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Abstract

Vision-language (VL) pre-training has recently gained
much attention for its transferability and flexibility in novel
concepts (e.g., cross-modality transfer) across various visual
tasks. However, VL-driven segmentation has been under-
explored, and the existing approaches still have the bur-
den of acquiring additional training images or even seg-
mentation annotations to adapt a VL model to downstream
segmentation tasks. In this paper, we introduce a novel
image-free segmentation task where the goal is to perform
semantic segmentation given only a set of the target seman-
tic categories, but without any task-specific images and an-
notations. To tackle this challenging task, our proposed
method, coined 1FSeg, generates VL-driven artificial image-
segmentation pairs and updates a pre-trained VL model
to a segmentation task. We construct this artificial train-
ing data by creating a 2D map of random semantic cat-
egories and another map of their corresponding word to-
kens. Given that a pre-trained VL model projects visual and
text tokens into a common space where tokens that share
the semantics are located closely, this artificially generated
word map can replace the real image inputs for such a VL
model. Through an extensive set of experiments, our model
not only establishes an effective baseline for this novel task
but also demonstrates strong performances compared to ex-
isting methods that rely on stronger supervision, such as
task-specific images and segmentation masks. Code is avail-
able at https://github.com/alinlab/ifsegq.

1. Introduction

Understanding a new concept with less cost (e.g., col-
lecting data, annotations, or training) is a challenging yet
essential problem in machine learning [41]. The most com-
mon practice is fine-tuning a foundation model, pre-trained
on a large amount of data [3,6, 12, 18], for downstream tasks.
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Figure 1. Visualization of image-free segmentation results via
IFSeg on a web image. Here, we present a web image (Top) and
its segmentation results (Middle and Bottom) of our image-free
segmentation approach. Note that our model is not trained with any
task-specific images and annotations, but only the text words (e.g.,
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In particular, such large-scale models have shown success-
ful adaptation to downstream tasks with only little supervi-
sion across vision [6] and language [3] domains. Recently,
pre-training approaches in the vision-language (VL) domain
have also achieved remarkable results in transferring to novel
tasks (e.g., few-shot or zero-shot transfer [37]) with various
elaborate designs, including modality interaction between
the dual encoders [20, 32], the multi-modal encoder [22,43],
and the encoder-decoder [1,8,39,42,44,49].

Semantic segmentation is one of the crucial tasks in com-
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puter vision that requires understanding dense representa-
tions for pixel-wise classifications. Inspired by the success
of the contrastive VL pre-training, CLIP [32], several re-
cent attempts [15,25,27,48,53] have explored CLIP-based
segmentation approaches for better transferability (e.g., zero-
shot [4,45] and open-vocabulary segmentation [51]). How-
ever, the existing zero-shot or open-vocabulary segmentation
approaches still suffer from a burden of training on addi-
tional image data, segmentation annotations [15,25,48,53],
or natural language supervision [27,47], to adapt pre-trained
VL models to downstream segmentation tasks. In the wild,
however, such training data is not readily available; e.g.,
there would be no task-specific training images or labels for
novel web images like Fig. 1. This limitation inspires us to
investigate how to fully utilize the VL. models for seman-
tic segmentation in a lightweight manner, even without any
image data or human-annotated supervision.

Meanwhile, the recent encoder-decoder VL models [, 8,

,42,44,49] also have gained popularity with their unique
characteristics of image-to-text generation via the VL de-
coder network. Motivated by this, we explore the potential
usability of the VL decoder to segment pixels in the text
generation manner as an alternative to traditional vision
segmentation decoders, e.g., Semantic FPN [23] and Uper-
Net [46]. Interestingly, we found that a solely given set of
semantic categories enables the encoder-decoder VL mod-
els to perform semantic segmentation without any training
images or annotations; Fig. 1 shows the quality of semantic
segmentation results on the image-free segmentation task
with a wild uncurated image downloaded from the web.

Contribution. In this paper, we introduce a novel Image-
Free Segmentation task that aims to segment target semantic
categories when only a set of the target semantic categories
is given without any task-specific images and annotations.
Our core idea to tackle this challenge is that a word set
of semantic categories can serve as an artificial image for
the VL models on their cross-modal embedding space. To
this end, we propose a simple yet effective VL-driven self-
supervised task, coined IFSeg, that generates artificial image-
segmentation pairs using word tokens and updates the VL
models to segment them. Specifically, we construct this arti-
ficial training data by creating a 2D map of random semantic
categories (i.e., artificial image tokens) and another map of
their corresponding word tokens. We provide overall illus-
trations and the proposed method for semantic segmentation
via the VL models in Figs. 2 and 3, respectively.

To demonstrate the effectiveness of our method for image-
free semantic segmentation, we incorporate our method with
the publicly available encoder-decoder VL model [42]." In

'Our framework can be incorporated with any encoder-decoder VL
models and is expected to be improved by using even larger or better VL
models, cf., pretraining OFA was performed on 22M image-text pairs, while
the popular CLIP [32] was pre-trained on 400M image-text pairs.

particular, the proposed method, albeit with weaker super-
vision (i.e., only segmentation categories), can even outper-
form the baselines that use much stronger supervision, such
as task-specific images and segmentation masks. For ex-
ample, our method outperforms MaskCLIP+ [53] without
118k training images on a zero-shot segmentation scenario
in the COCO Stuff benchmark by achieving +6.9 higher
mloU. In addition, we conduct conventional scenarios hav-
ing images and annotations available for further analysis,
including supervised and semi-supervised approaches. As
a result, we demonstrate our method still outperforms the
recent VL-driven supervised segmentation baselines. For
example, our method has achieved an improved +2.0 mloU
compared to DenseCLIP [34] on the ADE20K benchmark.
Overall, our work newly introduces image-free semantic
segmentation, a challenging yet potentially crucial task for
the computer vision domain, and also highlights the broad
applicability of the recent tending VL models. We hope
our work could inspire researchers to rethink a new research
direction for segmentation tasks in a dataset-free manner.

2. Method

In this section, we present a method for performing
semantic segmentation tasks using vision-language (VL)
encoder-decoder models and our image-free approach in a
self-supervised manner. Inspired by the success of zero-shot
transfer (e.g., zero-shot image classification [32]) in the re-
cent VL models, we aim to perform semantic segmentation
only given a set of target semantic categories but without
any task-specific images and annotations during training.
However, several prior works [15, 53] observed that it is
challenging to directly segment semantic categories via VL
models, e.g., CLIP [32], without any modifications and addi-
tional training. Nonetheless, we address this challenging task
using the pre-trained VL models with an encoder-decoder ar-
chitecture. In Sec. 2.1, we introduce the VL encoder-decoder
architecture and describe how it operates in our method. In
Sec. 2.2, we describe how the semantic segmentation task
can be handled in the encoder-decoder VL model. In Sec. 2.3,
we present our image-free semantic segmentation method.

2.1. VL Encoder-Decoder Architecture

Here, we introduce the VL model architecture in our
framework and describe its operation step-by-step.
Data format. Our method operates based on sequence data.
For instance, let x be a sequence data of length L, and let
e, be its embedding in a D-dimensional vector space:

X = {I(O),...,x(L"*l)}, (1
ex = [ex ;e (B D] e REXP, )

Specifically, we deal with the raw image-text (X7, X1) by
tokenizing them into a sequence of tokens. The text Xt is
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Figure 2. Illustration of the semantic segmentation in VL encoder-decoder. Our method incorporates a transformer encoder-decoder
(fenc, faec) along with an external image backbone ( fing) for tokenizing a given image. Given a pair of an image and a prompt sentence, the
transformer generates contextualized embeddings through its self-attention layers. The decoder then sequentially predicts the probability
distribution over the semantic categories in a region (e.g., p®), by transforming an input composed of the special begin-of-sequence
(BOS) embedding and the contextualized embeddings at the preceding region indices (e.g., [esos; £ (€x); ...; f¢ 7 (e,)]) through its
self-attention and cross-attention layers. Finally, bilinear interpolation is applied to obtain the final prediction in a desired spatial size.

tokenized by a dictionary V = {vg,...,un_1} of N pre-
defined words” and the corresponding word embedding ma-
trix E = [eg;...;enx_1] € RV*D that are related by the
lookup operation e; := Emb(v;). For example, we consider
the following source text tokens and their embedding,

X7 = {x%o), ...,x%LT?l)}, 3)

er = [ef”;..;ef V] e RET¥P, @)

where x%i) € V and egi) = Emb(a:%i)). To deal with the
image A7, an image backbone? is introduced to produce a
2D feature map of shape H x W x C, followed by a spatial
flatten operation (H x W — L1), resulting in the sequence

fug(Xr) =& = [ eV e REXCL (5)

Additionally, a learnable linear layer is applied to fix the
output channel size, e; = Linear(e;) € RX*P, which we
interpret as the embedding of the conceptual image tokens:

X1 = {1:%0); ...;ngI_l)}. (6)

Concatenating them together, we assign the token sequence
x := {x1,xr} in Eq. (1) and the embedding representation
e, = [er;er] € RE=*D in Eq. (2), where L, := Ly + Lr.

VL model architecture. VL models predict a target y =
{y©@,...,y(Ex=1} based on a learned distribution P(y|x)
given the multi-modal source x. To be specific, we employ
an encoder-decoder model [38], where an encoder produces
a contextualized encoding of x, and a decoder predicts the
target distribution based on the encoding. Specifically, the

2We utilize the bytes pair encoding (BPE) [35] words.
3Typical vision models (e.g., convolutional neural nets) are used.

transformer architecture [ 14,40] is adopted for implementing
the modules, fene and fgec. The transformer encoder fenc
produces the contextualized embedding of x by transforming
the embedding e, with the self-attention mechanism [40],

fonc(€x) = [f{)(ex); .o fiE (ex)] € REXP. (7

Then, the transformer decoder fso. sequentially pro-
duces the output, by transforming a decoder input d; =
[d©@;..;d®] € REFDXD with the self-attention and the
cross-attention [40] mechanism with respect to fenc(€x),

h(i) = fdec(di; fenc (ex)) S RD' (8)

The formulation of the decoder input d; would vary depend-
ing on the tasks. For example, the formulation during the
pre-training is often the earlier targets, d*) := Emb(y(*~1)
for ¢ > 0, and a special begin-of-sequence embedding
d© .= ezpg. However, we will revisit and alter this for-
mulation in Sec. 2.2 for the semantic segmentation task.

Finally, a linear transform by the embedding matrix E
produces a logit over the dictionary V),

Py x) « E-h® ¢ RV, )

During the VL pre-training (e.g., image captioning), all mod-
ules are trained end-to-end by maximizing the likelihood in
Eq. (9). We assume that the VL pre-training would align
the image tokens with the word tokens in the contextualized
embedding space in Eq. (7), which is the key idea in our
framework introduced in Sec. 2.3.

2.2. Semantic Segmentation via Encoder-Decoder

In this section, we formulate the semantic segmentation
task in the VL encoder-decoder model and discuss the techni-
cal considerations. An overall pipeline is depicted in Fig. 2.

2969



Training Objective

[’seg (Xv Ygt)

Prompt XT
What is the segmentation of the image?
objects: grass, giraffe

Category Words & Embedding

Tass
Vo grass -8 ) = VL Encoder-Decoder
1r
V1 giraffe J;f :I .
affe
EEN-EH EEN
Random (Artificial Image Token) (Prompt)
Sampling X1 Xt

Vgt = X1 1= {0, V1, -, V0}

(a) Training with the artificial data

‘Word Prediction
y=1{5, ..., 55"}

Prediction Result

Real Image XI

VL Encoder—Decoder

EEN
iﬁaée 5 (Real Image Token)  (Prompt) . “grass”
Backbone fimg(XI) X1 * . “giraffe”
X1

(b) Inference with the real image

Figure 3. Overview of the proposed Image-Free Segmentation (IFSeg) task. (a) Training: Artificial training data is constructed by
randomly sampling words from the segmentation vocabulary Vseg = {vo,v1} (e.g., “vo: grass” and “v;: giraffe”). Sub-word tokens
(e.g., “-gir” and “-affe”) are managed by averaging their embeddings. Given the artificial image token x; and the prompt xr, we adapt a
pre-trained VL encoder-decoder to predict the corresponding word for each region of the artificial image token in a self-supervised manner
(i.e., ygr = x1). (b) Inference: During the inference on a real image A1, the real image token is generated using the image backbone
fing(X1). The adapted VL encoder-decoder predicts the semantic category words for individual image regions (or pixels).

Task formulation. Given M semantic categories of interest,
we formulate a semantic segmentation task as decoding a
category word for each dense region of the image. However,
this design could be cumbersome in practice, since a certain
semantic category word may be tokenized to multiple sub-
words in the dictionary V (e.g., “giraffe” is tokenized to 2
sub-words: “_gir” and “affe” in Fig. 3). As a remedy, we
treat such a category as a temporary additional word and
append the average embedding of the sub-word tokens to the
embedding matrix E. In this way, each semantic category is
always treated as one distinct word, Vseg = {0(, ..., Vj;_1 }-

To perform the task, we aim to produce spatially con-
ditioned* decoder outputs on the image tokens x?) (i.e.,
Eq. (6)). Specifically, we enforce an alternative formulation
of decoder input d; in Eq. (8) such that the encoder output
of the preceding index is used, i.e., d¥) = g:l)(ex) for
i > 0, where d(® = epgs Without modification. Then, we
get L1 number of decoder outputs as

h=[h©®; ;hF=) e REXD, (10)

Next, we calculate the logit with Eq. (9) and apply softmax
after masking out the words that are not in V., to get the
normalized probability over the M categories,

p=[p?;..;p] e RL*M, (11)

Then, we recover the spatial dimension of the image back-
bone fing (i.e., L1 — H x W) and up-sample it with bilinear
interpolation to match a desired size PxW (e.g., anirregular
shape of the image X7). As a result, we obtain the output

p =" pW e RN
and the predictive distribution is defined as:

Py x) :=p® e RM, (13)

4We also replace the decoder’s position embedding with the encoder’s
image position embedding for better visual understanding.

Finally, we predict the category with the highest probability,

3% = argmax P(y¥ = y|x). (14)
YE€Vseg

For fine-tuning given a segmentation label yéi) (represented
by the semantic category words in Vseg), we consider the
negative log-likelihood as the objective to minimize:

Loeg(X,yge) = >~ Py =yi)|x). (15

%

Prompt design. The text tokens xr in Eq. (3) can be pro-
vided as the prompt for instructing the details of the semantic
segmentation task, namely the task description and the list
of target classes. Specifically, we follow the “rfask descrip-
tion + category enumeration” protocol in the VQA task [42]
where the target classes are enumerated after the task de-
scription, e.g., “what is the segmentation map of the image?
object: giraffe, grass,” in Fig. 3. In this design, we expect the
VL model to capture the cross-modal relationships between
image tokens x; and the semantic categories.

2.3. Image-free Semantic Segmentation

In this section, we introduce a VL-driven self-supervised
task, coined /FSeg (Image-Free Segmentation), to tackle the
image-free semantic segmentation via the encoder-decoder
VL model. Our main idea is that during the VL pre-training
(in Sec. 2.1), the real image tokens and their correspond-
ing semantic category word tokens can be considered in-
terchangeable because they are both likely to be located in
close proximity within the shared contextualized embedding
space. To this end, we generate artificial image tokens using
given word tokens and update the VL model to segment
the corresponding word tokens in a self-supervised manner.
In other words, we generate artificial training data for an
image-free semantic segmentation task. We provide a brief
overview of the proposed image-free approach in Fig. 3.
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Constructing artificial image tokens. We construct artifi-
cial training data (i.e., image-segmentation token pairs) from
a set of M unique category words Vseg := {0(, ..., Vj;_1 }-
Specifically, we randomly sample with replacement U x V'
number of words to construct a grid map VIFSeg as follows:

o ~(0 ~(U- V-1
VIFSeg = {U§F;eg? §FSeg )} (16)

The initial grid sizes U, V' are randomly drawn from a range
{1,2,..., S} with a hyper-parameter S. Then, we up-scale
the grid to have the spatial resolution of the image backbone
(i.e., H x W) via the nearest neighbor interpolation,

VIFseg = {UIFSegv - UII{‘{SeVgV 1)} (17
In our experiments, we use H = W = 32 by following the
configuration of the VL pre-training, and we also set S = 32
as the size of the initial map, so it can vary in the largest
range (see Appendix B for analysis on the effect of the initial
grid range S). The goal of using various random maps to
up-sample our data is to bridge the gap between real images
and our synthetic data by introducing a shape regularization
effect. This effect allows objects to be depicted as a cluster of
various sizes rather than being randomly scattered. Finally,
we train the model with the artificial image tokens Virseg
(replacing the real image tokens in Eq. (6)) and their cor-
responding ground truths using the maximum likelihood in
Eq. (15). We note that the image backbone, fing (in Eq. (5))
is frozen during our self-supervised training.

Post-processing for image-free segmentation. One chal-
lenge of the image-free segmentation task is the discrepancy
in input modality between training and evaluation, which
arises due to the absence of real training images. For exam-
ple, it is challenging to learn image-specific priors such as
object shapes and label coherence in regions with similar
textures. To resolve this issue, we found that averaging the
output probability based on the image feature (i.e., outputs
of image backbone fing) significantly enhances the segmen-
tation quality. Specifically, we search K -nearest neighbors
of the image features in Eq. (5) using the cosine similarity,
e .l ||~(l |- 164 ||. Then, given a set of neighborhood
1ndlces N we iterate averaging the probability in Eq. (9)
with the neighborhood as follows,

p® = Z pW /N (18)
JEN @)

We empirically found that the effect of the post-processing
diminishes when the real training images and annotations
are available. In our experiments, we apply this only for
image-free approaches and use K = 3 and 25 iterations
unless stated otherwise (see Appendix B for ablation studies
on varying K and the iteration count).

3. Related Works

Vision-language pre-training. The recent vision-language
models pre-trained on large-scale image-text data have
shown successful results in zero-shot and few-shot adap-
tation to novel tasks across domains, e.g., image classifica-
tion [11], captioning [26] and visual question answering [2].
To improve the quality of cross-modal representations, there
have been extensive exploration in design of modality inter-
action, including the dual encoders [20, 32], the multi-modal
encoder [22,43], and the encoder-decoder [ 1,8,39,42,44,49].
For example, CLIP [32] introduced contrastive pre-training
on the dual encoder (i.e., image and text encoder) and
has shown impressive zero-shot image classification perfor-
mances via a simple prompt engineering technique without
training. On the other hand, the encoder-decoder VL ap-
proaches [1,8,39,42,44,49] also have gained much attention
in image-to-text generation tasks such as image captioning
and visual question answering. In this paper, we explore the
potential usability of the VL decoder for image segmentation
from the perspective of image-to-text generation.

Transferable image segmentation. Image segmentation
is a core computer vision task, but it is still challeng-
ing to segment novel visual categories. To this end,
several attempts have been introduced, including unsu-
pervised [9, 17, 19,27, 50, 53] and zero-shot segmenta-
tion [4,7,15,16,25,31,45,48,53]. First, unsupervised
segmentation approaches [9, 17, 19, 50, 53] have been fo-
cused on clustering dense representations of an image, and
then matching corresponding segmentation categories via the
Hungarian-matching algorithm [13]. On the other hand, the
recent VL-driven approaches [27, 53] replace the matching
process via the text encoder of CLIP using segmentation vo-
cabulary for better efficiency and transferability. Meanwhile,
early approaches in zero-shot segmentation [4,7, 16,31,45]
have utilized segmentation vocabulary via learned word em-
beddings like word2vec [29] and fast-text [21]. Similar to
the VL-driven unsupervised segmentation, the VL-driven
zero-shot approaches [15,25,48, 53] also have been estab-
lished on CLIP instead of word embeddings. The zero-shot
segmentation approaches often require class-agnostic seg-
mentation masks [15,48] or class-specific segmentation an-
notations [4,7,16,25,31,45,53]. In this respect, we explore
an image-free semantic segmentation task for more realistic
scenarios with only given segmentation vocabulary, which
can be easily collected than images or other annotations.

4. Experiments

In this section, we demonstrate the effectiveness of the
proposed image-free approach, IFSeg. Specifically, we in-
corporate our method with the recent VL encoder-decoder
model, OFA [42], which is publicly available’, and eval-

Shttps://github.com/OFA-Sys/OFA.
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Figure 4. Visualization of segmentation results via IFSeg. We visualize the segmentation results of IFSeg (ours) and MaskCLIP (baseline).
We also present predicted semantic categories next to each segmentation results. Unlike the MaskCLIP (baseline) only roughly segments
segmentation vocabularies onto an image, our method does visual categories with accurate segmentation. We note that both models are not
trained using any images from the pre-trained VL models, CLIP and OFA, respectively. Best viewed in color.

Method Backbone Image Dataset mloU
MaskCLIP+ [53] ResNet-101  COCO (118k)  48.7
CLIP [32,53] ResNet-101 X 12.3
OFA [42] ResNet-101 X 6.8
MaskCLIP [53] ResNet-101 X 24.8
IFSeg (ours) ResNet-101 X 55.6

Table 1. Comparison with zero-shot and image-free baselines.
We report the mloU metric of the baselines and our model predict-
ing the 15 unseen semantic categories of the COCO Stuff bench-
mark. “Image Dataset” denotes required images for training. Our
post-processing has been applied to all results for a fair comparison.

uate its segmentation abilities on COCO Stuff [5] and
ADE20K [52] semantic segmentation benchmarks. Specif-
ically, we compare our method with existing VL-driven
segmentation baselines that target various scenarios: (a)
zero-shot segmentation scenario [4,7, 15, 16,45,48,53], (b)
cross-dataset segmentation scenario [15,25,48] and (c) unsu-
pervised image segmentation [9, 17, 19,50,53]. We consider
CLIP [32], MaskCLIP [53], and OFA [42] as baselines to
evaluate the segmentation abilities of the pre-trained VL
models without fine-tuning. More details are described in
each section and Appendix.

Datasets. COCO Stuff [5] is a large-scale dataset that con-

tains 117k training, 5k validation images, and segmenta-
tion annotations of 171 semantic categories consisting of
80 objects and 91 stuff categories. For the zero-shot im-
age segmentation, we split COCO Stuff dataset into 156
seen categories and 15 unseen categories.® ADE20K [52]
is a challenging semantic segmentation dataset including
20k training, 5k validation, and segmentation annotations of
150 fine-grained semantic categories that cover indoor and
outdoor scenes. In our image-free experiments in Sec. 4.1,
we use only semantic categories given by the segmentation
benchmarks, without any training images and annotations.

Baselines. We consider a variety of existing VL-driven un-
supervised, zero-shot, and the image-free segmentation base-
lines: (a) unsupervised baselines: IIC [19], PiCIE+H. [9],
TransFGU [50], (b) zero-shot baselines: LSeg+’ [25],
ZSSeg [48], OpenSeg [15], and MaskCLIP+ [53], where
ZSSeg, OpenSeg, and MaskCLIP+ are the recent VL-
driven baselines that relied on CLIP [32] or ALIGN [20],
and (c) image-free baselines: OFA [42], CLIP [32], and
MaskCLIP [53] which directly evaluate the segmentation
abilities of the pre-trained VL models, OFA and CLIP.

SWe report the specific vocabulary of unseen semantic categories in
the COCO Stuff: frisbee, skateboard, cardboard, carrot, scissors, suitcase,
giraffe, cow, road, wall concrete, tree, grass, river, clouds, playing field.

7A re-implemented LSeg [25] in the OpenSeg [15].
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Method Text Backbone Image Backbone Image Dataset Segmentation Label mloU

LSeg+ [15,25] ALIGN-BERT-Large [20]  ResNet-101 COCO (118k) v 13.0
OpenSeg [15] ALIGN-BERT-Large [20]  ResNet-101 COCO (118k) v 15.3
ZSSeg [48] CLIP-ViT-B [32] ResNet-101 COCO (118k) v 20.5
CLIPY [32,53] CLIP-ResNet [32] ResNet-101 X X 3.7
MaskCLIPt [53] CLIP-ResNet [32] ResNet-101 X X 10.3
OFAT [42] OFA-Base [42] ResNet-101 X X 0.5
IFSeg (ours)t OFA-Base [42] ResNet-101 X X 16.8

Table 2. Comparison with VL-driven baselines under the cross-dataset (COCO—ADE20K) scenario. We report the mloU metric
evaluated on the ADE20K benchmark. We use the 150 fine-grained semantic categories of the ADE20K for image-free training. “Image
Dataset” and “Segmentation Label” denote requirements for their training. 1 denotes results that our post-processing is applied.

Method Backbone Image Dataset mloU
IIC [19] ResNet-18 COCO (118k) 0.6
PiCIE + H. [9] ResNet-18 COCO (118k) 4.6
TransFGU [50] ViIT-S/8 COCO (118k)  11.9

MaskCLIP+ [53] ResNet-101 COCO (118k)  18.0

CLIP{ [32,53] ResNet-101 X 4.6
MaskCLIPt [53]  ResNet-101 X 12.7
OFAT [42] ResNet-101 X 1.5
IFSeg (ours)t ResNet-101 X 16.9

Table 3. Comparison with unsupervised semantic segmentation
(COCO—COCO) baselines. We report the mloU metric evaluated
on the 171 semantic categories of the COCO Stuff benchmark.
denotes results that our post-processing is applied.

Implementation details. In our experiments, we imple-
ment our method on the OFA (encoder-decoder VL model)
framework and generally follow the training and evaluation
configuration of OFA [42], mmsegmentation® [10], and
MaskCLIP [53] (the strongest baseline) for a fair compari-
son. We fine-tune our model from the OFA-Base pre-trained
weights with the ResNet-101 backbone network. We opti-
mize with AdamW optimizer [28] with a weight decay of
0.1, a learning rate of 0.00005, and a batch size of 16 with
2k iterations unless stated otherwise. We generate 32 x 32
grid-size of artificial image tokens with S = 32 and use
K = 3 with 25 iterations for the post-processing for image-
free baselines. We report a single-scale mean Intersection
over Union (mloU) score evaluated at the original irregu-
lar image sizes as the metric. More details of experimental
setups are described in Appendix.

4.1. Image-free Adaptation for Segmentation

Zero-shot image segmentation. We first evaluate the ef-
fectiveness of the proposed image-free approach, IFSeg, for
adapting VL models toward semantic segmentation tasks.
We evaluate the mIoU scores of different models on segment-

8https://github.com/open-mmlab/mmsegmentation.

ing the COCO Stuff 15 unseen semantic categories. Specifi-
cally, we compare with the image-free baselines, CLIP [32],
OFA [42], and MaskCLIP [53] in Tab. 1. In addition, we also
compare with MaskCLIP+ [53] under the same evaluation
setup as a baseline, which is trained on 118k COCO images
using the pseudo-labels generated by MaskCLIP [53]. First
of all, Tab. 1 shows that our method can achieve significant
improvement in mloU metric compared to all the image-free
baselines, e.g., +30.8 points higher than MaskCLIP. Some-
what surprisingly, our method outperforms MaskCLIP+ [53],
which is a stronger baseline trained on additional 118k im-
ages, despite our scarce training data regime that does not use
any images and annotations except segmentation vocabulary.

Cross-dataset transfer. Again, we compare with VL-driven
segmentation baselines in Tab. 2 under a cross-dataset sce-
nario, where the model is trained on the COCO Stuff and
evaluated on the ADE20K benchmark. To this end, we
train our model using segmentation vocabulary of the COCO
Stuff, and then evaluated on the ADE20K vocabulary.

Similar to the above zero-shot scenario, Tab. 2 shows
that our method can achieve significant and comparable
performance with the image-free baselines and the baselines
with stronger supervision despite our image-free training
regime. For example, ours achieved 1.5 points higher mloU
than OpenSeg [ 5] trained on the 118k training images and
class-agnostic segmentation mask annotations. Although
the reported value of ours is lower than ZSSeg [48], we
note that there exists a huge gap between training scale;
ZSSeg is trained on the COCO Stuff dataset with its natural
language annotations (i.e. captions), in a total 960x larger
training configuration (15x larger iterations with 64 x larger
batch size). Nevertheless, our method still consistently and
significantly outperforms all the image-free baselines by a
large margin; for example, ours achieves 5.5 higher points
than MaskCLIP in terms of the mIoU metric.

Unsupervised image segmentation. On the other hand, we
also compare our method with unsupervised segmentation
baselines in Tab. 3, which is another promising approach for
learning transferable segmentation models. Specifically, un-
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Method ST ‘ Image Dataset ~ Segmentation Label ~mloU

IFSeg X X X 55.6
IFSeg v | COCO (118k) X 56.2
IFSeg v | COCO (118k) 4 61.6

Table 4. Ablation study on the effect of self-training technique
(“ST”) of IFSeg. All models are evaluated on the 15 unseen
categories of the COCO Stuff zero-shot segmentation benchmark.
We show the effects of task-specific images and segmentation labels
(seen) with additional 8k training iterations.

supervised baselines are trained on the COCO Stuff dataset
and evaluated 171 semantic categories.

As shown in Tab. 3, our method consistently outperforms
all the existing image-free segmentation baselines. For ex-
ample, our method significantly outperforms MaskCLIP by
achieving 16.9 mloU, while MaskCLIP achieves 12.7. Also,
ours shows comparable results to MaskCLIP+, which re-
quires additional training with 118k images for transferring
the knowledge of MaskCLIP via pseudo-labeling.

Qualitative Results. We present visualizations of segmenta-
tion results obtained by MaskCLIP and Ours in Fig. 4, and
it shows that our method even segments more fine-grained
categories than the ground-truth labels; for example, the
accessory category in the middle and bottom images are
captured via ours, but not contained in the labels.

4.2. Ablation study

In this section, we perform an ablation study to under-
stand further how the proposed method works when training
images or segmentation annotations are available.

Self-training. Self-training technique [4] has been widely
used in the VL literature. It generates pseudo-labels of un-
seen segmentation categories for reducing the gap between
seen and unseen semantic categories in a semi-supervised
manner; it assumes the pixels of unseen categories could
be present in the training images, while those pixels are not
annotated. On this line, we also evaluate our method on the
COCO Stuff benchmark when training images or the seen
annotations are available. Specifically, we fine-tune IFSeg
with an additional 8k training iterations using 118k images
and the seen annotations. We then evaluate the model on the
15 unseen categories of the COCO Stuff benchmark. Tab. 4
shows the individual effects of training images and seen an-
notations in our framework. After self-training, our method
has improved significantly from 55.6 to 61.6 mloU, which
also largely surpasses the strongest baseline MaskCLIP+ of
48.7 on the COCO Stuff in Tab. 1. Furthermore, we observe
that ours can achieve outperforming performance compared
to self-training baselines as presented in Appendix A.3.

Supervised semantic segmentation. Here, we perform
supervised learning on the ADE20K benchmark varying

Method Backbone mloU

ResNet-101 40.4
ResNet-101 43.8

ResNet-101 42.7
ResNet-101 45.1
ResNet-101 47.1

Semantic FPN [23]
UPerNet [46]

CLIP + Semantic FPN [32, 34]
DenseCLIP + Semantic FPN [34]
IFSeg (ours)

Table 5. Comparison in supervised semantic segmentation. We
report the mloU metric evaluated on the 150 semantic cateogires
of the ADE20K benchmark. We follow training configurations of
DenseCLIP, such as image resolutions and training iterations.

model size of OFA [42] to demonstrate their effectiveness.
For a fair comparison, we follow the training configuration
of DenseCLIP [34], which incorporates cross-modal repre-
sentations of CLIP to Semantic FPN [23], including input
resolutions, batch size, and iterations. We also compare with
traditional image segmentation decoders like Semantic FPN
and UPerNet [46] on pre-trained ImageNet [18].

As shown in Tab. 5, the encoder-decoder VL models can
be successfully fine-tuned to segment semantic categories by
surpassing the existing supervised approaches with a large
margin, e.g., + 2.0 mIoU compared to the strongest baselines,
DenseCLIP, on the ADE20K benchmark.

5. Conclusion

We newly introduce a novel image-free semantic seg-
mentation task, which has the goal of performing semantic
segmentation without any task-specific images and annota-
tions, except target semantic categories. To tackle this, we
propose a simple yet effective image-free framework via
vision-language (VL) models in a self-supervised manner.
The key idea is that words of semantic categories can act as
an artificial image tokens on the cross-modal representation
space of pre-trained VL models. Specifically, we gener-
ate artificial image-segmentation pairs using word tokens
to replace the real image-segmentation pairs for image-free
semantic segmentation via the VL models. Through exten-
sive experiments, we demonstrate our models are not only
effective baseline for this novel task but also show strong
performances over existing methods acquiring the stronger
supervision. We believe our work would provide insights
into the under-explored yet important problems for semantic
segmentation via the pre-trained VL models.
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