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Abstract

Vision Transformers (ViTs), which made a splash in the
field of computer vision (CV), have shaken the dominance
of convolutional neural networks (CNNs). However, in
the process of industrializing ViTs, backdoor attacks have
brought severe challenges to security. The success of ViTs
benefits from the self-attention mechanism. However, com-
pared with CNNs, we find that this mechanism of capturing
global information within patches makes ViTs more sensi-
tive to patch-wise triggers. Under such observations, we
delicately design a novel backdoor attack framework for
ViTs, dubbed BadViT, which utilizes a universal patch-wise
trigger to catch the model’s attention from patches bene-
ficial for classification to those with triggers, thereby ma-
nipulating the mechanism on which ViTs survive to confuse
itself. Furthermore, we propose invisible variants of BadViT
to increase the stealth of the attack by limiting the strength
of the trigger perturbation. Through a large number of ex-
periments, it is proved that BadViT is an efficient backdoor
attack method against ViTs, which is less dependent on the
number of poisons, with satisfactory convergence, and is
transferable for downstream tasks. Furthermore, the risks
inside of ViTs to backdoor attacks are also explored from
the perspective of existing advanced defense schemes.

1. Introduction

Transformers, which are all-powerful in the field of nat-
ural language processing (NLP) [6, 13, 57], have recently
set off a wave of frenetic research in computer vision (CV).
Thanks to the self-attention mechanism, vision transform-
ers (ViTs) have broken the perennial domination of convo-
lutional neural networks (CNNs) [17], and have been de-
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veloped in hot areas like image classification [36, 53, 66],
object detection [3, 7] and semantic segmentation [46, 64].
The architecture optimization researches of ViTs are also
continuously improving the performance and efficiency
[26, 40, 45, 53], and providing vitality for advancing the de-
ployment of ViTs in industry.

Unfortunately, manifold threats in deep learning pose se-
vere challenges to ViTs. For instance, adversarial attacks
[10, 11, 25, 28, 31, 32, 49, 50, 76] confuse the deep model to
make wrong predictions by adding subtle perturbations to
the input. In addition, backdoor attacks are also extremely
threatening to deep models [22, 27, 48, 51, 68]. More and
more deep learning tasks are “outsourced” training or di-
rectly fine-tuning on pre-trained models [22, 75], allowing
attackers to implant backdoors into the model by establish-
ing a strong association between the trigger and the attack
behavior. In response, a growing number of researchers
have paid attention to the security of ViTs under adversarial
attacks [1,4,20,39,44] and backdoor attacks [16,37,47,73].
However, previous ViT backdoor works have not system-
atically compared with CNN to elucidate the vulnerability
source of ViTs to backdoor attacks, and have not consid-
ered balancing attack concealment and attack benefit, so
that triggers can be easily detected by the naked eye.

To fill this gap, we systemically discuss the robustness of
ViTs and CNNs under basic backdoor attacks with differ-
ent trigger settings and find that ViTs seem to be more vul-
nerable to patch-wise triggers rather than image-blending
triggers. Delving into the essence of ViTs, images are di-
vided into patches as tokens to calculate attentions, which
can capture more interaction information between patches
at the global level than CNNs [44]. Thus the patch-wise
perturbation has been shown to sufficiently affect the self-
attention mechanism of ViTs [20] and make ViTs weaker
learners than CNNs. Inspired by this, a natural and interest-
ing question is whether backdoor attacks with the patch-
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wise trigger are resultful in ViTs. Accordingly, we pro-
pose BadViT, a well-designed backdoor attack framework
against ViTs. Through the optimization process, the univer-
sal adversarial patch is generated as a trigger, which can be
better caught by the model through the self-attention mech-
anism of ViTs to tighten the connection between the trig-
ger and the target class. To achieve invisible attacks, we
limit the perturbation strength of the adversarial patch-wise
trigger and adopt the blending strategy [12] instead of past-
ing. Moreover, we adopt a ViTs backdoor defense Patch-
Drop [16], and two state-of-the-art defenses in CNNs, Neu-
ral Cleanse [59] and FinePruning [33], to explore the vul-
nerability of ViTs against our BadViT.

Our main contributions are as follows:

• We explore the robustness of ViTs compared with
CNNs against backdoor attacks with different triggers.

• We propose our BadViT as well as its invisible version
and verify the validity through abundant experiments.

• We show the effect of BadViTs under three advanced
defense methods, and further discuss the characteris-
tics of ViTs under backdoor attacks through patch pro-
cessing, reverse engineering, and pruning.

We believe this paper will offer readers a new under-
standing of the robustness of ViTs against backdoor attacks,
and provide constructive insights into the follow-up ViTs
system optimization and backdoor defense efforts.

2. Related Works
2.1. Vision Transformer

Benefiting from the self-attention mechanism, the trans-
former model has been continuously developed and ac-
quired significant achievements in the field of CV recently.
In the first work [17], the transformer encoder is utilized to
perform attention calculation on the image patches divided
into equal sizes as tokens, and obtain the classification out-
put through a multi-layer perceptron (MLP). On this basis,
several works [36,53,60,62,66] have been carefully crafted
on the model architecture for performance gains. In addi-
tion to image classification, ViTs also shine in other CV
tasks such as object detection [3, 7], semantic segmenta-
tion [46, 64] and image quality assessment [9, 65].

2.2. Backdoor Attacks and Defenses

Inspired by the over-learning ability of deep models, a
series of studies have been conducted on how to set appro-
priate triggers to implant backdoors in deep models. Bad-
Nets [22] is the first backdoor attack against Deep Neural
Networks (DNNs), which constructs backdoor inputs by
pasting triggers on a proportion of randomly selected im-
ages and modifying their labels to specific target classes.

Then injected model can correctly label the benign input
and misclassify the input with triggers as the target class.
Another effective backdoor attack method [34] takes acti-
vating of key neurons as the optimization goal to generate
triggers in reverse. And the backdoor training progress ef-
fectively establishes the association between triggers and
corresponding neurons. Based on these works, a mass of re-
searchers have developed more powerful backdoor attacks
from different aspects. For concealment, invisible backdoor
attacks can be optimized by applying different techniques
to triggers [12, 29, 30, 35, 72, 74], without modifying the
labels of backdoor inputs [43, 55, 71], or manipulating the
training process of the model [2]. In addition, some non-
data-poisoning-based studies achieve backdoor implanta-
tion by tampering with the model, such as directly modify-
ing model parameters [18, 69] and trojan implants [41, 52].

In order to deal with advanced attacks, research on back-
door defense is also constantly improving. Existing back-
door defenses can be divided into experience-based de-
fenses [8, 15, 23, 56, 70] and provable defenses [58, 61, 63]
according to whether their performance can be provable in
theory. In particular, as a highly influential defense method,
Neural Cleanse [59] is often adopted for backdoor detection
and identification, which can generate triggers for backdoor
models based on reverse engineering in black-box scenar-
ios. An anomaly index of different classes is compared
to obtain the target class of the attacker. In contrast, the
pruning-based defense method [14] aims to suppress the
backdoor neurons in the infected model to eliminate the
backdoor. To solve the drop in model accuracy caused by
excessive pruning, [33] combines pruning with fine-tuning
technology, which greatly improves the defense effect.

2.3. The Robustness of Vision Transformers

In addition to performance and structural optimization,
the robustness of ViTs has also attracted more attention
from researchers. Earlier work [1,4,5,39,44] proposed that
the ViT model is more robust than CNNs models under ad-
versarial attacks. However, [20] demonstrated that adding
patch-wise perturbations based on the self-attention mech-
anism can effectively reduce the accuracy of ViTs, which
triggered a rethinking of its robustness. In terms of back-
door attacks, [37] proposed an attack method named DBIA
without acquiring a specific dataset, and implanted back-
doors into specific neurons by maximizing the attention of
the trigger region in inputs. TrojViT [73] added patch-based
triggers to the clean image, and also used the self-attention
mechanism to attack a small number of parameters of the
model on DRAM memory. And [16, 47] considered the
vulnerability of ViTs under backdoor attack, and made de-
fense based on patch processing operation. Unlike existing
works, our BadViT is basically a kind of data poisoning at-
tack and is more stealthy, versatile, and threatening.
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Original input Backdoor input with traditional triggers BadViT Invisible BadViT

Figure 1. Visualization of the average attention maps of all layers in DeiT-T for clean and backdoor images with different trigger settings.
The location of the trigger is marked with a red box. Note that brighter colors in the attention map mean higher attention scores for the
corresponding image patch. In comparison, triggers of the proposed BadViT availably catch the model’s attention on the patch-wise trigger.

3. Backdoor Attacks in ViTs
In this section, we set up a threat model for backdoor

attacks of ViTs. We also introduce the ViTs and the formu-
lation of attacks in ViTs.

3.1. Threat Model

Considering that open-source pre-training ViT models
are mostly adopted for fine-tuning in different applications,
we refer to the attack settings in prior works [22]. It is as-
sumed that the attacker can obtain the complete model ar-
chitecture and parameters, as well as part of the dataset used
for pre-training. However, based on the security of the train-
ing platform itself, we set that the attacker cannot tamper
with the model training schedule, which means that the at-
tacker is unable to achieve the attack goal by modifying the
loss or manipulating the gradient like [2]. Consequently,
backdoor attacks are in the way of “data poisoning” in our
threat model, by modifying part of the input as well as its
ground-truth label, and embedding backdoors into ViTs in
the original training schedule.

3.2. Background of Backdoor Attacks in ViTs

Vision transformers. Given a pre-trained vision trans-
former classifier F(·) and a benign training set Dtr with
N pairs {(xi, yi)}Ni=1, xi ∈ RC×H×W denotes the original
image with C channels and H×W pixels, and yi represents
the corresponding ground-truth label. The input image x of
ViTs is preprocessed into H×W/P 2 patches with the shape
of P × P , and each patch is used as a token to calculate the
attention map through the multi-head self-attention (MSA)
module as follows:

Attention(x) = Softmax(
xWQ(xWK)T√

d
xWV ) (1)

where WQ, WK , and WV are learnable matrices of the
query, key, and value, respectively, and d is the dimension of

the key. Based on multiple MSA attention calculations, the
output category is finally obtained through an MLP module.

Backdoor attacks. For backdoor attacks, we denote the
subset to produce backdoor input as Dbd, which is ob-
tained by selecting ρ fraction of the benign training set
(ρ = |Dbd|/|Dtr| is a vital metric to measure the effective-
ness of attacks). Using x̂j represent the backdoor input, it
is calculated as follows:

x̂j = µ(xj , t, loc), if yj ̸= y∗, (2)

where µ(·) is the synthesizer of trigger t and the benign
input xj , loc defines the location of trigger in inputs. More-
over, only benign inputs having different labels with the tar-
get class will be selected to make backdoor inputs, then the
ground-truth label is modified to the target class y∗.

Let F̂(·) represent the backdoor model. As to the at-
tacker, it is crucial to ensure successful attacks, namely
making certain of F̂(x̂j) = y∗. Meanwhile, in order to
guarantee that the backdoor model is not detected with ob-
vious abnormalities, it is supposed to classify the benign
input as the ground-truth label following F̂(xj) = yj . The
attacker can achieve the above two goals through the fol-
lowing optimization process:

min
θ

∑
xi∈Dcl

Ltr (F(xi), yi)+
∑

x̂j∈Dbd

Lbd (F(x̂j), y
∗) , (3)

where θ is the parameter of models, Dcl = Dtr\Dbd is the
clean subset, Ltr denotes the training loss of the main task,
and Lbd represents the backdoor training loss. In this paper,
we both use the cross-entropy loss function to follow the
normal training schedule for classification tasks.

4. Backdoor Attacks Robustness Comparison
In order to explore the robustness of ViTs and CNNs

under backdoor attacks, we follow two classical data-
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Table 1. Evaluation of ViTs and CNNs under backdoor attacks with different trigger settings.

Attack Mode Patch Trigger Attack Blend Trigger Attack

Trigger Setting 16 (0,0) 24 (0,0) 32 (0,0) 16 (8,8) α = 0.02 α = 0.04

Model ↓ CA BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR

ResNet-18 69.10 67.89 91.53 67.53 92.74 67.79 93.53 68.38 92.43 58.68 94.83 66.30 99.22
ResNet-50 76.13 73.18 94.08 72.90 95.53 75.19 95.70 73.25 94.58 69.16 94.73 72.82 99.89

DeiT-T 72.02 70.82 96.29 70.79 97.10 70.91 97.52 67.62 91.07 71.38 21.21 71.78 91.48
DeiT-S 79.71 79.15 96.30 79.12 96.64 79.18 98.75 78.32 94.04 78.86 21.64 79.31 94.81

poisoning methods, namely, patch-based [22] attack and
blending attack [12] to investigate the vulnerability in ViTs.

4.1. Attack Settings

We respectively set non-patch-wise triggers (white
squares that do not fully cover the image patch, like the 2-
nd column in Fig. 1), patch-wise triggers (a white square
covered a whole image patch, as seen in the 3-rd column
in Fig. 1), and blending-based triggers (a Hello Kitty image
with the same size of inputs, as the 4-th column in Fig. 1).
We perform tests on the official pre-trained models of DeiT
[53] and ResNet [24] on the Imagenet dataset. For the patch
trigger, we set white squares of different sizes and different
starting positions of the upper left corner. For the blending-
based trigger attack, we set the blend ratio α = 0.02 and
0.04 in training, and 0.2 in testing. We fine-tune 1 epoch
with a learning rate of 1e − 5 and ρ = 0.1. We compare
metrics including 1) Clean Accuracy (CA): the accuracy of
the clean test datasets on clean models, 2) Attack Success
Rate (ASR): the proportion of backdoor inputs predicted as
target classes, and 3) Backdoor Accuracy (BA): the accu-
racy of backdoor models for clean test datasets.

4.2. Observations and Discussions

It can be found in Tab. 1 that: 1) ViTs are more robust
than CNNs with lower ASRs in blend trigger attacks with
both two blend ratios, especially when α = 0.02, DeiTs
can only predict 21.21% and 21.64% of the backdoor in-
put as the target label; 2) ViTs seem to be more sensitive to
patch triggers and achieve higher ASRs and less reduction
in BAs compared to CAs than in CNNs. In both CNNs and
ViTs, triggers with larger sizes get better attack results; 3)
comparing the first and fourth columns of patch trigger at-
tacks, patch-wise triggers (size is 16, starting position is (0,
0)) are better than non-patch-wise triggers (size is 16, start-
ing position is (8, 8)) in DeiTs, while this variation does
not exist in ResNets. Synthesizing the attention distribution
of ViTs to different triggers observed in Fig. 1, the global
blend triggers and the non-patch-wise triggers cannot effec-
tively change the model’s attention. While the model’s at-
tention score for the area covered by the patch increases sig-

nificantly with patch-wise triggers. Consequently, the self-
attention mechanism makes ViTs more sensitive to patch-
wise triggers to effectively implant backdoors in the model.
We continue to explore more effective backdoor attacks
against ViTs on the patch-wise basis.

5. The Proposed BadViT Framework
In this section, we first outline the inspiration for our ap-

proach and then introduce the specific framework of Bad-
ViT as well as its invisible variants.

5.1. Inspirations of BadViT

Essentially, the success rate of backdoor attacks depends
on the ability of models to capture the correlation between
the trigger and target class, so the question we face is “How
to generate a trigger that can more effectively attract the
attention of the model?”. We have gained insight from the
investigation in Sec. 4 that ViTs are more vulnerable than
CNNs under patch-wise triggers, so we intend to design a
universal optimized patch-wise trigger that can fully focus
the model’s attention on the area where it is located, so as to
achieve a backdoor attack that is more stealthy, transferable,
and less dependent on poisoning data.

5.2. Formulation of BadViT

Overview. We adopt a universal patch-wise trigger to fol-
low Eq. (3) for backdoor training. The patch-wise trigger,
denoted as tadv , will sufficiently interfere with the atten-
tion distribution of images, and achieve that the attention of
ViTs to the entire backdoor input x̂ is mainly focused on the
patch with the trigger pasted, as shown in Fig. 2.

Generation of the universal patch-wise trigger. Con-
sider that the input image is divided into K patches, which
can be expressed as x = {p1, p2, · · · , pK}. Note that the
adversarial patch-wise trigger is initialized and optimized
with the same shape of original images of H ×W , and it is
constrained within a single patch through the preset mask.
Giving the patch index k to add a trigger, the process of syn-
thesizing the trigger with the original image to the backdoor
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Figure 2. Overview of the proposed BadViT.

input can be expressed as follows:

x̂ = µpaste(x, tadv,m) = (1 −mk) · x+mk · tadv, (4)

where 1 = [1]H×W denotes a all-one matrix, and mk ∈
{0, 1}H×W is the mask with value 1 at the position corre-
sponding to the k-th patch and value 0 at other positions.

In ViTs, the attention score of each patch indicates its im-
portance relative to other patches [20]. Therefore, the goal
for BadViT is to maximize the attention score of the k-th
patch in each layer of the model, then the model can ef-
ficiently construct the mapping from trigger to target class
by backdoor training on datasets poisoned by slight back-
door samples. The l-th layer attention map is represented
as Attentionl(x) =

{
[ACl

i ] ∈ RK | i ∈ [1,K]
}

, in which
ACl

i =
1
K

∑
j∈⌊K⌋ a

l
i,j is the average attention score of the

i-th patch, and ali,j is the attention score of the i-th patch
relative to the j-th patch. Given a model with L layers, the
formulation of optimizing tadv is defined as:

argmax
tadv

∑
l∈⌊L⌋

ACl
k,

s.t. ACl
k = Attention(x̂)[k],

(5)

which generally expounds that tadv is optimized to maxi-
mize the average attention score of the k-th patch in each
layer. For better quantifying the optimization of tadv , we
define the attention-based loss according to the optimiza-
tion object, which is expressed as follows:

Latten =
∑
l∈⌊L⌋

lnll
(
−log(Attentionl(x̂), k

)
, (6)

where lnll(x, y) means the negative log-likelihood loss and
is adopted to increase the probability that the y-th element
is the largest in X . We initialize tadv as random noise, iter-
atively optimize it based on the Projected Gradient Descent

(PGD) [38] scheme, and express it as follows:

t′adv = tadv − η · ∇tadv
Latten, (7)

where η denotes the step size of optimizing the adversarial
patch-wise trigger.

5.3. Invisible Variants of BadViT

As can be seen from Fig. 1, the visual effect of the trig-
ger generated by our BadViT is a mosaic on the image, such
an obvious mark is often easily perceived by users in ac-
tual deployment. Therefore, we improve the vanilla BadViT
scheme by employing lp constraints to limit the strength of
adversarial patch-wise trigger perturbations to achieve in-
visible variants. In this case, we modify the optimization
process of tadv as follows:

t′adv = clipϵ (tadv − η · ∇tadv
Latten) , (8)

in which ϵ is the perturbation strength limit, and clipϵ is the
clip function to constrain the trigger to satisfy ∥tadv∥p ≤ ϵ.
Furthermore, we adopt the blending strategy with a blend-
ing ratio α instead of directly pasting the trigger on the im-
age in Eq. (4), which is formulated as:

x̂ = µblend(x, tadv,m) = (1− α)x+ α ·mk · tadv. (9)

6. Experiments on BadViT
6.1. Evaluation Settings

Dataset and models. We choose the training set and val-
idation set of ILSVRC2012 [42] for backdoor training and
testing respectively, and use the official pre-training mod-
els of DeiT [53] as the benchmark to test the performance
of BadViT. Referring to the processing of the Imagenet
dataset in [17], the input image is transformed to a size of
3× 224× 224, and the patch size is set to 16× 16.

Attack settings. We generate a universal adversarial
patch-wise trigger based on the training set with 20 epochs
(with the size of 16 × 16), poison the dataset based on
ρ = 0.1, choose the target label 30 (namely “bullfrog”),
and directly perform fine-tuning on the pre-trained model of
ViTs with 1 epoch on 4 Nvidia GeForce RTX 3090 GPUs.
The step size η in Eq. (7) is set to 0.2, the blending ratio
of invisible BadViT α in Eq. (9) is fixed to 0.02, and the
learning rate of backdoor training is 10−5. By default, we
select the patch with index 0 to add the trigger, due to it is
usually not the part with the highest attention score in the
original image, which is beneficial to highlight the ability
of our BadViT to manipulate the self-attention mechanism.
We mainly compare the robustness of different models un-
der BadViT from ASR, BA, and CA.
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Table 2. Evaluate CAs (%), BAs (%) and ASRs (%) of vanilla
BadViT on different ViTs and CNNs.

Clean Model Backdoor Model
CA ASR BA ASR

DeiT-T 72.02 0.02 72.23 100.00
DeiT-S 79.71 0.01 79.24 100.00
DeiT-B 81.74 0.01 81.00 100.00

LeViT-128 78.00 0.01 76.59 100.00
LeViT-256 81.43 0.01 79.95 100.00
LeViT-384 82.40 0.02 81.16 100.00

6.2. Effectiveness of BadViT

Evaluation of BadViT in ViTs. We first perform back-
door training separately using adversarial patch-wise trig-
gers with 1 epoch, and verify the robustness of our vanilla
BadViT on official DeiT [53] and LeViT [21] families. As
shown in Tab. 2, our vanilla BadViT sharply improves ASRs
to 100% in both DeiTs and LeViTs compared with clean
models. And our vanilla BadViT is able to effectively main-
tain BAs close to CAs, and even increase by 0.2% in DeiT-
T. However, LeViT is not as good as DeiT in maintain-
ing the accuracy of clean input, and BAs are lower than
CAs by 1.41%, 1.48%, and 1.24%, respectively. We fur-
ther tested the effectiveness of BadViT against multi-target
backdoor attacks and achieved ASRs of 99.98%, 99.97%,
and 99.84%, details are given in Appendix A.1.1. In con-
clusion, our BadViT based on the self-attention mechanism
can achieve satisfactory backdoor attacks in ViTs.

Data poisoning dependency of BadViT. We explore the
attack effect under different poisoning proportions. In the
DeiT-T model, we evaluate the model robustness with ρ
changes from 0.002 to 0.1, and results are shown in Tab. 3.
Our BadViT can achieve an ASR of 95% even at an ex-
tremely small poisoning proportion of 0.002. As a com-
parison, we also test the robustness of overlaying a white
patch of 16 × 16 on index 0. Obviously, the ASR of the
white patch trigger is not only lower than that of our Bad-
ViT under the same poisoning proportion but also the attack
performance shows a significant downward trend as the pro-
portion decreases. In particular, when ρ = 0.01, the ASR
falls off a cliff by 0.02%, symbolizing the failure of the
backdoor attack. Therefore, our BadViT based on the ad-
versarial patch-wise trigger effectively establishes a strong
correlation between the target class and the trigger.

Influence of trigger size in BadViT. To explore the ef-
fect of the trigger size in BadViT, we generate adversarial
patch-wise triggers of different sizes in DeiT-T and estimate
the attack performance. Regardless of the size of triggers,

Table 3. Data poisoning dependencies of BadViT, which compare
ASRs (%) under different poisoning proportions against our adver-
sarial patch-wise and white patch-wise trigger settings in DeiT-T.

ρ 0.1 0.04 0.03 0.02 0.01 0.002

BadViT 100.00 100.00 100.00 100.00 100.00 95.25
White Patch 96.29 95.64 95.34 94.19 0.02 0.02

Table 4. Evaluations of BadViT with different trigger sizes.

Trigger Size 4× 4 8× 8 12× 12 16× 16

BA 72.45 72.53 72.44 72.23
ASR 99.87 99.97 100.00 100.00

1 2 3 4 5 6 7 8 9 10
Epoch

70

80

90

100

CA
ASR
BA

(a) DeiT-T

1 2 3 4 5 6 7 8 9 10
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(c) DeiT-B

Figure 3. Benchmark of ASRs (%), BAs (%) and CAs (%) within
10 epochs under BadViT on DeiTs.

we fix their centers at the center of the patch of index 0. We
can observe from Tab. 4 that the trigger size has a negligi-
ble effect on the BAs of our BadViT. For ASRs, reducing
the trigger size appropriately will not have a significant im-
pact. For example, until it is reduced to 4×4 (only contains
16 pixels), an ASR of 99.87% can still be achieved. As a
consequence, reducing the trigger size has been shown to
sustain the effectiveness of BadViT while making only mi-
nor concessions in ASR.

Convergence of BadViT. To verify the efficiency gains of
our BadViT, we evaluate the convergence within 10 epochs,
and the results are presented in Fig. 3. We observe that
BadViT has great convergence in any level of ViT models,
which only needs 1 epoch of backdoor training to achieve
ASR of 100% while maintaining BA is basically the same
as CA. As the backdoor training moves on, ASRs in dif-
ferent ViTs under BadViT remain basically stable at 100%,
whereas BAs show a continuous decline. At 10-th epoch,
BAs of DeiT-T, DeiT-S, and DeiT-B decrease by 4.39%,
7.32%, and 5.13% respectively compared to CAs, which
is caused by the model overfitting to the target class. As
a consequence, our BadViT requires only 1 epoch of back-
door training to achieve an effective attack.

6.3. Evaluations to Invisible Variants of BadViT

Performances of the invisible BadViT. We impose l2
and l∞ constraints on the generated adversarial patch-wise
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Table 5. Evaluation of the robustness of triggers in invisible BadViT variants, which compares ASRs (%) of the backdoor model under two
invisible variants and the vanilla BadViT with different settings of trigger in DeiT-T.

Trigger Settings → Under linf constraint Under l2 constraint

Backdoor Model ↓ ϵ = 4/255 ϵ = 32/255 ϵ = 64/255 ϵ = 0.5 ϵ = 1.0 ϵ = 2.0 Vanilla

ϵ = 4/255 98.05 96.36 99.70 0.42 0.33 81.94 10.85
ϵ = 32/255 0.26 99.96 99.19 0.29 0.12 96.96 95.17
ϵ = 64/255 0.14 93.34 100.00 0.15 0.14 87.04 95.70

ϵ = 0.5 0.37 98.78 99.73 99.06 99.94 98.28 30.54
ϵ = 1.0 0.11 46.28 85.95 67.73 99.90 93.06 57.73
ϵ = 2.0 0.12 91.62 94.94 0.12 0.12 100.00 20.07

Vanilla 0.11 0.12 0.53 0.11 0.11 0.20 100.00
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Figure 4. Evaluations of invisible BadViT variants.

triggers, respectively, and test the effect of backdoor attacks
within 1 epoch. Note that in both linf and l2, our defined ϵ is
under the pixel value normalization. The results are shown
in Fig. 4. We can observe that under the linf constraint,
when ϵ = 64/255, our BadViT can guarantee an ASR of
100% with excellent convergence speed, while BA main-
tains a comparable level with CA, which is consistent with
our analysis of the convergence of BadViT. And when the
perturbation to the adversarial patch-wise trigger is limited
to 32/255 and 4/255, the ASR drops slightly to 99.96% and
98.05 respectively. Similarly, under the limit of l2, ϵ = 2.0
has no effect on the backdoor attack effectiveness, while
ϵ = 1.0 and 0.5 cause a slight drop in ASRs. The relevant
visualization results are given in Appendix A.1.2.

Trigger robustness. Furthermore, we evaluate the trigger
robustness of the invisible BadViT variant. We test with dif-
ferent triggers in invisible BadViT variants and the vanilla
BadViT, as shown in Tab. 5. Firstly, we observe that the trig-
gers with the same type of constraint can obtain ideal ASRs
when ϵ is larger in backdoor models under the two kinds of
invisible BadViT. For example, ASR of the backdoor model
under linf with ϵ = 4/255 can reach 96.36% and 99.70%
for triggers with ϵ = 32/255 and ϵ = 64/255 respectively.
However, the robustness of backdoor models with the larger
ϵ to the trigger of the smaller ϵ is weak, especially the back-
door model of ϵ = 2.0 under l2 with triggers of ϵ = 0.5

and 1.0 only acquire an ASR of 0.12%. Secondly, back-
door models under l2 constraint has better robustness to
the trigger under linf , when ϵ = 0.5 and 2.0, ASRs are
higher than 90% with trigger settings under ϵ = 32/255
and 64/255. In contrast, only the backdoor model under
linf with ϵ = 32/255 achieves an ASR of 96.96% for the
trigger under ϵ = 2. Moreover, the backdoor model under
vanilla BadViT is not suitable for triggers in the two in-
visible variants, and backdoor models under linf get better
ASRs for vanilla triggers than l2.

6.4. Transferability of BadViT

We test the adversarial trigger generated on the large-
scale Imagenet on the downstream datasets Cats-vs-dogs
(CD)1, CIFAR102, and STL103. We then replace the classi-
fication head of DeiT-T with a randomly initialized head in
corresponding dimensions and fine-tune it for 2 epochs. We
first visualize the attention changes under the three datasets
in Appendix A.1.2 and find that adversarial triggers can ef-
fectively fool the model attention in different datasets. We
then conduct experiments in cases of directly modifying the
label as the target label, and not modifying labels but in-
jecting backdoor input into the target class of the training
set. The results are listed in Tab. 6, BadViT guarantees sat-
isfactory attack performance after being finetuned to three
downstream datasets. It is worth noting that in the non-
label modified setting, we can use a “clean-label attack”
mode to inject backdoors without causing suspicion. The
self-attention mechanism enables the model to establish a
relationship between the target category and the trigger. A
higher ASR (eg, 95.71% in CIFAR10) is achieved when
ρ = 0.1. With the increase of poisoned samples, ASRs
gradually reach 100%, while BA does not show a signifi-
cant change until ρ = 1.0. The drop of about 50% in CD
and 10% in CIFAR10 and STL10 means that the model fails

1https://www.kaggle.com/c/dogs-vs-cats
2https://www.kaggle.com/c/cifar-10
3https://www.kaggle.com/datasets/jessicali9530/stl10
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Table 6. Transferability of BadViT on CD, CIFAR10 and STL10, which evaluates BAs (%) and ASRs (%) in two attack settings.

Label Modified Non-label Modified

ρ
0.1 0.1 0.2 0.3 0.7 0.9 1.0

BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR

CD 98.72 100.00 98.54 99.96 98.66 100.00 98.56 100.00 98.22 100.00 95.86 100.00 48.39 100.00
CIFAR10 94.17 100.00 93.86 95.71 93.75 99.49 93.76 99.94 93.67 100.00 93.36 100.00 84.44 100.00

STL10 98.54 100.00 90.67 96.39 90.56 98.24 90.35 99.14 88.42 99.88 87.34 99.78 81.49 99.93

Table 7. Defending of BadViT against PatchDrop, which tests
TPR (%) and TNR (%) under different trials and drop rates.

Drop
Rate

T = 10 T = 50 T = 100
TPR TNR TPR TNR TPR TNR

0.01 70.86 70.74 98.40 98.00 99.60 99.60
0.02 49.10 47.90 85.23 86.17 89.62 88.58
0.05 22.95 25.85 37.52 40.28 35.93 38.08
0.10 12.78 15.03 12.38 17.23 14.97 17.43

to build discriminative ability on clean images of this class.

6.5. Resistance to Backdoor Defenses

We evaluate the performance of our BadViT against
three (one designed in ViTs and two for CNNs) defense
methods: 1) PatchDrop [16], 2) Neural Cleanse [59], and
3) Fine-Pruning [33].

PatchDrop. This approach is designed for detecting
patch-based triggers in ViTs. We sample the ImageNet test
set to get a clean set with 1000 clean images and a detection
set (including 500 clean images and 500 backdoor images).
We apply PatchDrop transform for T trials on the clean
sample set and record the number of label changes (i.e., the
threshold kd) to detect backdoor images in the detection set.
The relevant results are given in Tab. 7. It can be observed
that the more trials T are executed, and the fewer patches
are dropped, the higher TPRs are got (the more backdoor
samples are detected). Executing 100 trials at a drop rate
of 0.01 can detect 99.60% of backdoor images. But unfor-
tunately, TNRs keep the same trend as TPRs, which means
that almost as many clean images are falsely detected as
backdoor images. In summary, PatchDrop cannot success-
fully detect backdoor images in our BadViT.

Neural Cleanse. For simplicity, we only perform reverse
engineering and generate the corresponding triggers for the
first forty labels in the clean test dataset, and then calcu-
late their anomaly indexes. We get anomaly indexes of 2.74
and 4.63 under DeiT-T and ResNet-18 respectively, and the
corresponding anomaly labels can be identified as 30 set in

our attack. Further, we also implement the same test on our
BadViT and obtain an anomaly index of 2.56. Although
this indicates that the existence of the backdoor is success-
fully detected, the target label is incorrectly identified as 20.
Furthermore, the l1 norm of its reverse-generated mask is
11.12, which is much smaller than 331.95 of the correct tar-
get label. We also find that the masks generated by reverse
engineering for ViTs are all patch-wise and more regular
than CNNs, which is caused by the process that ViTs calcu-
late attention based on patches. More experimental results
and visualizations are given in Appendix A.2.1.

Fine-Pruning. We choose to prune the fully connected
layers of DeiT-T under BadViT and find that with the in-
crease of the proportion of pruned neurons, the ASR of the
victim model decreases, but it still remains above 85% until
the pruning proportion reaches 90% and is accompanied by
a sharp drop in the BA of the model. We choose the best
pruning ratio to perform fine-tuning and demonstrate that
Fine-Pruning is not effective against our BadViT. The spe-
cific experimental results are provided in Appendix A.2.2.

7. Conclusion

Ensuring the robustness of ViTs is crucial to driving the
deployment in the industry. In this work, we systematically
investigate the robustness of ViTs against backdoor attacks
compared with CNNs. We propose a novel attack frame-
work, named BadViT, which adopts a universal adversar-
ial patch-wise trigger for backdoor training, thereby fooling
the self-attention mechanism of ViTs to establish a strong
relevance between triggers and attack targets. Experiments
show that our BadViT can deal a devastating blow to the ro-
bustness of ViTs. Meanwhile, we also developed the invisi-
ble BadViT variant and demonstrate that better attack trans-
ferability can be achieved in different downstream datasets.
We hope this work will provide relevant researchers with
insights into the robustness of ViTs and inspire the develop-
ment of effective defense schemes.
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