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Abstract

Continuous-time video frame interpolation is a funda-
mental technique in computer vision for its flexibility in
synthesizing motion trajectories and novel video frames at
arbitrary intermediate time steps. Yet, how to infer accu-
rate intermediate motion and synthesize high-quality video
frames are two critical challenges. In this paper, we present
a novel VFI framework with improved treatment for these
challenges. To address the former, we propose focalized
trajectory fitting, which performs confidence-aware motion
trajectory estimation by learning to pay focus to reliable
optical flow candidates while suppressing the outliers. The
second is range-nullspace synthesis, a novel frame renderer
cast as solving an ill-posed problem addressed by learning
decoupled components in orthogonal subspaces. The pro-
posed framework sets new records on 7 of 10 public VFI
benchmarks.

1. Introduction

Continuous-time Video Frame Interpolation (VFI) aims
at upsampling the temporal resolution of low frame-rate
videos steplessly by synthesizing the missing frames at ar-
bitrary time steps. It is a fundamental technology for vari-
ous downstream video applications such as streaming [34],
stabilization [5], and compression [35].

A key challenge of this task is to find a continuous map-
ping from arbitrary time step to the latent scene motion to
correctly render the target frame, observing the low frame-
rate video. Typically, it was realized via two stages: motion
trajectory fitting and frame synthesis, e.g. [1,3,4,10,13,17,
21, 29, 36, 38, 39]. In the former, a parametric trajectory
model is fitted from the optical flows extracted from input
frames, which can be resampled at any time step to get in-
termediate motion. For representing such a motion model,
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Figure 1. Motivation of the proposed method. Given input frames
and extracted optical flows (a), common VFI pipeline (b) is to fit
a continuous motion trajectory model, resample flows at the target
time step, based on which rendering rays are predicted to synthe-
size the intermediate frame by reorganizing pixels from the input
frames. Our pipeline (c) proposes improved treatment in two as-
pects: 1) our focalized motion estimation assigns dynamic weights
to the extracted optical flows to suppress the outlier flows and im-
prove fitting accuracy, and the novel range-nullspace solver treats
intermediate frame synthesis as an inverse problem instead of di-
rect rendering. Please see text for more details.

the Taylor polynomial is often adopted with different or-
ders [4,13,36]. However, fitting trajectory models are prone
to optical flow errors, which are inevitable due to occlusion.

Besides motion fitting, the frame synthesis step faces the
challenges of correctly inferring scene geometry. Particu-
larly, the intermediate flows resampled from the continuous
motion model only depict partial correspondences between
the intermediate frame with input frames, while existing
methods predict complete rendering rays in a data-driven
manner to facilitate full rendering, as shown in Fig. 1 (b).
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Though powerful architectures [15] and rendering mecha-
nisms [10] were proposed, it requires the network to fully
encode the scene geometry to predict correct rays, which
may raise the difficulty of architecture design and the bur-
den of learning.

To overcome these issues, we propose a novel framework
with improved motion fitting and frame synthesis compo-
nents. As shown in Fig. 1 (c), the first is focalized trajectory
fitting, which extracts a set of optical flow candidates from
the input video and assigns learned confidence weights to
them. Confidence-aware, differentiable trajectory fitting is
then followed, focalizing only the confident flows and pro-
ducing improved parametric motion models. Such models,
when resampled at the target time step, can produce accu-
rate flows even at the occlusion boundary. For the latter,
we follow the fact that intermediate frame synthesis is an
ill-posed task and propose a deep solver based on the range
nullspace theory [2]. Our solver decomposes the latent in-
termediate frame into several orthogonal image components
and adopts different networks to learn each of them. Such
physics-guided design encourages learning decoupled sub-
tasks for each network, relieving the burden of encoding
scene geometry and benefiting the use of lightweight mod-
els. In particular, our framework sets new records on 7
out of 10 public VFI benchmarks while being parameter-
efficient.

We summarize the contributions of this paper as follows.
1) A novel lightweight VFI framework is proposed, which
refreshes the records of 7 out of 10 public VFI benchmarks.
2) The idea of focalized trajectory fitting, which improves
parametric motion estimation in VFI and generates better
resampling quality of intermediate flows. 3) A new perspec-
tive that treats intermediate frame synthesis as an ill-posed
problem, solved with a deep range nullspace solver that de-
couples frame synthesis into several orthogonal tasks.

2. Related works
Video frame interpolation requires estimating the mo-

tion of intermediate frames before synthesizing them. Such
motion could be directly predicted as image correspon-
dences in a data-driven manner [11, 15], or evaluated from
parameterized motion trajectories fitted with optical flows
extracted from input frames. Typically the latter one is
more flexible to do frame interpolation at any time step. For
representing the motion model, linear motion is mostly as-
sumed [1, 3, 10, 13, 21, 29], while quadratic [17, 36, 38, 39]
and cubic [4] models were proposed and show improved
performance with higher orders of freedom. Frame synthe-
sis was then carried out by warping the information from in-
put frames, guided by the estimated motion. This involves
synthesis techniques of backward warping [13, 17, 29, 36]
or forward splatting [10, 21], depending on the direction
of intermediate flows. High-quality synthesis poses the de-

mand of reasoning occlusion, which was implemented ex-
plicitly with scene depth [1] or implicitly via powerful post-
processing architectures [11, 17]. VFI can also be imple-
mented in a highly data-driven manner [14], abstracting out
all the above steps with neural networks.

There was also an important track of VFI that only syn-
thesizes the middle frame of a pair of input frames. With-
out the need of representing motion continuously and in-
terpolating arbitrary time steps, sophisticated components
can be designed to optimally fit this task. For example, in-
termediate frame synthesis was solved with bilateral cost
volumes [23], asymmetric bilateral volumes [24], expanded
flows [8], and deformable convolutions [7]. There was also
kernel-based method [22], with enhanced variants [3,16,27]
that introduce more freedom into standard kernels with
learned offsets and weights. Recent advances of deep learn-
ing architectures, like transformer [28] and channel atten-
tion modules [6], are also beneficial.

Range-nullspace learning provides a solver for inverse
problems where the forward degeneration is a known lin-
ear operator [26]. It finds applications in solving super-
resolution [2], denoising [33] and compressed sensing [19].
Treating video frame interpolation as an inverse problem
was first performed by [39], which developed iterative
solvers based on learned gradients under the Bayesian infer-
ence framework. In this work, we adapt the range-nullspace
theory to VFI and propose a non-iterative solver that learns
orthogonally decomposed image components to relieve the
entanglement of learned representations.

3. The Proposed Framework
3.1. Overview

Following the routine of previous works [17, 36, 38,
39], our framework takes 4 adjacent input video frames
I−1, I0, I1, I2 ∈ [−1, 1]H×W×3 and generates intermedi-
ate frame It for any given time t ∈ (0, 1). As shown in
Fig. 2, our pipeline starts by extracting appearance features
for each input frame with a contextual network C:

Ci = C(Ii), i ∈ {−1, 0, 1, 2}. (1)

In the meantime, optical flows starting from I0, I1 to other
neighbours are computed. This yields 6 optical flow maps
Fi→j ∈ RH×W×2, where i ∈ {0, 1} and j ̸= i.

The Focalized Motion Estimation (FME) in Fig. 2 con-
sumes optical flows and contextual features. It consists of
three steps: flow confidence estimation, focalized trajectory
fitting, motion resampling and refinement, and outputs mo-
tion specifications at a given time t. Bi-directional motions
are inferred, regarding both time 0 and 1:

F̂0→t,M0→t = FME(t, {F0→j}j ̸=0, {Ci}∀i),

F̂1→t,M1→t = FME(1− t, {F1→j}j ̸=1, {Ci}∀i),
(2)
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Figure 2. Pipeline of our proposed method including contextual feature extraction, flow estimation, focalized motion estimation (FME),
and range-nullsapce synthesis (RNS). Detailed descriptions of FME (middle) can be found in Sect. 3.2, and RNS (right) is elaborated in
Sect. 3.3. For the details of mathematical symbols, please refer to the text.

Here, F̂i→t and Mi→t, i ∈ {0, 1} are the resampled flows
and occlusion relation masks to be explained in Sect. 3.2.
Finally, we feed these motion specifications at time t and
contextural features of input frames I0, I1 into the Range-
Nullspace Synthesis (RNS) module,

I∗t = RNS
(
{F̂i→t,Mi→t,Ci}i∈{0,1}

)
. (3)

In the following, we will elaborate technical details of
the proposed FTE and RNS modules.

3.2. Focalized Motion Estimation (FME)

For the sake of conciseness, only the direction 0 → t
in Eq. (2) is considered here, as 1 → t follows the sim-
ilar process. Given contextual features Ci and candidate
flows {F0→j}j ̸=0, the confidence estimation step dynami-
cally weights optical flow candidates. To this end, the con-
textual features Ci are half split along the channel dimen-
sion, yielding [Ca

i ,C
b
i ], and the confidence estimation only

works with the right half Cb
i to save calculation and leave

the representation ability of remaining features untouched.
The following warping residual is computed:

Ri = Cb
0 − ϕB(C

b
i ,F0→i), i ∈ {−1, 1, 2}, (4)

where ϕB represents the bilinear warping function [12] that
projects features Cb

i to time 0 with backward warping. In-
tuitively, the residuals Ri conveys rich information of ap-
pearance warping errors induced by flows. We map such
residuals to confidence weights via a network W:

W−1,W1,W2 = W(R−1,R1,R2), (5)

where Wi ∈ (0, 1)
H×W×1 and

∑
i∈{−1,1,2} Wi = 1.

Higher value of Wi indicates higher confidence of the flow
values in F0→i, which deserves more focus for fitting para-
metric motion trajectory models.

Focalized trajectory fitting. We suppose that, in a short
time interval around each pixel of I0, the motion trajectory
is approximated with 2nd-order Taylor polynomial:

f(τ ;A,B) = Aτ2 +Bτ, A,B ∈ RH×W×2, (6)

where A and B are model coefficients to fit, and τ ∈ [−1, 2]
is the temporal distance w.r.t. time 0. Solving A and B can
be formulated with the following weighted least squares:

min
A,B

∑
i∈{−1,1,2}

∥
√
Wi ⊙ (F0→i − f(i;A,B))∥22, (7)

in which ⊙ denotes element-wise product (with broadcast-
ing along channel dimension). The optimal solution of this
weighted least squares has the analytical form

Θ̂x,y,z = (XWx,yX
T )−1XWx,yFx,y,z, (8)

where x, y and z index the vertical, horizontal and channel

dimensions of tensors, Θ̂x,y,z =
(
Â(x, y, z), B̂(x, y, z)

)T

is the solved coefficients. Other matrices are:

Wx,y =

[
W−1(x,y,0)

W1(x,y,0)
W2(x,y,0)(x,y)

]
,

X =

[
1 1 4
−1 1 2

]
,Fx,y,z =

[
F0→−1(x,y,z)
F0→1(x,y,z)
F0→2(x,y,z)

]
.

(9)

All the calculations of Eq. (8) are fast to compute, in-
cluding the 2× 2 matrix inverse which is closed-form. This
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Figure 3. A toy 1-D example comparing different trajectory fit-
ting methods. Linear model [13] is not adequate to approximate
curved trajectory. Due to noisy measurements, quadratic mod-
els [17, 36] do not approximate the real curve well with fixed op-
tical flow weighting. The cubic model [4] performs even worse
due to the outlier at t = 2, which deteriorates high-order polyno-
mial regression. The proposed FTF achieves best approximation
by dynamically weighting the contributions of measurements. In
Sect. 4.4, we show benefits of this idea on real VFI samples.

renders the solver an efficient layer when integrated into the
whole architecture.

Motion resampling and refinement. After model fit-
ting, we can resample the intermediate flows F0→t by eval-
uating f(t; Â, B̂). Similar with previous works [10,21], we
also learn to refine the resampled flows to get benefits from
end-to-end training, and infer the visibility masks indicat-
ing occlusion relations at time t. This is achieved with a
refinement network M:

∆F0→t, M0→t = M(F0→t,C0, C̄1→0), (10)

where C̄1→0 = ϕB(C1,F0→1) is the warped features from
time 1 to 0. The refined intermediate flows are F̂0→t =
F0→t + ∆F0→t, with a soft mask M0→t ∈ (0, 1)H×W×1

indicating the occlusion order of pixels used for soft splat-
ting [21], which are to be used in Sect. 3.3.

3.3. Range-nullspace Synthesis (RNS)

The rest pipeline aims to synthesize the target frame at
time t. Arguably, rendering cannot be fully performed with
the resampled flows F̂0→t and F̂1→t, which only depict
partial correspondences from I0 or I1 to It, and do not ac-
count for occluded pixels in I0 and I1. Instead of predicting
full correspondences, we treat frame synthesis as an inverse
problem and solve it with a theory developed for it.

Our starting point is that given the unknown It and for-
ward flows F̂0→t and F̂1→t, we can relate these terms with
the observations I0 and I1 as follows:[

I0
I1

]
=

[
H0→t

H1→t

]
It +

[
Υ0→t

Υ1→t

]
. (11)

With slight abuse of notation, I0, I1 and It now denote with
vectorized and raster scanned images in [−1, 1]N , where
N = H ×W × C,C = 3 is the total number of pixels. In
this case, flow-based warping with F̂0→t and F̂1→t can be
reorganized as matrix multiplication with H0→t,H1→t ∈
RN×N . The additive residuals Υt represent image compo-
nents that cannot be modelled by warping, e.g. occluded
image content and lost high-frequencies caused by warping
operator.

Taking It in (11) as the latent to restore and Iy as the
measurements, we can treat (11) as an inverse problem with
linear forward operator Ht. Solving general linear inverse
problems is not trivial, especially when the distributions of
the residuals Υt and the latent It are complex. Replacing
the former with simple analytical distributions can lead to
classical Bayesian solvers, which are usually iterative even
with learned gradients [39]. In this paper, we instead em-
brace a non-iterative and fast alternative, based on the deep
range-nullspace solvers [2].

Range nullspace learning. Range-nullspace theory
states that if a forward operator H has right inverse H+

that satisfies HH+ = Id where Id is the identity matrix, it
is possible to define two orthogonal projections R and N :

R(x) ≜ H+Hx, N (x) ≜ (Id −H+H)x. (12)

It is easy to verify that x = R(x) + N (x) for any x, and
R(x)TN (y) = 0 for any x and y. R(x) and N (x) are
called range- and null-space projections, respectively. Par-
ticularly, N (x) satisfies

N (x) ∈ {u ∈ RN×3|Hu = 0}. (13)

Regarding our problem (11), unfortunately, the forward
operator [HT

0→t,H
T
1→t]

T has no right inverse (we refer in-
terested readers to the supplementary material for deriva-
tions). However, it has the following equivalent form:[

I0
I1

]
︸︷︷︸
Iy

=

[
H0→t 0
0 H1→t

]
︸ ︷︷ ︸

Ht

Ĩt +

[
Υ0→t

Υ1→t

]
︸ ︷︷ ︸

Υt

, s.t. CĨt = 0,

(14)
where Ĩt is divided into the top and bottom half, i.e. Ĩt =

[Ĩ
T

t,1, Ĩ
T

t,2]
T, and C = [Id,−Id]. The constraint simply con-

fines that ITt,1 = ITt,2. Our strategy is to first solve Ĩt without
the constraint. In this case, Ht in Eq. (14) can be right in-
versed. To meet the constraint, we find a projection of the
result into the constraint set {u ∈ R2N |Cu = 0}.

The appealing property of nullspace projection (13) can
be used to construct the following solver:

Ĩ
∗
t = H+

t Iy −R(H+
t Υt) +N (g(·)), (15)

where g(·) is arbitrary vector-to-vector function. The inter-
esting fact of (15) is, by this construction, Ĩ

∗
t always satisfies

22162



Iy = HtĨ
∗
t + Υt for any g(·). Different g(·)s lead to dif-

ferent reconstructions, revealing the ill-poseness of inverse
problems. To get results that fall onto natural images, we
implement g(·) with a neural network trained to minimize
the empirical errors on a dataset.

Solving (15) is left to know the residuals Υt. Though
following complex, structured distributions, Υt is mostly
sparse and universally bounded (|Υt| ≤ 2), which can be
approximated well with neural networks. Inspired by [2],
we use another network r(·) to directly approximate H+

t Υt,
which is also bounded. When ideal convergence is reached
after training, |r(·)−H+

t Υt| → 0, then the data consistency
Iy = HtĨ

∗
t +Υt can be met by (15).

After yielding the result Ĩt, projection onto CĨt = 0 is
performed by minimizing

y∗ = arg min
y∈R2N

(
NC(y)− Ĩt

)T

Σ
(
NC(y)− Ĩt

)
, (16)

where NC(y) = (Id−C±C)y is the nullspace projection of
C, C± is the pesudo inverse, and Σ ∈ [0, 1]2N×2N defines
the distance metric. The projected result is I∗t = NC(y

∗).
If Σ = Id, it is easy to show I∗t is simply the average of the
top and bottom half of Ĩ

∗
t , I∗t = (Ĩ

∗
t,1 + Ĩ

∗
t,2)/2 (see sup-

plementary material for details). Instead, we benefit from
end-to-end training and predict a dynamic blending mask
as a diagonal matrix Λ ∈ [0, 1]N×N , and obtain the result
by I∗t = ΛĨ

∗
t,1 + (Id − Λ)Ĩ

∗
t,2. It corresponds to learned

distance matrix in (16), where Σ = diag ([Λ, Id −Λ]).
The decomposition learning (15) amortizes the difficulty

of frame synthesis by several decoupled components. The
term H+

t Iy , where H+
t = diag([H+

0→t,H
+
1→t]), can be

intuitively thought of warping I0 and I1 to time t, yielding
physics-guided synthesis results. The network r(·) learns to
correct the error of physics-based warping, as the R oper-
ator first back-projects the network output to time 0 and 1,
and then does the same forward warping. The network g(·)
inpaints image content that cannot be addressed by forward
warping, which are often occluded layer. In Sect. 4.4, we
provide a visual analysis of the learned components.

Implementation. The network r(·) and g(·) have many
design choices, not limited to the following one we use:

f ,H+
t Υt = r

({
ϕF (Ci; F̂i→t,Mi→t)

}
i∈{0,1}

)
,

Λ, Ĩ
N
t = g

(
H+

t Iy −R(H+
t Υt),H

+
t Iy,f

)
,

Ĩ
∗
t = H+

t Iy −R(H+
t Υt) +N (Ĩ

N
t ),

I∗t = [Λ, Id −Λ]Ĩ
∗
t .

(17)

Note r(·) and g(·) form casaded structure, where the estima-
tion result of r(·) is the input of g(·). We also pass through
intermediate features f in this casade as unobstructed infor-
mation flow. Matrix multiplications with Ht and H+

t are all

implemented via warping operations. Multiplications with
H0→t or H1→t can be done via backward warping, while
with their inverse we use softmax splatting [21]:

Hi→tx = ϕB(x; F̂i→t),

H+
i→tx ≈ ϕF (x; F̂i→t,Mi→t),

(18)

where F̂i→t and Mi→t are the corresponding flows and
masks defined in (10). Note this only slightly breaks the
right inverse constraint but improves efficiency and flexibil-
ity. The overall working flow of steps (17) is referred to
Fig. 2. Due to space limit, the detailed network configura-
tions are referred to the supplementary material.

Loss functions. Our loss function is defined as follows

Ltotal = log(∥I∗t − Igtt ∥22 + ϵ) + α∥H+Υt −H+Υgt
t ∥1,

(19)
where the first one is a variant of standard ℓ2 error. In the
supplementary material we show this loss mitigates the di-
minishing gradient issue of ℓ2 loss and yields improved per-
formance. We set ϵ = 10−8 to avoid numeric issues. The
second loss enables that r(·) approximates the true residual,
where Υgt

t = Iy −HtI
gt
t . Empirically, we set α = 0.02.

4. Expertimental Results
4.1. Datasets

8× VFI. We test our method on three public 8x
VFI datasets: GoPro [20], X4K1000FPS [29] and
Adobe240 [31]. For GoPro, we follow [14, 39] and train
our method on the official train split of GoPro and evaluate
it on its test split at a resolution of 1280 × 720. We extract
training samples according to the strategy applied in [14]
and [39], yielding 22128 samples, each having 25 frames.
In each sample, the 1st, 9th, 17th and 25th frames are used
as input, while 10th to 16th frames serve as the supervision.
The test set of GoPro is sampled similarly, resulting into
1500 non-overlapped samples. To verify the generalization
capability, our model pre-trained on GoPro is also evalu-
ated on a subset of Adobe240 [31] dataset including 630
samples, sampled with the strategy of [39], as well as the
official test set of X4K1000FPS [29]. For fair comparisons
on X4K1000FPS dataset, we also retrain and evaluate our
method following its benchmarking protocol [29] strictly.

Single-frame (2×) VFI. Though our method is not de-
signed for 2× VFI, we also evaluate on seven 2× VFI
datasets for completeness. For training our method, since
4 input frames are required, we use the training split of the
septuble set of Vimeo-90k [37], which contains 64612 sam-
ples at resolution 256 × 448. In each septuplet, we take
the 1st, 3rd, 5th, 7th frames as input and the 4th frame
as the supervision. For evaluation, we use 7824 samples
from the test split of Vimeo-90k septuplet set, 100 samples
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Figure 4. Visual comparisons on X4K1000FPS (top 2 rows), and Adobe240 (bottom 2 rows) datasets, where each row corresponds to a
scene. We overlay the nearest 2 input frames to illustrate the input motion. More results can be found in the supplementary material.

from UCF101 [30], 2849 samples from DAVIS [25], and
310 samples from the easy, medium, hard and extreme sub-
sets of SNU-FILM [6]. Note that these are the same evalu-
ation protocols also adopted in [14, 28, 39].

4.2. Experimental settings

8× VFI. On each benchmark, we train the network for
120 epochs with batch size 32 and patch size 512 × 512,
which is optimized by the AdamW [18] with β1 = 0.9,
β2 = 0.999 and weight decay = 1×10−3. At each iteration,
the learning rate is decayed from 5×10−4 to 1×10−6 grad-
ually via cosine annealing with warm steps = 2000. During
the training process, we adopt random cropping, flipping,
and color jittering for data augmentation.

Single-frame (2×) VFI. The network is trained for 200
epochs with batch size 48 and patch size 256×256, leaving
the remaining settings the same as above.

In all the benchmarks, we use two common metrics, Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity In-
dex Measure (SSIM) for quantitative evaluation, which is
averaged across all the generated frames. Besides that, we
use [32] for computing optical flows among input frames.

4.3. Comparisons with State-of-the-Art models

8× VFI trained on GoPro. We compare our method
with 11 competitive VFI methods that supports 8× VFI:

Table 1. Quantitative results of 8× VFI in terms of PSNR/SSIM
and the number of parameters, evaluated on GoPro, Adobe240 and
X4K1000FPS datasets. The best performed model is highlighted
in red and the second best is colored in blue.

GoPro Adobe240 X4K1000FPS Param(M)

SloMo [13] 29.71/0.924 29.63/0.927 25.07/0.795 39.61
QVI [36] 30.52/0.941 31.41/0.955 28.06/0.855 29.23
EQVI [17] 30.81/0.942 32.13/0.959 26.96/0.843 28.07
DAIN [1] 29.53/0.920 30.53/0.939 27.28/0.835 24.03
EDSC [3] 29.20/0.916 29.87/0.931 25.30/0.811 8.95
FLAVR [14] 31.10/0.942 30.92/0.938 24.50/0.791 42.06
XVFI [29] 29.80/0.925 29.74/0.930 28.42/0.881 5.61
M2M [10] 30.52/0.933 29.93/0.931 30.04/0.905 7.61
IFRNet [15] 30.00/0.928 29.62/0.925 23.77/0.793 19.69
RIFEm [11] 29.79/0.925 29.81/0.930 28.70/0.880 10.71
DBVI [39] 31.73/0.947 33.28/0.965 31.10/0.928 15.18

Ours 32.31/0.951 33.32/0.964 31.97/0.932 10.10

SloMo [13], QVI [36], EQVI [17], DAIN [1], XVFI [29],
M2M [10], DBVI [39],EDSC [3], FLAVR [14], IFR-
Net [15] and RIFE [11]. Note our evaluating settings are
identical with [39], and for methods that do not follow the
unified protocol proposed in [39], including EQVI, M2M,
IFRNet and RIFE, we retrain them using the same proto-
col on GoPro and report the results. The quantitative results
on GoPro, Adobe240 and X4K1000FPS are reported in Ta-
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Table 2. Quantitative results of 8× VFI on X4K1000FPS dataset. following the benchmark protocol of [29].

AdaCoF [16] FeFlow [9] SloMo QVI EQVI DAIN FLAVR XVFI M2M IFRNet RIFEm DBVI Ours

PSNR 25.81 25.16 27.77 29.96 28.27 27.52 27.92 30.12 30.84 28.36 30.75 32.89 33.88
SSIM 0.772 0.783 0.849 0.892 0.860 0.821 0.853 0.870 0.916 0.870 0.914 0.939 0.946

Table 3. Quantitative results on 2× interpolation in terms of PSNR/SSIM with number of parameters and flops. All the methods are trained
on the training set of Vimeo-90K (septulets).

Vimeo-90K
(septulets)

UCF101 DAVIS
SNU-FILM

Param(M)
Easy Medium Hard Extreme

SloMo [13] 34.43/0.969 32.45/0.967 26.10/0.862 36.12/0.984 33.44/0.972 29.17/0.928 24.14/0.843 39.61
QVI [36] 34.98/0.970 32.87/0.966 27.20/0.874 39.53/0.990 36.43/0.983 31.07/0.947 24.96/0.856 29.23
EQVI [17] 35.16/0.973 32.99/0.970 27.51/0.891 37.44/0.978 35.19/0.981 30.72/0.946 25.42/0.868 28.07
XVFI [29] 35.21/0.970 32.68/0.968 26.89/0.868 39.21/0.989 34.96/0.977 29.43/0.928 24.02/0.841 5.61
DAIN [1] 33.57/0.964 31.65/0.963 26.61/0.867 38.53/0.988 34.34/0.974 29.50/0.930 24.54/0.851 24.03
BMBC [23] 34.76/0.965 32.61/0.955 26.42/0.868 39.90/0.991 35.34/0.978 29.34/0.927 23.65/0.837 11.01
ABME [24] 35.67/0.972 32.81/0.969 27.00/0.868 39.59/0.990 35.77/0.977 30.58/0.936 25.42/0.864 18.1
EDSC [3] 34.52/0.967 32.67/0.968 26.28/0.849 40.01/0.990 35.37/0.978 29.59/0.926 24.39/0.843 8.95
GDConv [27] 35.58/0.972 33.11/0.969 27.02/0.870 40.36/0.991 36.14/0.982 30.25/0.940 24.82/0.860 5.14
CAIN [6] 34.69/0.969 32.40/0.966 27.12/0.872 39.33/0.989 35.34/0.977 30.15/0.933 24.88/0.855 42.78
FLAVR [14] 36.30/0.975 33.33/0.971 27.44/0.873 40.44/0.991 36.37/0.981 30.87/0.942 25.18/0.862 42.06
M2M [10] 35.56/0.973 32.70/0.969 27.57/0.887 39.35/0.989 35.23/0.977 29.99/0.934 24.83/0.857 7.60
IFRNet [15] 36.37/0.976 32.87/0.969 27.94/0.890 39.68/0.990 35.57/0.979 30.21/0.938 24.71/0.855 19.69
Softsplat [21] 35.76/0.972 32.89/0.970 27.42/0.878 - - - - 12.46
RIFEm [11] 35.87/0.974 32.64/0.969 27.75/0.886 39.50/0.990 35.46/0.978 30.17/0.936 24.79/0.854 10.71
VFIT-B [28] 36.96/0.978 33.44/0.971 28.17/0.889 40.57/0.991 36.54/0.982 31.04/0.945 25.50/0.867 29.1
ST-MFNet [8] 36.46/0.976 33.46/0.971 28.30/0.896 40.78/0.992 37.12/0.984 31.61/0.951 25.78/0.874 21.03
DBVI [39] 36.17/0.976 33.01/0.970 28.61/0.905 40.46/0.991 36.95/0.985 31.68/0.953 25.90/0.876 21.69

Ours 36.33/0.975 33.25/0.970 28.84/0.905 40.67/0.991 37.36/0.985 32.21/0.955 26.22/0.877 10.10

ble 1, with the model size in terms of the number of param-
eters. Our approach achieves the best results across all the
datasets, achieving at least 0.58dB improvement on GoPro
and 0.87dB on X4K1000FPS. Compared with the state-of-
the-art model DBVI, our model has only two-thirds param-
eters. For those with less parameters than ours (e.g. M2M),
we achieve nearly 1.19dB improvements at least. 8× VFI
on X4K1000FPS dataset, following the protocol of [29].
We following the training and testing protocol of [29] to
report fair benchmarking results on X4K1000FPS dataset.
For fair comparison, we also retrain several methods (M2M,
IFRNet, RIFE, EQVI) on the official training split and com-
pare with the results already available from [29, 39]1. As
summarized in Table 2, our approach achieves 0.99dB im-
provement than previous leading method DBVI. As shown
in Fig. 4, our approach outperforms existing methods espe-
cially in several hard cases, like occluded or high frequency
area. More visual results can be found in our supplementary
material.

1The results of AdaCoF [16] and FeFlow [9] are adopted from [29],
which were trained and evaluated under the same settings.

Single-frame (2×) VFI. Finally, we report the results on
2× VFI for completeness. Though our method is not ded-
icatedly designed for single-frame interpolation, we com-
pare with 18 strong existing models and report the results
in 3. Note that results of ABME, BMBC and CAIN have
been reported in [39], while we extend this benchmark-
ing with ST-MFNet2, VFIT, GD-Conv, as well as multi-
frame VFI models. All the additional models are trained
on the train split of Vimeo-90K (setptulets set). Our ap-
proach achieves the best results on 4 of 7 datasets. Slightly
worse performance is observed on low resolution datasets
Vimeo-90K, UCF101 and the easy subset of SNU-FILM,
whose motion is slight. On more challenging datasets
like DAVIS and other subsets of SUN-FILM, the proposed
method shows better generalizability.

4.4. Performance Analysis

Ablation analysis of motion trajectory fitting and
range-nullspace learning. We have designed a series of

2The retrained model of ST-MFNet is kindly provided by the authors.
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Figure 5. Analyzing the effectiveness of focalized trajectory fitting. Given the input frames (left), we show in the middle optical flow errors
as the error maps of warping the frames I−1, I1 and I2 to time 0, and the corresponding weight maps of optical flows. Red denotes higher
error/weight values, and blue represents lower values. Note a pixel is highlighted in green showing that higher optical flow error leads to
lower weight. On the right, we show the warped result of I0 using the intermediate flows F0→t resampled from different trajectory models.
Note the warping results are overlayed with groundtruth, thus sharper result means more accurate warping. We also illustrate the position
of a pixel at the boundary of hula hoop after warped to time t by the intermediate flows (yellow cross), and the groundtruth position (red
point).
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Figure 6. Visualization of the learned range-null space image components. From left to right: 1) forward warping result of I0 by interme-
diate flows F̂0→t, 2) range space component, 3) range compensated result, 4) nullspace component, 5) full result, and 6) ground truth.

Table 4. Ablation analysis on the GoPro and Adobe240 datasets.

Trajectory Renderer GoPro Adobe
Linear [10] R+N 31.10/0.937 31.13/0.942

Quadratic [36] R+N 32.07/0.949 33.20/0.963
Quadratic [17] R+N 31.81/0.946 33.02/0.962

Cubic [4] R+N 32.01/0.949 33.09/0.962
FTF R 32.13/0.950 32.99/0.962
FTF N 32.17/0.950 32.99/0.962
FTF Unet 32.17/0.951 33.15/0.963
FTF R+N 32.31/0.951 33.32/0.964

ablation study experiments in Table 4. We report results on
the test set of GoPro and Adobe240 datasets with 8× VFI
setting. First, we replace our focalized trajectory fitting with
conventional linear, quadratic and cubic trajectory models
without flow confidence learning (i.e., estimating the tra-
jectory parameters Θ in (8) with conventional models). As
shown in the 1-4 rows in Table 4, using linear, quadratic
and cubic models without focalized fitting mechanism will
degrade the performance at different levels (linear model
performs worst, as expected). We also verfiy the contribu-
tions of learning range and null space image components.
Here, presence of R or N represent that the corresponding
network outputs are included to constitute final reconstruc-
tion. By rows 5 and 6, We observe that removing either
component would degrade the performance. In the 7th row,
we also implement a baseline using a UNet with similar pa-

rameter size to replace the proposed RNS module, which
achieves worse performance and demonstrate the effective-
ness of RNS architecture.

Visualizing the effectiveness of focalized trajectory
fitting. In Fig. 5, we show with one example the optical
flow errors, learned weight maps, and quality of flow resam-
pling. As can be seen, low weights are assigned to optical
flows with high matching errors. Particularly, our approach
yields more accurate correspondence along the occlusion
boundary (as shown in Fig. 5 right).

Visualizing the range and nullspace components. In
Fig. 6 we visualize the learned range and nullspace image
components of one example. As it stands, the rangespace
component fixes the errors of warping neighbouring frames
(note the front wheel and wheel arches), while the nullspace
component addresses image content that cannot be created
by warping, i.e. inpainting the occluded content.

5. Conclusion
This paper proposes two improved treatments towards

video frame interpolation. The first is focalized trajectory
fitting, which improves motion estimation by suppressing
low-quality optical flows. Another is range nullspace syn-
thesis, that formulates intermediate frame synthesis as an
ill-posed problem, solved by learning orthgonally decom-
posed image components. The proposed model achieves
leading results on various public VFI datasets.
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