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Abstract

Despite the remarkable progress in deep generative

models, synthesizing high-resolution and temporally co-

herent videos still remains a challenge due to their high-

dimensionality and complex temporal dynamics along with

large spatial variations. Recent works on diffusion models

have shown their potential to solve this challenge, yet they

suffer from severe computation- and memory-inefficiency

that limit the scalability. To handle this issue, we propose

a novel generative model for videos, coined projected la-

tent video diffusion model (PVDM), a probabilistic dif-

fusion model which learns a video distribution in a low-

dimensional latent space and thus can be efficiently trained

with high-resolution videos under limited resources. Specifi-

cally, PVDM is composed of two components: (a) an autoen-

coder that projects a given video as 2D-shaped latent vectors

that factorize the complex cubic structure of video pixels and

(b) a diffusion model architecture specialized for our new fac-

torized latent space and the training/sampling procedure to

synthesize videos of arbitrary length with a single model. Ex-

periments on popular video generation datasets demonstrate

the superiority of PVDM compared with previous video syn-

thesis methods; e.g., PVDM obtains the FVD score of 639.7

on the UCF-101 long video (128 frames) generation bench-

mark, which improves 1773.4 of the prior state-of-the-art.

1. Introduction

Recent progresses of deep generative models have shown

their promise to synthesize high-quality, realistic samples in

various domains, such as images [9,27,41], audio [8,31,32],

3D scenes [6, 38, 48], natural languages [2, 5], etc. As

a next step forward, several works have been actively

focusing on the more challenging task of video synthe-

sis [12, 18, 21, 47, 55, 67]. In contrast to the success in other

domains, the generation quality is yet far from real-world

videos, due to the high-dimensionality and complexity of

videos that contain complicated spatiotemporal dynamics in

high-resolution frames.

Inspired by the success of diffusion models in handling

complex and large-scale image datasets [9, 40], recent ap-

proaches have attempted to design diffusion models for

videos [16, 18, 21, 22, 35, 66]. Similar to image domains,

these methods have shown great potential to model video

distribution much better with scalability (both in terms of

spatial resolution and temporal durations), even achieving

photorealistic generation results [18]. However, they suffer

from severe computation and memory inefficiency, as diffu-

sion models require lots of iterative processes in input space

to synthesize samples [51]. Such bottlenecks are much more

amplified in video due to a cubic RGB array structure.

Meanwhile, recent works in image generation have pro-

posed latent diffusion models to circumvent the computation

and memory inefficiency of diffusion models [15, 41, 59].

Instead of training the model in raw pixels, latent diffusion

models first train an autoencoder to learn a low-dimensional

latent space succinctly parameterizing images [10, 41, 60]

and then models this latent distribution. Intriguingly, the ap-

proach has shown a dramatic improvement in efficiency for

synthesizing samples while even achieving state-of-the-art

generation results [41]. Despite their appealing potential,

however, developing a form of latent diffusion model for

videos is yet overlooked.

Contribution. We present a novel latent diffusion model

for videos, coined projected latent video diffusion model

(PVDM). Specifically, it is a two-stage framework (see Fig-

ure 1 for the overall illustration):

• Autoencoder: We introduce an autoencoder that repre-

sents a video with three 2D image-like latent vectors by

factorizing the complex cubic array structure of videos.

Specifically, we propose 3D → 2D projections of videos

at each spatiotemporal direction to encode 3D video pix-

els as three succinct 2D latent vectors. At a high level,

we design one latent vector across the temporal direction

to parameterize the common contents of the video (e.g.,

background), and the latter two vectors to encode the mo-

tion of a video. These 2D latent vectors are beneficial for

achieving high-quality and succinct encoding of videos,

as well as enabling compute-efficient diffusion model

architecture design due to their image-like structure.
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Figure 1. Overall illustration of our projected latent video diffusion model (PVDM) framework. PVDM is composed of two components: (a)

(left) an autoencoder that maps a video into 2D image-like latent space (b) (right) a diffusion model operates in this latent space.

• Diffusion model: Based on the 2D image-like latent

space built from our video autoencoder, we design a

new diffusion model architecture to model the video

distribution. Since we parameterize videos as image-

like latent representations, we avoid computation-heavy

3D convolutional neural network architectures that are

conventionally used for handling videos. Instead, our

architecture is based on 2D convolution network diffu-

sion model architecture that has shown its strength in

handling images. Moreover, we present a joint training

of unconditional and frame conditional generative mod-

eling to generate a long video of arbitrary lengths.

We verify the effectiveness of our method on two popu-

lar datasets for evaluating video generation methods: UCF-

101 [54] and SkyTimelapse [64]. Measured with Inception

score (IS; higher is better [44]) on UCF-101, a represen-

tative metric of evaluating unconditional video generation,

PVDM achieves the state-of-the-art result of 74.40 on UCF-

101 in generating 16 frames, 256×256 resolution videos. In

terms of Fréchet video distance (FVD; lower is better [58])

on UCF-101 in synthesizing long videos (128 frames) of

256×256 resolution, it significantly improves the score from

1773.4 of the prior state-of-the-art to 639.7. Moreover, com-

pared with recent video diffusion models, our model shows

a strong memory and computation efficiency. For instance,

on a single NVIDIA 3090Ti 24GB GPU, a video diffusion

model [21] requires almost full memory (≈24GB) to train

at 128×128 resolution with a batch size of 1. On the other

hand, PVDM can be trained with a batch size of 7 at most

per this GPU with 16 frames videos at 256×256 resolution.

To our knowledge, the proposed PVDM is the first latent

diffusion model designed for video synthesis. We believe

our work would facilitate video generation research towards

efficient real-time, high-resolution, and long video synthesis

under the limited computational resource constraints.

2. Related work

Video generation. Video generation is one of the long-

standing goals in deep generative models. Many prior works

have attempted to solve the problem and they mostly fall into

three categories. First, there exists numerous attempts to ex-

tend image generative adversarial networks (GANs) [13] to

generate videos [1,7,11,14,23,36,42,43,46,47,55,57,62,67,

68]; however, GANs often suffer from mode collapse prob-

lem and these methods are difficult to be scaled to complex,

large-scale video datasets. Other approaches have proposed

learning the distribution via training autoregressive mod-

els [12, 24, 39, 63, 65] using Transformers [61]. They have

shown better mode coverage and video quality than GAN-

based approaches, but they require expensive computation

and memory costs to generate longer videos [47]. Finally,

recent works have attempted to build diffusion models [19]

for videos [16, 21, 22, 46, 66], achieving state-of-the-art re-

sults, yet they also suffer from significant computation and

memory inefficiency. Our method also takes an approach to

diffusion models for videos; however, we consider the gener-

ative modeling in low-dimensional latent space to alleviate

these bottlenecks of diffusion models.

Diffusion models. Diffusion models [19, 49], which are cat-

egorized as score-based generative models [52, 53], model

the data distribution by learning a gradual iterative denoising

process from the Gaussian distribution to the data distribu-

tion. Intriguingly, they show a strong promise in generating

high-quality samples with wide mode coverage, even outper-

forming GANs in image synthesis [9] and enabling zero-shot

text-to-image synthesis [40]. Not limited to images, diffu-

sion models have shown their promise in other data domains,

including point clouds [34], audio [31], etc. However, dif-

fusion models suffer from severe computation inefficiency

for data sampling due to the iterative denoising process in

high-dimensional data space. To alleviate this problem, sev-
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Figure 2. Detailed illustration of our autoencoder architecture in PVDM framework ((a) in Figure 1).

eral works have proposed an effective sampling process from

trained diffusion models [51, 69] or learning the data distri-

bution from low-dimensional latent space that amortizes the

data [15, 41, 59]. We take the latter approach for designing a

computation-efficient video diffusion model.

Diffusion models for videos. Following the remarkable suc-

cess of diffusion models in image domains, several works

[16, 18, 21, 22, 35, 66] have extended them for video genera-

tion. Intriguingly, they often show much better results than

prior works, even can be scaled-up to complex datasets, and

achieves successful generation results on challenging text-to-

video synthesis task [18]. Despite their potential on modeling

videos, scaling them for synthesizing high-resolution, long

video is not straightforward due to a huge computation bottle-

neck caused by an unfavorable dimension increase of video

data as 3D RGB arrays. We tackle this problem by modeling

the video distribution in the low-dimensional latent space.

Triplane representations. Several recent works in 3D-aware

generation [6, 48] have demonstrated that high-dimensional

3D voxels can be effectively parameterized with 2D triplane

latent representations without sacrificing the encoding qual-

ity. In particular, prior works have proposed GAN architec-

tures that synthesize a 3D scene by generating three image-

like latents as an approximation of complex 3D voxels. In

contrast, we explore the effectiveness of triplane represen-

tations for encoding videos, and we build diffusion models

instead of GANs with such representations.

3. Projected latent video diffusion model

We first formalize the problem of video generative mod-

eling. Consider a dataset D= {xi}Ni=1 of size N , where

each x∈D is sampled from the unknown data distribution

pdata(x). Here, each x ∈ R
3×S×H×W is a video clip con-

sisting of S frames at H ×W (spatial) resolution. In video

generative modeling, the goal is to learn a model distribution

pmodel(x) that matches pdata(x) using D.

To accomplish the goal, we build a method based on dif-

fusion modelsÐa type of generative model that models the

data distribution pdata(x) by learning the reverse process of

the Markov diffusion process starting from pdata(x) to the

Gaussian prior distribution N (0x, Ix). Remarkably, diffu-

sion models are shown to synthesize high-quality samples

without mode collapse problems and can be scaled to model

complex datasets. However, diffusion models directly op-

erate in raw input space; unlike other data domains (e.g.,

images), designing diffusion models for videos is challeng-

ing due to their cubic complexity and high-dimensionality

as 3D tensors of RGB values. Our key contribution is to mit-

igate this issue by proposing diffusion models operating on

a novel low-dimensional latent space that succinctly parame-

terizes videos by breaking down the complex 3D structure

of video pixels into three 2D structures.

In the rest of this section, we describe our projected latent

video diffusion model (PVDM) in detail. In Section 3.1, we

provide an overview of (latent) diffusion models. In Sec-

tion 3.2, we explain how we design PVDM in detail. Finally,

in Section 3.3, we describe our training objective and sam-

pling strategy to generate longer videos.

3.1. Latent diffusion models

At a high level, diffusion models learn the target distribu-

tion pdata(x) by learning a gradual denoising process from

Gaussian prior distribution to reach pdata(x). Formally, diffu-

sion models consider the reverse process pθ(xt−1|xt) of the

Markov diffusion process q(xt|xt−1) of a fixed length T >
0 starting from p(x0) := pdata(x) to p(xT ) :=N (0x, Ix).
More specifically, q(xt|xt−1) is formalized as the following

normal distribution with a pre-defined 0 < β1, . . . , βT < 1
and ᾱt :=

∏t

i=1(1− βi):

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtIx),

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)Ix).

Using the reparameterization trick [30], Ho et al. [19] shows

the corresponding pθ(xt−1|xt) can be learned as a denoising

autoencoder ϵθ(xt, t) that denoises a noisy sample xt, which

is trained with the following noise-prediction objective:

Ex0,ϵ,t

[

||ϵ− ϵθ(xt, t)||22
]

where xt =
√
ᾱtx0 +

√
1− ᾱtϵ,
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Algorithm 1 projected latent video diffusion model (PVDM)

1: for ℓ = 1 to L do ▷ Iteratively generate video clips xℓ.

2: Sample the random noise z
ℓ
T ∼ p(zT ).

3: for t = T to 1 do

4: if ℓ = 1 then

5: Unconditional score ϵt = ϵθ(z
ℓ
t,0, t).

6: else

7: Conditional score ϵt = ϵθ(z
ℓ
t, z

ℓ−1
0 , t).

8: end if

9: Sample ϵ ∼ N (0z, Iz).

10: Compute zℓt−1 = 1√
1−βt

(

z
ℓ
t − βt√

1−ᾱt

ϵt

)

+σtϵ.

11: end for

12: Decode the ℓ-th clip x
ℓ = gψ(z

ℓ
0).

13: end for

14: Output the generated video [x1, . . . ,xL].

and pθ(xt−1|xt) can be approximately formulated as the

following normal distribution with a small enough βt [50]:

pθ(xt−1|xt) := N
(

xt−1;xt −
βt√
1− ᾱt

ϵθ(xt, t), σ
2
t

)

,

with the variances σ2
t := βt as pre-defined hyperparameters.

The main drawback of diffusion models is severe compu-

tation and memory inefficiency. To generate the sample, one

should operate pθ(xt−1|xt) in high-dimensional input space

X repeatedly (e.g., T =1000 in Ho et al. [19]). To tackle

this issue, several works [15, 41, 59] have proposed latent

diffusion models to learn the distribution in low-dimensional

latent space Z that succinctly encodes the data, which is

typically learned with autoencoders [41]. Specifically, latent

diffusion models train the denoising autoencoder ϵθ(zt, t)
in Z instead of X i.e., learning pθ(zt−1|zt), so that x is

generated by first sampling z and then decoding to x with

the decoder. Due to the significant dimension reduction from

x to z, one can dramatically reduce the computation for sam-

pling the data. Inspired by their success, we also model video

distribution with latent diffusion models.

3.2. Designing efficient latent video diffusion model

Autoencoder. To represent a video x as a low-dimensional

latent vector z, we train an autoencoder composed of an

encoder fϕ : X → Z with fϕ(x) = z and a decoder gψ :
Z → X with gψ(z) = x̃ so that x̃ becomes x. Motivated by

VQGAN [10] for compressing images perceptually via latent

codes [37], we encode videos with discrete latent codes by

minimizing the sum of two terms: pixel-level reconstruction

loss and the negative of perceptual similarity (LPIPS; [70]);

we provide more details in Appendix A.

Conventional video autoencoders have mostly relied on

frame-wise 2D convolutional networks [45] or 3D convo-

lutional networks [65] to compress a given video x. While

these approaches are fairly effective in amortizing x as a

low-dimensional latent vector, they encode x as a 3D latent

vector, which overlooks the temporal coherency and requir-

ing the diffusion model architecture to deal with a 3D tensor

and may cause a computation overhead. Instead, we take a

different approach: given x, we construct z as three 2D latent

vectors z
s, zh, zw, i.e., z := [zs, zh, zw], zs ∈ R

C×H′×W ′

,

z
h ∈ R

C×S×W ′

, zw ∈ R
C×S×H′

, where C is a latent di-

mension and H ′ = H/d, W ′ = W/d for d > 1. Here,

we denote each z
s, zh, zw the concatenation of latent codes

zshw, z
h

sw, z
w

sh ∈ R
C (respectively); e.g., for zs, we write

z
s := [zshw] for 1 ≤ h ≤ H ′, 1 ≤ w ≤ W ′.

We design z
s to capture the common content across time

in x (e.g., background), and the latter two latent vectors

z
h, zw to encode the underlying motion in x by learning the

representations across two spatial axes of videos. Specifi-

cally, [zs, zh, zw] is computed with the encoder fϕ, where

fϕ is a composition of a video-to-3D-latent mapping fshw

ϕshw

and a 3D-to-2D-latents projection fs

ϕs
× fh

ϕh
× fw

ϕw
(with

ϕ := (ϕshw,ϕs,ϕh,ϕw); see Figure 2 for the illustration).

More specifically, we compute z from x as follows:

u := fshw

ϕshw
(x), where u = [ushw] ∈ R

C×S×H′×W ′

,

zshw := fs

ϕs
(u1hw, . . . , uShw), 1≤h≤H ′, 1≤w≤W ′,

zhsw := fh

ϕh
(us1w, . . . , usH′w), 1≤ s≤S, 1≤w≤W ′,

zwsh := fw

ϕw
(ush1, . . . , ushW ′), 1≤ s≤S, 1≤h≤H ′.

With the latent vector z of x from fϕ, we construct the

decoder gψ that (a) computes a 3D latent grid v from z and

(b) reconstructs x from v, where v is computed as follows:

v = (vshw) ∈ R
3C×S×H′×W ′

, vshw := [zhw, zsw, zsh].

We use video Transformer (e.g., TimeSformer [4]) for

fshw

ϕshw
(x) and gψ, and a small Transformer [61] for projec-

tions fs

ϕs
, fh

ϕh
, fw

ϕw
. While our autoencoder design requires

slightly more parameters and computations for encoding

videos from additional projections, it provides dramatic com-

putation efficiency for training (and sampling) of a diffu-

sion model in latent space. In particular, conventional video

autoencoder design requires O(SHW ) dimensions of la-

tent codes for encoding videos, and thus diffusion models

to utilize 3D convolution layers and self-attention layers,

which lead the computation overhead to be O(SHW ) and

O((SHW )2), respectively. In contrast, we represent a video

as image-like latent vectors with O(HW +SW +SH) la-

tent codes; such latent representations enables more compute-

efficient diffusion model design by utilizing 2D convolu-

tion layers (O(HW +SW +SH)) and self-attention layers

(O((HW +SW +SH)2)) based on modifying popular ar-

chitectures used for image diffusion models [19].
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Figure 3. 256×256 resolution, 128 frame video synthesis results of StyleGAN-V and PVDM, trained on (a) UCF-101 and (b) SkyTimelapse.1

The intuition behind our overall autoencoder design is

that videos are temporally coherent signals and share the

common contents across the temporal axis; capturing the

common content as zs can dramatically reduce the number

of parameters for encoding videos [29]. Moreover, due to the

high temporal coherency of videos, the temporal variation

is often not very large; we empirically verify our succinct

representation of motions as two spatial grids zh, zw does not

hurt the encoding quality (see Section 4.3).

Latent diffusion model. Recall that we encode the video

x as three 2D latent vectors z = [zs, zh, zw]; it is enough

to model the distribution p(zs, zh, zw) for learning pdata(x).
To train a denoising autoencoder for [zs, zh, zw], we design

the neural network architecture based on utilizing popular

2D convolutional U-Net architecture used for training diffu-

sion models for image generation [9] instead of 3D convo-

lutional networks [21]. Specifically, we use a single U-Net

(i.e., shared parameters) to denoise each z
s, zh, zw. To handle

the dependency among z
s, zh, zw to model the joint distri-

bution p(zs, zh, zw), we add attention layers that operates

to the intermediate features of zs, zh, zw from shared U-Net.

We remark that such 2D convolutional architecture design

is more computation-efficient than a naïve 3D convolutional

U-Nets for videos, which is possible due to the ªimage-likeº

structure and a reduced dimension of our latent vectors from

using less latent codes for encoding videos.

1StyleGAN-V results are from https://universome.github.

io/stylegan-v.

3.3. Generating longer videos with PVDM

Note that videos are sequential data; unlike our setup

that assumes all videos x ∈ D have the same length S,

the length of real-world videos varies, and generative video

models should be able to generate videos of arbitrary length.

However, we only learn the distribution of the fixed-length

video clips pdata(x); to enable long video generation, one can

consider learning a conditional distribution p(x2|x1) of two

consecutive video clips [x1,x2] of x1,x2 ∈ R
3×S×H×W

and sequentially generate future clips given the current ones.

A straightforward solution is to have two separate mod-

els to learn the unconditional distribution pdata(x) and the

conditional distribution p(x2|x1). Instead of having an extra

model, we propose to train a single diffusion model to jointly

learn an unconditional distribution p(x) and the conditional

distribution p(x2|x1). It can be achieved by training a con-

ditional diffusion model p(x2|x1) with introducing a null

frame (i.e., x1 = 0) for a joint learning of p(x) [20]. More

specifically, we consider training of a denoising autoencoder

ϵθ(z
2
t , z

1
0, t) in the latent space with the following objective:

E(x1

0
,x2

0
),ϵ,t

[

λ||ϵ− ϵθ(z
2
t , z

1
0, t)||22

+ (1− λ)||ϵ− ϵθ(z
2
t ,0, t)||22

]

,

where z10 = fϕ(x
1
0), z

2
0 = fϕ(x

2
0), z

2
t =

√
ᾱtz

2
0 +

√
1− ᾱtϵ,

and λ∈ (0, 1) is a hyperparameter that balances a learning

between unconditional and conditional distribution.
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(a) UCF-101

(b) SkyTimelapse

Figure 4. Illustrations of random 16 frames, 256×256 resolution video synthesis results of PVDM trained on UCF-101 and SkyTimelapse

datasets. We visualize the frames of each video with stride 2.

After training, one can generate the long video as fol-

lows: sample an initial video clip x
1 ∼ pθ(x), and repeat

generating next clip x
ℓ+1 ∼ pθ(x

ℓ+1|xℓ) conditioned on the

previous clip. Finally, we obtain a long video by concate-

nating all generated clips [x1, . . . ,xL] of arbitrary length

L > 1. See Algorithm 1 for details and Figure 3 for results.

4. Experiments

We validate the superiority of our PVDM framework

under two representative datasets: UCF-101 [54] and Sky-

Timelapse [64]. In Section 4.1, we provide the experimental

setup and evaluation details that we used for experiments. In

Section 4.2, we present the main qualitative and quantitative

video synthesis results. Finally, in Section 4.3, we perform

an ablation studies to verify the effect of components and

efficiencies of our method.

4.1. Experiment setup

Datasets. We train our PVDM and compare with baselines

on well-known video datasets used for video synthesis: UCF-

101 [54] and SkyTimelapse [64]. Following the experimental

setup used in recent video generation methods [47, 67], we

preprocess these datasets as video clips of length 16 or 128

frames, where each frame is resized to 256×256 resolution.

For training each model, we use the train split of the dataset

for all of the experiments. We provide the detailed descrip-

tion of datasets in Appendix B.1.

Evaluation. For evaluation metrics for quantitative compari-

son, we use and report Inception score (IS) [44] and Fréchet

video distance (FVD) [58]. We use the clip length of 16 for

the evaluation of IS, following the prior experiment setups in

unconditional video generation. For FVD to evaluate UCF-

101 and SkyTimelapse, we used a fixed protocol proposed

by StyleGAN-V that removes the potential bias from the

existence of long videos in the dataset (we provide more de-

tails of metrics in Appendix B.2). We consider two different

clip lengths (16 and 128) for FVD, where we denote FVD16

and FVD128 as the FVD score measured on video clips of

lengths 16 and 128, respectively. We use 2,048 real/fake

video clips for evaluating FVD16 and FVD128, and generate

10,000 video clips for the evaluation of IS.

Baselines. Following the setup in StyleGAN-V, one of the

state-of-the-art video generation methods, we mainly com-

pare PVDM with the following recent video synthesis meth-

ods: VideoGPT [65], MoCoGAN [57], MoCoGAN-HD [55],

DIGAN [67], and StyleGAN-V [47]. Moreover, we perform

an additional comparison between PVDM and previous ap-

proaches on IS values on UCF-101: MoCoGAN, Progres-

siveVGAN [1], LDVD-GAN [23], VideoGPT, TGANv2 [43],

DVD-GAN [7], DIGAN, VDM [21], and TATS [12]. All

reported values are collected from the recent prior works:

StyleGAN-V, DIGAN and TATS, unless otherwise specified.

In particular, we compare the memory and computation effi-

ciency with VDM. We provide more details of each method

and how they are implemented in Appendix C.
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Table 1. FVD16 and FVD128 values (lower values are better) of video generation models

on UCF-101 and SkyTimelapse. Bolds indicate the best results, and we mark our method

as blue. We report FVD values of other baselines obtained by the reference (StyleGAN-

V [47]). N /M -s denotes the model is evaluated with the DDIM sampler [51] with N steps

(for the initial clip) and M steps (for future clips).

UCF-101 SkyTimelapse

Method FVD16 ↓ FVD128 ↓ FVD16 ↓ FVD128 ↓

VideoGPT [65] 2880.6 N/A 222.7 N/A

MoCoGAN [57] 2886.8 3679.0 206.6 575.9

+ StyleGAN2 [28] 1821.4 2311.3 85.88 272.8

MoCoGAN-HD [55] 1729.6 2606.5 164.1 878.1

DIGAN [67] 1630.2 2293.7 83.11 196.7

StyleGAN-V [47] 1431.0 1773.4 79.52 197.0

PVDM-S (ours); 100/20-s 457.4 902.2 71.46 159.9

PVDM-L (ours); 200/200-s 398.9 639.7 61.70 137.2

PVDM-L (ours); 400/400-s 343.6 648.4 55.41 125.2

Table 2. IS values (higher values are better) of

video generation models on UCF-101. Bolds

indicate the best results and subscripts denote

the standard deviations. * denotes the model

is trained on train+test split, otherwise the

method uses only the train split for training.

Method IS ↑

MoCoGAN [57] 12.42±0.07

ProgressiveVGAN [1] 14.56±0.05

LDVD-GAN [23] 22.91±0.19

VideoGPT [65] 24.69±0.30

TGANv2 [43] 28.87±0.67

StyleGAN-V* [47] 23.94±0.73

DIGAN [67] 29.71±0.53

VDM* [21] 57.00±0.62

TATS [12] 57.63±0.24

PVDM-L (ours) 74.40±1.25

Training details. We use Adam [30] and AdamW opti-

mizer [33] for training of an autoencoder and a diffusion

model, respectively, where other training details mostly fol-

low the setups in latent diffusion models for images [41].

For the autoencoder architecture, we use TimeSformer [4] to

both encoder and decoder, where we use Transformer [61]

architecture for 3D-to-2D projection mapping. We use two

configurations for diffusion models, (denoted by PVDM-S

and PVDM-L, respectively); please refer to Appendix D for

more training details and model configurations.

4.2. Main results

Qualitative results. Figure 4 illustrates the video synthesis

results from PVDM on UCF-101 and SkyTimelapse: our

method shows realistic video generation results in both sce-

narios, namely, including the motion of the small object

(Figure 4a) or the large transition of the over frames (Fig-

ure 4b). We also note that such training is achieved under

high-fidelity (256×256 resolution) videos. Moreover, our

method also has the capability to synthesize videos in the

complex UCF-101 dataset with a plausible quality, as shown

in Figure 4a, while other baselines often fail on such chal-

lenging dataset datasets [47, 67].2

Quantitative results. Table 1 and 2 summarize the quan-

titative comparison between our method and prior video

generation methods: PVDM consistently outperforms other

methods measured with diverse metrics. In particular, com-

pared with VDM [21], which trains a diffusion model on

video pixels, our method shows a better IS even though VDM

uses more data (uses train+test split) than our setup (uses

train split only). Intriguingly, our method shows a notable

2We provide the illustrations of synthesized videos from our method and

comparison with other baselines in the following project website: https:

//sihyun.me/PVDM.

improvement on UCF, a complicated, multi-class dataset,

which shows the potential of our method to model com-

plex video distribution. We also note that our method also

achieves state-of-the-art results in 128 frame videos, which

demonstrates the effectiveness of our method in generating

longer videos. We provide the qualitative comparison with

other video generation methods in Appedix E.

Long video generation. We visualize the long video gen-

eration results of our PVDM in Figure 3. As shown in this

Figure, our PVDM has the powerful capability of generating

long videos (128 frames) with 256×256 resolution frames

while maintaining temporal coherency across timesteps.

Here, we emphasize that our method produces long videos

not only on fine-grained datasets with monotonic motion

(e.g., SkyTimelapse) but also on UCF-101, which is a com-

plex dataset that contains various dynamic motions. We also

note that synthesizing long videos on such a complex UCF-

101 dataset has been regarded as a challenging task in prior

state-of-the-art video generation approaches that target long

video generation [12,47,67], and thus they often fail to gener-

ate temporally coherent and realistic videos on these datasets.

We remark that the superiority of our method on long video

synthesis is also verified quantitatively as FVD128 in Table 1:

our method significantly outperforms prior methods on this

metric on UCF-101 as 1773.4 → 639.7.

4.3. Analysis

Reconstruction quality. Figure 5 and Table 4 summarize

the results of the reconstructed videos from our autoencoder.

We consider the following metrics to measure the quality:

peak signal-to-noise-ratio (PSNR) for reconstruction quality

and R-FVD for perceptual similarity. Here, R-FVD indi-

cates FVD between reconstructions and the ground-truth

real videos. Measured with these metrics, our method consis-
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Figure 5. Reconstruction results from our autoencoder trained on (a) UCF-101 and (b) SkyTimelapse. We visualize the frames with stride 4.

Table 4. Quantitative evaluation results between reconstruction

from the autoencoder of PVDM and the real videos.

UCF-101 SkyTimelapse

Train Test Train Test

R-FVD ↓ 25.87 32.26 7.37 36.52∗

PSNR ↑ 27.34 26.99 34.33 32.68∗

∗ Evaluated with 196 samples due to the smaller test set size (196) than 2,048.

tently shows accurate reconstructions similar to ground-truth

videos. In particular, our method shows a small enough R-

FVD, which validates the effectiveness of our latent space

in compressing videos while preserving perceptual similar-

ity. We also provide a more extensive analysis, including a

comparison with other popular autoencoders in Appendix F.

Comparison with VDM. Compared with a recent video

diffusion model (VDM) [21], our model achieves great com-

putation and memory efficiency in generating samples due

to the use of 2D instead of 3D convolution networks and

the low-dimensionality of latent vector that encodes high-

dimensional video pixels. Following the model configura-

tions of VDM as described in [21], Table 5 compares the

maximum batch size that can be allocated in training as well

as the memory and time to synthesize a single video at a

256×256 resolution. Under the same sampler setup, PVDM

achieves ≈17.6× better computation efficiency: our method

requires ≈7.88 seconds to generate a video with 256×256

resolution and length of 16, while VDM requires >2 min-

utes to generate such videos. Moreover, our PVDM shows

at most 3.5× better memory efficiency; it can be trained

with videos at 256×256 resolution and length of 16 and

synthesize longer videos (e.g., length 128) under the limited

memory constraint (24GB), yet VDM cannot be trained and

generate these videos under these computational resources.

We also provide the comparison with two recent autoregres-

sive video synthesis methods (TATS and VideoGPT): PVDM

still achieves superior efficiencies in both time and memory.

Table 5. Maximum batch size for training and time (s), memory

(GB) for synthesizing a 256×256 resolution video measured with a

single NVIDIA 3090Ti 24GB GPU. N/A denotes the values cannot

be measured due to the out-of-memory problem. N /M -s denotes

the model is evaluated with the DDIM sampler [51] with N steps

(for the initial clip) and M steps (for future clips).

Train Inference (time/memory)

Length → 16 16 128

TATS [12] 0 84.8/18.7 434/19.2

VideoGPT [65] 0 139/15.2 N/A

VDM [21]; 100/20-s 0 113/11.1 N/A

PVDM-L (ours); 200/200-s 2 20.4/5.22 166/5.22

PVDM-L (ours); 400/400-s 2 40.9/5.22 328/5.22

PVDM-S (ours); 100/20-s 7 7.88/4.33 31.3/4.33

5. Conclusion

We proposed PVDM, a latent diffusion model for video

generation. Our key idea is based on proposing an image-like

2D latent space that effectively parameterizes a given video

so that the given video data distribution can be effectively

learned via diffusion models in latent space. We hope our

method will initiate lots of intriguing directions in effectively

scaling video synthesis methods.
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