parametric model and MANO model for estimat-

ing well-aligned and plausible hand meshes from RGB im-

ages. We explore the trade-off between the non-parametric

and MANO model for hand surface modelling and pro-

pose the first integrated model to overcome this trade-off.

Additionally, to improve the accuracy of hand meshes and

mitigate the gap between the non-parametric model joints

and MANO deformation joints, we introduce a VAE to

solve it. Furthermore, we introduce a self-distillation learn-

ing method that utilizes our parametric mesh to boost the

non-parametric model’s mesh learning. Experimental re-

sults show that our proposed method achieves better per-

formance over existing MANO-based and non-parametric

model based hand shape estimation methods, on single-

hand task, two-hand interaction or hand-object interaction

task. This verifies the effectiveness of our integrated frame-

work of a non-parametric model and a parametric model. In

future work, we will explore using a render mask as extra

supervision to improve the hand shape modeling based on

our integrated model.
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