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Abstract

Learning distinctive point-wise features is critical for
low-overlap point cloud registration. Recently, it has
achieved huge success in incorporating Transformer into
point cloud feature representation, which usually adopts
a self-attention module to learn intra-point-cloud features
first, then utilizes a cross-attention module to perform fea-
ture exchange between input point clouds. The advan-
tage of Transformer models mainly benefits from the use
of self-attention to capture the global correlations in fea-
ture space. However, these global correlations may in-
volve ambiguity for point cloud registration task, espe-
cially in indoor low-overlap scenarios, because the corre-
lations with an extensive range of non-overlapping points
may degrade the feature distinctiveness. To address this is-
sue, we present PEAL, a Prior-embedded Explicit Attention
Learning model. By incorporating prior knowledge into
the learning process, the points are divided into two parts.
One includes points lying in the putative overlapping region
and the other includes points located in the putative non-
overlapping region. Then PEAL explicitly learns one-way
attention with the putative overlapping points. This simplis-
tic design attains surprising performance, significantly re-
lieving the aforementioned feature ambiguity. Our method
improves the Registration Recall by 6+% on the challenging
3DLoMatch benchmark and achieves state-of-the-art per-
formance on Feature Matching Recall, Inlier Ratio, and
Registration Recall on both 3DMatch and 3DLoMatch.

1. Introduction
Rigid point cloud registration has always been a foun-

dational yet challenging task in 3D vision and robotics
[2, 3, 10, 25], which aims to estimate an optimal rigid trans-
formation to align two point clouds.

Benefiting from the superior feature representation of
deep networks, keypoints-based point cloud registration
methods have become dominant in recent years [4, 9, 12,
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Figure 1. Given two low-overlap point clouds, PEAL adopts an
explicit attention learning fashion and learns discriminative su-
perpoint (patch) features (c), which results in significant higher
patch and point inlier ratios. In contrast, GeoTransformer learns
ambiguous patch features (a). For example, PEAL is able to ac-
curately identify corresponding chairs among multiple chairs and
distinguish them from the floor and table, while GeoTransformer
mismatches them. Zoom in for details.

34, 37]. The core idea is to learn to match the learned key-
points across different point clouds. Recently, the keypoint-
free methods [25, 36] demonstrate promising performance
following the coarse-to-fine fashion. They seek correspon-
dences between downsampled point clouds (superpoints),
which are then propagated to individual points to yield
dense correspondences. Thus, the accuracy of superpoint
matching is crucial to the overall performance of point
cloud registration. GeoTransformer [25] proposes a geo-
metric self-attention module that encodes the distance of
point pairs and the angle of triplet to extract transformation-
invariant features. This approach significantly improves the
accuracy of superpoint matching.

However, GeoTransformer may still suffer from am-
biguous matching in certain scenarios with numerous sim-
ilar structure or low geometric discriminative patches (su-
perpoints) [25]. Moreover, the self-attention mechanism
may exacerbate matching ambiguity, especially for low-
overlap registration tasks. Prior works [3, 25] advocate that
modeling geometric consistent correlations among overlap-
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ping superpoints/points is the key to the success of super-
points/points matching, while the global correlations learn-
ing via the geometric self-attention is inevitably interfered
by numerous superpoints in the non-overlapping region. In
other words, the correlations with non-overlapping super-
points may disrupt the inter-frame geometric consistency
learning and degrade the feature distinctiveness for registra-
tion, which makes the resultant learned superpoint features
ambiguous and leads to numerous outlier matches (Fig. 1
(a)).

To address the aforementioned issues, we design a Prior-
embedded Explicit Attention Learning model (PEAL). It
first leverages an overlap prior to divide the superpoints into
anchor ones (the superpoints lying in putative overlapping
region) and non-anchor ones (the superpoints located in pu-
tative non-overlapping region). Then it alleviates the inter-
ference of non-anchor superpoints by introducing an one-
way attention mechanism, which solely models the correla-
tions from non-anchor superpoints to anchor ones. Benefit-
ting from the promising overlap ratio in the anchor region,
anchor superpoints can be reckoned as simultaneously ex-
isting in both two frames, thus the one-way attention is ca-
pable of acquiring the essential local geometric consistent
correlation from the anchor region, which helps the non-
anchor superpoints encoding the inter-frame local geomet-
ric consistency and relieves the global feature ambiguity
(Fig. 1 (c) ). Furthermore, the embedding prior design in-
volved in PEAL makes refining transformation possible in
an iterative fashion.

In this paper, we introduce two models depending on the
methods of obtaining prior, with extensive experiments on
indoor benchmarks demonstrating the superiority of PEAL.
Compared to state-of-the-art methods, both of the two mod-
els achieve significant improvements on Registration Recall
on the challenging 3DLoMatch benchmark. In summary,
our contributions are summarized as follows:

• To the best of our knowledge, we are the first to explic-
itly inject overlap prior into Transformer to facilitate
low-overlap point cloud registration, and various over-
lap priors can be integrated into this framework, such
as 3D overlap prior, 2D overlap prior, and self-overlap-
prior.

• An explicit one-way attention module, which can sig-
nificantly relieves the feature ambiguity generated by
self-attention. It can be plugged into other transformer-
based point cloud registration networks.

• A novel iterative pose refined fashion for low-overlap
point cloud registration.

2. Related Work
Correspondence-based Point Cloud Registration.
Correspondence-based methods [7, 9, 12] firstly estab-

lish correspondences between learned keypoints and
then recover the transformation with a robust pose
estimator such as RANSAC or other RANSAC-free es-
timator [3, 5, 6, 22, 25]. Many works focus on learning
keypoint detectors [4, 17] and feature descriptors [1, 7, 32].
Recently, detector-free methods [25, 36] have become
prevalent in a coarse-to-fine fashion. Our method inherits
the detector-free methods and focuses on improving the
matching accuracy of the coarse level.
2D-3D Multi-Modal Learning. Multimodal learning is
currently a hot research area [8, 13, 15, 16, 19, 20] and 2D-
3D joint learning is a typical multi-modal learning branch.
Pri3d [15] employs an implicit pretrain-and-finetune strat-
egy to combine 2D and 3D knowledge for 2D downstream
tasks. 3D-SIS [13] and RevalNet [14] propose to implicitly
fusing the color signal for 3D instance segmentation and
detection tasks. ImVoteNet [23] explicitly uses 2D color
input to boost 3D object detection. BYOC [11] and PCR-
CG [38] explicitly fuse image features with point clouds to
boost point cloud registration. Our method employs the ex-
plicit fashion to leverage the 2D signal.
Image matching. Image matching [21, 26, 28, 30] is a ba-
sic and important technology in computer vision. SIFT [21]
and ORB [27] are typical handcrafted local features which
are widely adopted in many 3D computer vision tasks.
Learning-based methods [28, 30] can significantly improve
the performance of local features under large viewpoints
and illumination changes. We further explore how to lever-
age image signals to facilitate 3D point cloud registration.
Transformers. The Transformer models [31] utilize a
novel attention mechanism, employing multiple layers of
self and cross multi-head attention to facilitate informa-
tion exchange between input and output, demonstrating
the superior performance of feature representation for NLP
and vision tasks. Focal self-attention [33] is to incorpo-
rate fine-grained local and coarse-grained global interac-
tions to capture both short and long-range visual depen-
dencies. Deformable DETR [39] uses deformable attention,
which solely attends to a small set of key sampling points
around a reference to aggregate multi-scale image features.
GeoTransformer [25] utilizes geometric self-attention to ex-
tract transformation-invariant geometric features by encod-
ing geometric structure. In this paper, we adopt an explicit
attention learning fashion to learn distinctive features.

3. Method

We define point clouds P =
{
pxi ∈ R3 | i = 1, . . . , N

}
and Q =

{
qyi

∈ R3 | i = 1, . . . ,M
}

, as source and tar-
get, respectively. The purpose of point cloud registration is
to recover the unknown rigid transformation SE(3), which
consists of a rotation R ∈ SO(3) and a translation T ∈ R3

for aligning P and Q.
The pipeline of our method is illustrated in Fig. 2. We
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Figure 2. KPConv-FPN downsamples the input point clouds and learns features in multiple resolution levels. The geometric self-attention
learns a hybrid geometric feature by encoding the geometric structure first, followed by intra-frame attention between anchor (selected
according to the given overlap prior, painted in red or green) and non-anchor superpoints (painted in blue or yellow). This enables the
learning of distinctive geometric features, which are then exchanged between two point clouds using a feature-based cross-attention. The
resulting correspondences are then sent to the point matching module to calculate the transformation. During testing, the self-overlap-prior
is computed based on the current transformation and iteratively transferred to the network.

(a)  ground  truth 

registration

(b) GeoTransformer estimated 

registration
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Figure 3. The pipeline of acquiring 3D overlap prior. We show the
correct estimated overlapping point cloud in green and the incor-
rect one in red.

first introduce how to acquire overlap prior (Sec. 3.1).
Given the overlap prior, we then adopt the coarse-to-fine
technique to extract correspondences. We build our method
upon GeoTransformer [25], which utilizes KPConv-FPN to
downsample the input point clouds and extract point-wise
features simultaneously. The first and the last (coarsest)
level of downsampled points correspond to the dense points
and the superpoints. The superpoints are denoted by P̂ , and
Q̂, with the associated learned features denoted as F̂P and
F̂Q.

The superpoints with local patch containing overlap
prior points are regarded as anchor superpoints, denoted
as P̂A, Q̂A for P̂, Q̂, respectively, while the other super-
points are viewed as non-anchor superpoints denoted as
P̂NA, Q̂NA. And a superpoint matching module (Sec. 3.2)
is used to extract superpoint correspondences. During su-
perpoint matching, we first compute intra-frame geomet-
ric self-attention like GeoTransformer [25], then an ex-
plicit one-way attention module is proposed to encode the
inter-frame local geometric consistency, which captures the
one-way correlation from non-anchor superpoints to anchor
ones. And finally, the inter-frame feature-based cross atten-
tion is computed to perform feature exchange between two
input point clouds.

We follow GeoTransformer [25] for superpoint matching
in order to extract the superpoint correspondences, which
are then propagated to the point matching module to obtain
dense point correspondences for calculating the final trans-
formation. At last, the iterative update module (Sec. 3.3)
is introduced, which can iteratively refine the transforma-
tion by using the predicted overlap prior (self-overlap-prior)
generated by the currently estimated transformation.

3.1. Overlap Prior Prediction

Existing point cloud registration methods still face chal-
lenges in accurately registering two point clouds, especially
in low-overlap scenarios. This often results in partially
aligned or completely erroneous final transformations. De-
spite this, these partially aligned scenarios still show poten-
tial for achieving higher overlap. And the estimated over-
lapping regions in these cases can serve as a 3D overlap
prior. Our goal is to improve these partially aligned scenar-
ios by using the 3D overlap prior, transforming them into
successfully registered ones.

On the other hand, inspired by multi-modal learning
methods, it is worth considering the use of 2D images in
RGB-D datasets. Image matching approaches could be uti-
lized to estimate 2D correspondences, which can then be
projected onto point clouds through a projection module.
By doing so, we can obtain a preliminary estimation of the
overlap between images, which serves as a 2D overlap prior.
3D overlap prior We use GeoTransformer [24] to gener-
ate 3D overlap prior, which is currently the state-of-the-art
method. The predicted overlapping region is generated by
the nearest neighbor search within a threshold in the Eu-
clidean space according to the transformation matrix esti-
mated by the pretrained GeoTransformer. The overlapping
region is regarded as 3D overlap prior, namely 3dprior. The
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Figure 4. The pipeline of acquiring 2D overlap prior. Similar to
3dprior, we show the correct estimated overlapping point cloud in
green and the incorrect one in red.

pipeline of acquiring 3dprior is illustrated in Fig. 3.
2D overlap prior For the RGB-D dataset, we follow PCR-
CG [38] which utilizes the 2D image matching method
to generate 2D correspondences and convey them to point
clouds via a 2D-3D projection module. Superglue [28] is
utilized to extract image correspondences first. However,
2D correspondences are sparse, combined with the presence
of invalid projections, making it difficult to obtain sufficient
overlapping points. To tackle this issue, we follow PCR-
CG [38] by creating a box for each matched pixel in every
pair of image matches. Lastly, a projection module is uti-
lized to lift 2D overlapping pixels to 3D overlapping points
that serves as the overlap prior, called 2dprior. The pipeline
of acquiring 2dprior is illustrated in Fig. 4.

3.2. Superpoint Matching

The registration performance of existing coarse to fine
methods [25, 36] heavily relies on accurate superpoint
matching, and unreliable superpoint matching causes the
failure of the registration. Some recent methods, such as
GeoTransformer [25], propose encoding global geometric
structure to learn transformation-invariant features.

However, utilizing self-attention for learning intra-frame
point-wise features may introduce ambiguity because self-
attention learns the global correlations, in which the corre-
lations with a large range of non-overlapping superpoints
introduce ambiguous ones. While the correlations with the
overlapping superpoints are the key to encoding inter-frame
geometric consistency for the point cloud registration task.

We propose to model the correlation with overlapping
superpoints to acquire inter-frame geometric consistent cor-
relations. Specifically, we suggest incorporating overlap
prior knowledge into the computation of point-wise features
by modeling non-global correlations with the anchor super-
points. Compared to the original global overlap ratio, this
approach allows for a higher overlap ratio in the anchor re-

gion and enables the network to avoid introducing ambigu-
ous geometric correlations.

To this end, we propose an one-way attention mod-
ule to explicitly learn one-way correlation with anchor
superpoints. We achieve superpoint matching by utiliz-
ing three attention modules, including a geometric self-
attention [25] module to learn intra-frame point-wise geo-
metric features, an explicit one-way attention module to en-
code inter-frame local geometric consistency, and a feature-
based cross-attention module to perform feature exchange
between source and target point clouds. These three atten-
tion modules are interleaved for Nt times to extract hybrid
features ĤP and ĤQ for reliable superpoint matching (see
Fig. 2).

Geometric self-attention. During superpoint matching,
given P̂ and Q̂, in order to learn point-wise attention fea-
tures, we follow GeoTransformer [25] to compute the intra-
frame self-attention XP̂ and XQ̂. Given the input fea-
ture matrix X ∈ R|P̂|×dt , the output feature matrix Z ∈
R|P̂|×dt is obtained by performing a weighted sum of all
projected input features:

zi =

|P̂|∑
j=1

ai,j
(
xjW

V
)

(1)

the weight coefficient ai,j is obtained through a row-wise
softmax function applied to the attention score ei,j , and the
computation of ei,j is shown as followed:

ei,j =

(
xiW

Q
) (

xjW
K + ri,jW

R
)T

√
dt

. (2)

Here, ri,j ∈ Rdt is a geometric structure embedding which
consists of a pair-wise distance embedding and a triplet-
wise angular embedding [25], WQ,WK ,WV ,WR ∈
Rdt×dt are projection matrices for queries, keys, values, and
geometric structure embeddings, respectively. Then, we get
superpoints attention feature matrices XP̂ and XQ̂, anchor
superpoints attention feature matrices XP̂A and XQ̂A . XP̂A

represents the anchor superpoints attention matrices of P̂ ,
which is indexed from the self-attention matrices XP̂ ac-
cording to divided putative overlapping superpoints, and the
same goes for XQ̂A . Similarly, XP̂NA and XQ̂NA represent
the non-anchor superpoints attention feature matrices for P̂
and Q̂, respectively.

Explicit one-way attention. We propose an one-way atten-
tion module to explicitly learn the intra-frame correlation
with the anchor superpoints, which is key to encoding inter-
frame local geometric consistency. Given anchor super-
points attention feature matrices XP̂A and non-anchor su-
perpoints attention feature matrices XP̂NA , the non-anchor
superpoints attention feature matrices ZP̂NA can be com-
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puted with the features of anchor superpoints features XP̂A .

zP̂NA
m =

|P̂A|∑
n=1

am,n

(
xP̂A
n WV

)
(3)

Similar to geometric self-attention, am,n represents a row-
wise softmax on the attention score em,n , which is the fea-
ture correlation between the XP̂NA and XP̂A .

em,n =

(
xP̂NA
m WP̂A

)(
xP̂A
n WK

)T

√
dt

(4)

The attention features for XQ̂NA are updated same as
XP̂NA , while XQ̂A and XP̂A remain unchanged.

Next, we use an inter-frame feature-based cross-
attention module to encode global inter-frame geometric
consistency between input point clouds [25]. The resultant
superpoint features are then sent to the superpoint matching
module for reasoning precise superpoint correspondences.
Finally, we perform point matching [25] to extract the dense
point correspondences and local-to-global registration to
obtain the estimated transformation.

3.3. Iterative Update

Our superpoint matching module incorporates an explicit
one-way attention module that is sensitive to anchor super-
points, allowing for better-estimated transformations by im-
proved overlap ratio in the anchor region. This leads to
more distinctive features for superpoint matching and re-
liable correspondences, resulting in higher accuracy and
more reliable final transformation. In other words, it can
be designed in an iterative fashion to refine the transforma-
tion. The iterative update module starts from the currently
estimated transformation, and the self-overlap-prior is com-
puted according to the current transformation and iteratively
transferred into the network. At each iteration, it produces
an updated transformation Tk, which is then applied to esti-
mate Tk+1 = f(Tk).

4. Experimental Results
In this section, we evaluate our method on indoor

3DMatch [37] and 3DLoMatch [17] benchmarks.

4.1. 3DMatch & 3DLoMatch

Dataset. 3DMatch [37] is composed of 62 scenes among
which 46 are used for training, 8 for validation, and 8 for
testing. Each scene has its corresponding RGB-D data.
We evaluate our approach using preprocessed training point
clouds provided by [17] and test it on both the 3DMatch and
3DLoMatch protocols. The point cloud pairs in 3DMatch
have an overlap of more than 0.3, while those in 3DLo-
Match have a lower overlap of 0.1 ∼ 0.3. We collect the as-
sociated RGB-D data [38] of these two benchmarks, where
each point cloud is fused by 50 consecutive depth frames.

3DMatch 3DLoMatch
Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall(%) ↑

PerfectMatch [12] 95.0 94.3 92.9 90.1 82.9 63.6 61.7 53.6 45.2 34.2
FCGF [7] 97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3
D3Feat [4] 95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5
SpinNet [1] 97.6 97.2 96.8 95.5 94.3 75.3 74.9 72.5 70.0 63.6
Predator [17] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3
YOHO [32] 98.2 97.6 97.5 97.7 96.0 79.4 78.1 76.3 73.8 69.1
CoFiNet [36] 98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6
PCR-CG [38] 97.4 97.5 97.7 97.3 97.6 80.4 82.2 82.6 83.2 82.8
GeoTransformer [25] 97.9 97.9 97.9 97.9 97.6 88.3 88.6 88.8 88.6 88.3
PEAL(ours) 99.0 99.0 99.1 99.1 98.8 91.7 92.4 92.5 92.9 92.7

Inlier Ratio (%) ↑

PerfectMatch [12] 36.0 32.5 26.4 21.5 16.4 11.4 10.1 8.0 6.4 4.8
FCGF [7] 56.8 54.1 48.7 42.5 34.1 21.4 20.0 17.2 14.8 11.6
D3Feat [4] 39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0
SpinNet [1] 47.5 44.7 39.4 33.9 27.6 20.5 19.0 16.3 13.8 11.1
Predator [17] 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
YOHO [32] 64.4 60.7 55.7 46.4 41.2 25.9 23.3 22.6 18.2 15.0
CoFiNet [36] 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9
GeoTransformer [25] 71.9 75.2 76.0 82.2 85.1 43.5 45.3 46.2 52.9 57.7
PEAL(ours) 72.4 79.1 84.1 86.1 87.3 45.0 50.9 57.4 60.3 62.2

Registration Recall(%) ↑

PerfectMatch [12] 78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0
FCGF [7] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
D3Feat [4] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1
SpinNet [1] 88.6 86.6 85.5 83.5 70.2 59.8 54.9 48.3 39.8 26.8
Predatorr [17] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
YOHO [32] 90.8 90.3 89.1 88.6 84.5 65.2 65.5 63.2 56.5 48.0
CoFiNet [36] 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0
PCR-CG [38] 89.4 90.7 90.0 88.7 86.8 66.3 67.2 69.0 68.5 65.0
GeoTransformer [25] 92.0 91.8 91.8 91.4 91.2 75.0 74.8 74.2 74.1 73.5
PEAL(ours) 94.6 93.7 93.7 93.9 93.4 81.7 81.2 80.8 80.4 80.1

Table 1. Evaluation results on 3DMatch and 3DLoMatch.

The RGB images and depth images are in pairs. Therefore,
each point cloud is also associated with 50 RGB frames.
Experiments Setup. When acquiring the 3D overlap prior,
the predicted overlap region is generated by the nearest
neighbor search under the estimated transformation within
a threshold of 0.0375m. To obtain 2D overlap prior, con-
sidering the computation cost of inferencing 2D correspon-
dences, we use three frames of images for the source and
the target point clouds and extract correspondences from
nine pairs of images using Superglue [28], with an image
resolution of [640,480]. We project the XYZ coordinates of
each point cloud onto its associated image plane to obtain
pixel-point corresponding relation with a depth threshold of
0.2m. During training, we use an Adam optimizer with a
learning rate of 1e-4 and a batch size of 1 on a single GPU
(RTX3090) for a total of 20 epochs. For testing, we always
use PEAL-3dprior for iterative updates and perform six it-
erations to refine the transformation. Other experimental
setup goes the same with GeoTransformer [25].
Metrics. We mainly compare the results on five metrics as
prior works [17, 25, 38], namely Registration Recall (RR),
Feature Matching Recall (FMR), Inlier ratio (IR), Relative
Rotation Error (RRE) as well as Relative Translation Error
(RTE).

We compare our method with the recent state of the arts:
FCGF [7], D3Feat [4], SpinNet [1], Predator [17], YOHO
[32], CoFiNet [36], PCR-CG [38], GeoTransformer [25] ,
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RR(%)
Model Estimator Samples 3DM 3DLM

FCGF [7] RANSAC-50k 5000 85.1 40.1
D3Feat [4] RANSAC-50k 5000 81.6 37.2
SpinNet [1] RANSAC-50k 5000 88.6 59.8
Predator [17] RANSAC-50k 5000 89.0 59.8
PCR-CG [38] RANSAC-50k 5000 89.4 66.3
CoFiNet [36] RANSAC-50k 5000 89.3 67.5
Lepard [18] RANSAC-50k 5000 93.5 69.0
GeoTransformer [25] RANSAC-50k 5000 92.0 75.0
PEAL-3dprior(ours) RANSAC-50k 5000 94.4 79.4
PEAL-2dprior(ours) RANSAC-50k 5000 94.6 81.7

CoFiNet [36] LGR all 87.6 64.8
REGTR [35] RANSAC-free all 92.0 64.8
GeoTransformer [25] LGR all 91.5 74.0
PEAL-3dprior(ours) LGR all 94.1 78.8
PEAL-2dprior(ours) LGR all 94.3 81.2

Table 2. Registration results w/o RANSAC on 3DMatch (3DM) and
3DLoMatch (3DLM).

REGTR [35], and Lepard [18].
RANSAC estimator results. Following [4, 17], we report
the results with different numbers of correspondences using
the RANSAC estimator in Tab. 1. Our method achieves the
highest Feature Matching Recall on all the sampled corre-
spondences on 3DMatch and 3DLoMatch. Our method im-
proves by no less than 3.4% on 3DLoMatch and 1.1 % on
3DMatch compared to the baseline GeoTransformer [25].
For Inlier Ratio, PEAL improves by 1.5% ∼ 11.2% on
3DLoMatch, and improves by 0.5% ∼ 8.1% on 3DMatch.
The improvement is more prominent with fewer sampled
correspondences, for instance, we achieve 60+% Inlier Ra-
tio on 500 and 250 sampled correspondences on 3DLo-
Match. For Registration Recall , PEAL outperforms the
previous best ( Lepard [18] in 3DMatch Tab. 2 (top), Geo-
Transformer [25] in 3DLoMatch Tab. 1 (bottom)) by 1.1%
on 3DMatch and 6.7% on 3DLoMatch.
RANSAC-free estimator. We compare the registration re-
sults of the RANSAC-free estimator in Tab. 2 (bottom). We
separate our models into PEAL-2dprior and PEAL-3dprior
according to the method of acquiring overlap prior. Both
of them achieve state-of-the-art performance on 3DMatch
3DLoMatch. The improvement is more prominent than us-
ing the RANSAC estimator. PEAL-2dprior improves previ-
ous best ( REGTR [35] in 3DMatch, GeoTransformer [25]
in 3DLoMatch) by 2.3% on 3DMatch and 7.2% on 3DLo-
Match. In addition, PEAL-3dprior outperforms the baseline
by 2.6% on 3DMatch and 4.8% on 3DLoMatch, showing
significant improvement compared to baseline method.
RRE and RTE. We then compare the RRE and RTE with
the recent state of the arts: [1, 4, 7, 17, 25, 35, 36] in Tab. 3.
As shown in this table, we achieve the second best in RRE,

3DMatch 3DLoMatch
Estimator RRE (◦) RTE (m) RRE (◦) RTE (m)

Predator [17] RANSAC-50k 2.029 0.064 3.048 0.093
CoFiNet [36] RANSAC-50k 2.002 0.064 3.271 0.090
PCR-CG [38] RANSAC-50k 1.993 0.061 3.002 0.087
Geotransformer [25] RANSAC-free 1.772 0.061 2.849 0.088
REGTR [35] RANSAC-free 1.567 0.049 2.827 0.077

PEAL-3dprior(ours) RANSAC-free 1.745 0.061 2.802 0.087
PEAL-2dprior(ours) RANSAC-free 1.748 0.062 2.788 0.087

Table 3. Relative Rotation Errors (RRE) and Relative Translation Errors
(RTE) on 3DMatch and 3DLoMatch benchmarks.

3DMatch 3DLoMatch
one-way attention FMR IR RR FMR IR RR

none 97.7 70.3 91.5 88.1 43.3 74.0
non-anchor to anchor 98.7 73.4 94.1 88.8 46.7 78.8
anchor to non-anchor 63.7 33.1 54.9 22.0 6.3 16.8
bidirectional 98.1 63.3 90.9 85.0 36.4 71.6

Table 4. Ablation experiments about the explicit one-way attention mod-
ule using PEAL-3dprior.

RTE on 3DMatch, and RTE on 3DLoMatch, and the best in
RRE on 3DLoMatch.

Ablation studies. In this section, we ablate the different
setups for the proposed modules in our method. In practice,
we notice local-to-global registration (LGR) [25] estimator
is much more stable and faster than the RANSAC estimator
while achieving a comparable performance (see Tab. 2).
Thus, we conduct our ablation experiments based on the
LGR estimator.

To explore the effectiveness of explicit one-way attention
module, we conduct various one-way attention strategies
between anchor and non-anchor superpoints, reporting the
FMR, IR, and RR on 3DMatch and 3DLoMatch. We com-
pared three strategies: anchor to non-anchor, non-anchor
to anchor, and bidirectional (combine both non-anchor to
anchor and anchor to non-anchor). Our findings indicate
that the local geometry correlation from anchor points to
non-anchor points is inter-frame geometrically inconsistent
when performing anchor to non-anchor attention. When up-
dating the features of anchor points, they will be severely
contaminated by the non-anchor region, leading to a sig-
nificant drop in registration recall compared to GeoTrans-
former, as shown in Tab. 4. Overall, our study confirms that
explicit one-way attention from non-anchor superpoints to
anchor superpoints can effectively encode inter-frame local
geometric consistency.

To evaluate prior-embedded explicit attention learn-
ing, we compare it with a prior-embedded implicit atten-
tion learning approach that involves making anchor points
salient. Specifically, prior to computing the self-attention,
the anchor points are initialized with the pretrained KPConv
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3DMatch 3DLoMatch
Model FMR IR RR FMR IR RR

GeoTransformer [25] 97.7 70.3 91.5 88.1 43.3 74.0
PIAL-3dprior 97.6 70.4 91.7 87.9 43.5 74.7
PEAL-3dprior 98.7 73.4 94.1 88.8 46.7 78.8

Table 5. Ablation experiments about the implicit attention learning and
explicit attention learning with embedded prior.

RR(%)
Model anchor superpoints selection 3DM 3DLM

PEAL-3dprior random 91.5 73.8

PEAL-3dprior random choose 40% 93.5 78.0
PEAL-3dprior random choose 80% 94.1 78.2
PEAL-3dprior base region 94.1 78.8
PEAL-3dprior + 4 nearest superpoints 93.9 78.9
PEAL-3dprior + 12 nearest superpoints 93.5 77.4
PEAL-3dprior + 16 nearest superpoints 93.2 77.2

Table 6. Ablation experiments on the anchor region. We take the overlap-
ping region estimated by GeoTransformer [25] as the base region.

RR(%)
Model Views 3DM 3DLM

PEAL-2dprior 1 92.5 78.8
PEAL-2dprior 2 93.7 80.7
PEAL-2dprior 3 94.3 81.2
PEAL-2dprior 4 94.3 81.2

Table 7. Ablation experiments on the number of images.

features while the non-anchor points are initialized to a con-
stant. We report the FMR, IR and RR of prior-embedded
implicit attention learning (PIAL) and prior-embedded ex-
plicit attention learning (PEAL) using LGR estimator in
Tab. 5. When using 3dprior, PIAL-3dprior have not shown
obvious improvements, while PEAL-3dprior significantly
outperforms the baseline, providing further evidence of the
superiority of the proposed approach.

Further, we vary the anchor region to study the influ-
ence on the prior overlapping region. In 3dprior experi-
ments, we use the overlapping region estimated by Geo-
Transformer [25] as the base region, which is then expanded
by including the nearest N superpoints or reduced by ran-
domly selecting a certain percentage from the base region.
The registration recall for 4, 12, and 16 nearest superpoints
and 40% and 80% shrinkage on the base region is recorded
in Tab. 6. For the 2dprior experiments, we adjust the num-
ber of images from 1-4 to obtain the correspondences and
record the registration recall in Tab. 7.

Tab. 6 explores the registration performance of using
random anchor superpoints first, as shown in the first row.

Figure 5. Registration Recall of iterative PEAL-3dprior (bottom)
and iterative PEAL-2dprior (top).

RR(%)
Model Iteration 3DM 3DLM

PEAL-3dprior w/o iteration 93.7 77.8
PEAL-3dprior-iter 6 iteration 94.1 78.8
ICP [29] 20 iteration 94.1 78.2

PEAL-2dprior w/o iteration 93.8 80.3
PEAL-2dprior-iter 6 iteration 94.3 81.2
ICP [29] 30 iteration 94.4 80.9

Table 8. Ablation experiments on the iterative update module.

The performance is close to baseline, implying that our
method does not perform well with randomly initialized
overlap prior. However, randomly expanding/shrinking the
base anchor region by 20% or choosing the 16 nearest nodes
only results in a slight drop in performance, suggesting that
changes to the base anchor region have limited effect on the
overlap ratio and consequently do not significantly affect
the final performance.

Tab. 7 demonstrates that registration recall can be im-
proved with more views involved, because more overlap-
ping point clouds can be found with the number of views
growing, especially in low-overlap scenarios with large
viewpoints and illumination changes.

Next, we ablate the iterative update module in Tab. 8
and Fig. 5. We evaluate the number of iterations on regis-
tration recall. We use the pretrained PEAL to generate the
initial pose for ICP and PEAL-iter. The registration recall
continues to improve with increasing iterations, as depicted
in Fig. 5. The improvement slows down after 8 iterations,
so we set the iteration number to 6 in our experiments tak-
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(a) input (b) ground truth (c) GeoTransformer
pose 

(d) PEAL - pose (e) GeoTransformer patch 
correspondences 

(f) PEAL - patch 
correspondences

# Patch corr:  256
Inlier ratio:  20.7%

# Patch corr:  256
Inlier ratio:  71.4%

RMSE:0.089mRMSE:4.410mOverlap:19.9%

Figure 6. Registration results of the GeoTransformer and PEAL-3dprior. The overlapping region estimated by GeoTransformer is used as
our 3D overlap prior. Our method infers much more inlier superpoint matches, significantly improving the registration performance. We
use T-SNE to visualize superpoint (patch) features.

(a) input (b) ground truth (c) GeoTransformer
pose 

(d) PEAL - pose (e) GeoTransformer patch 
correspondences 

(f) PEAL - patch 
correspondences

# Patch corr:  256
Inlier ratio:  3.1%

# Patch corr:  256
Inlier ratio:  39.8%

RMSE:0.028mRMSE:3.483mOverlap:14.0%

# Patch corr:  256
Inlier ratio:  5.8%

# Patch corr:  256
Inlier ratio:  62.1%

RMSE:0.043mRMSE:1.991mOverlap:19.0%

Figure 7. Registration results of GeoTransformer and PEAL-2dprior. Benefitting from the powerful overlap prior from 2D, PEAL-2dprior
learns distinctive patch features and infers reliable patch matches on the structure-less floor and geometrically ambiguous cupboard.

ing the tradeoff between performance and computation cost.
We also provide the RR of ICP in Tab. 8 and discover that
ICP’s performance is highly dependent on iteration number
and distance thresholds. We exhaustively adjust the setting
to identify the highest RR. Obviously, our approach demon-
strates better performance in low-overlap scenarios, while
ICP’s performance does not continually increase with an in-
creasing number of iterations.

Qualitative results. We visualize a collection of the regis-
tration results of PEAL and GeoTransformer [25] in Fig. 6,
7 . Our explicit attention-learning fashion significantly im-
proves feature representation and helps to infer superpoint
(patch) matches in extreme low-overlap scenarios.

Combining with other transformer-based networks. In
Tab. 9, we combine PEAL with other transformer-based
point cloud registration methods to evaluate its perfor-
mance. When plugged into Predator [17], which is not a
coarse-to-fine method, the improvement is also prominent.
Specifically, the RR improves by 2.8% with 3D overlap
prior, and improves by 10.4% with 2D overlap prior on 5000
sampled points.

Registration Recall (%)
# Sampled Points 5000 2500 1000 500 250

Predator [17] 59.8 61.2 62.4 60.8 58.1
Predator+PEAL 70.2 70.2 69.4 68.6 63.3

Table 9. Compared with Predator baseline on 3DLoMatch.

5. Conclusion

We present PEAL for rigid point cloud registration,
which explicitly incorporates overlap prior to attention
learning. It yields distinctive features for superpoint and
dense point matching, and various overlap priors can be in-
tegrated into this framework, such as 3D overlap prior, 2D
overlap prior, and self-overlap-prior. PEAL learns to extract
the discriminative geometric features through explicit one-
way attention, significantly relieving the feature ambiguity
generated by self-attention.
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