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Abstract

Video Question Answering (VideoQA) is challenging as
it requires capturing accurate correlations between modal-
ities from redundant information. Recent methods focus
on the explicit challenges of the task, e.g. multimodal
feature extraction, video-text alignment and fusion. Their
frameworks reason the answer relying on statistical evi-
dence causes, which ignores potential bias in the multi-
modal data. In our work, we investigate relational structure
from a causal representation perspective on multimodal
data and propose a novel inference framework. For vi-
sual data, question-irrelevant objects may establish simple
matching associations with the answer. For textual data,
the model prefers the local phrase semantics which may de-
viate from the global semantics in long sentences. There-
fore, to enhance the generalization of the model, we dis-
cover the real association by explicitly capturing visual
features that are causally related to the question seman-
tics and weakening the impact of local language seman-
tics on question answering. The experimental results on
two large causal VideoQA datasets verify that our pro-
posed framework 1) improves the accuracy of the existing
VideoQA backbone, 2) demonstrates robustness on com-
plex scenes and questions. The code will be released at
https://github.com/Chuanqi-Zang/Discovering-

the-Real-Association.

1. Introduction
Video Question Answering (VideoQA) aims to un-

derstand visual information and describe it in language
question-answer format, which is a natural cognitive capa-
bility for humans. Computer Vision (CV) and Natural Lan-
guage Processing (NLP) as the base models for VideoQA
have shown significant progress due to the successful appli-
cation of deep learning, such as action classification [25],
object detection [10], instance segmentation [31], and large-
scale pre-trained language model [6,19]. These tremendous

*Wei Liang is the corresponding author.

Question: What will happen if the girl sprains?

Answer: The girl will stop.

Reason: 

A. There are a lot people here, and can find someone to help at any time.

B. The girl can’t exercise because of a sprain and needs to rest.

Question: What will happen if the power is cut off?

Answer: 

A. [person_1] will stop singing karaoke.

B. [person_1] and [person_2] both cannot work.

TV, indoor     singing karaoke

Someone, help     Reason

Figure 1. Two samples in VideoQA dataset. They exhibit spurious
reasoning processes of B2A [26] that rely on statistical patterns,
including visually spurious object-relationship associations (top)
and textually unilateral semantic representations (bottom).

advances in basic applications fuel the confidence in fine-
grained multimodal analysis and reasoning, not only fea-
ture extraction, but also fine-grained general causality esti-
mation, which is critical for a robust cognitive system.

Recent VideoQA methods usually explore multimodal
relational knowledge by sophisticated structured architec-
ture, such as memory-augmented model [9], hierarchical
model [20], topological model [18], and transformer-based
model [37]. Although experiments validate their feature
fusion capabilities, we find that these methods concentrate
on statistical association based on multimodal data, ignor-
ing the real stable association. They usually use a gener-
ally constrained approach with Empirical Risk Minimiza-
tion (ERM), which tends to over-rely on the co-occurrence
bias of repeated objects and words in the collected observa-
tional data, and bypasses the impact of complete semantics
at the sentence level. This mechanism reduces the robust-
ness of the model on new data, even in the test set which
has similar distributions to the training set.

For example, as shown in Fig. 1 (top), two people are
playing ”cricket” indoors, and there are other objects in the
room, including a TV that is on. If relying on the statisti-
cal relationship, the model may be confused by the two im-
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portant visual factors of ”indoor” and ”television”, and mis-
judge the concerned event, that is, ”sing karaoke”. Based on
the clues provided by the question, the concerned event is
related to the action that is taking place, e.g. ”two men play-
ing cricket”. This requires the model to accurately judge
the objects involved in the event and infer the answer. In
Fig. 1 (bottom), we show the predicted deviation caused by
statistical relationships in the text. When inferring the rea-
sons for answer selection, existing models intensively rely
on correlations between local words and video content, e.g.
”someone; help”, ignoring unreasonable inferences from
other parts of the sentence, e.g. ”a lot”.

From these observations, we summarize two causal chal-
lenges for the VideoQA task. 1) Irrelevant objects con-
founder. The visual information related to the question is
usually causally related to finite objects in the video. When
other objects or background are considered, they are sub-
ject to data bias and become confounders, misleading the
model to select the negative candidate. 2) Keywords con-
founder. The semantics expressed by textual information is
represented by the overall sentence. Some long sentences
contain partially sensible keywords. When just focusing
on local keywords semantics, the model falls into spurious
causal inferences, reducing the robustness of the model.

To address the above causal challenges and improve the
robustness of the model, we propose a Multimodal Causal
Reasoning (MCR) framework for video-text data. In this
framework, causal features and confounding features are
decoupled separately in visual and textual modes through
two training strategies. To explicitly decouple the influence
of different objects and scenes, MCR extracts fine-gained
object-level appearance features and motion dynamics by
spatial Region of Interest (ROI) Align [13] on global vi-
sual features. Among them, causally related objects are se-
lected based on the correlation between object features and
question semantics. In addition to the visual feature, we
also model object coordinate information, category infor-
mation, and global object interaction information to pro-
vide spatio-temporal relation representations for accurate
causal attribute classification. For textual confounders, we
adopt a strategy to reduce the impact of keywords on causal-
ity. MCR relies on the correlation between word encod-
ing and question-visual co-embedding to select keywords
which have a crucial impact on the prediction results. These
keywords provide negative representations for successive
deductive answers. Therefore, we combine these keywords
with other candidate answers to generate difficult negative
samples to improve the recognition ability of the model.
During training, visual intervention and textual interven-
tion are iteratively optimized. Multimodal causal relation-
ships are gradually established which improves the robust-
ness and reusability of the model.

We summarize our contributions as: (1) We discover two

new types of causal challenges for both visual data and tex-
tual data. (2) We propose an object-level causal relationship
extraction strategy to establish the real association between
objects and language semantics, and a keyword broadcast-
ing strategy to cut off the spurious influence of local textual
information. (3) We achieve state-of-the-art performance
on two latest large causal VideoQA datasets.

2. Related Work
Video Question Answering (VideoQA). In early works,

the long-term dependency features in video and text were
extracted by RNN-based modules, and then were fused by
element-wise multiplication [42, 43] with attention mech-
anism [35]. Considering the implicit interaction in mul-
timodal data, Jiang et al. [18] proposed a heterogeneous
graph convolution-based network for crossmodal fusion.
Park et al. [26] enhanced crossmodal graphs by a bridged
visual-to-visual interactions structure. Huang et al. [15] im-
proved graph interaction reasoning at the fine-grained ob-
ject level. Dang et al. [5] explored the symbol-like manip-
ulable reasoning by a hierarchically nested spatio-temporal
graph. Benefited from the pre-trained language-based trans-
former [6] and video-text-alignment transformer [37, 41],
current works [24, 38] can fine-tune the pre-trained model
and show remarkable feature extraction ability and cross-
model aligning ability. However, these methods ignore the
potential bias distribution in the data. While improving the
ability of feature extraction and alignment, they introduce
confounders that lead to poor generalization.

Causal learning. Except for representation learning, re-
cent work found that causal reasoning in data is meaning-
ful for VideoQA. In the synthetic dataset [39], inspired by
neural-symbolic method [40] for the ImageQA task, some
work [4, 7, 39] explicitly represent the appearance informa-
tion and physical information of each object in the scene.
To investigate the causal modeling ability of models in real
life, recent datasets [21, 36, 39] asked questions about be-
havior causality in addition to descriptive questions. For
some common-sense causal knowledge that is not repre-
sented in the videos, Chadha et al. [3] proposed a knowl-
edge base as additional guidance. To find clues of causal
associations, Xu et al. [36] proposed to dynamically select
the frame from the past or future. The same in frame level,
Li et al. [22] explored invariant learning [1] to distinguish
question-irrelevant scenes.

In real-life scenes, videos contain redundant object in-
formation. Since lacking human annotations, frequently-
occurring objects are introduced as confounders, which
bring more complex spurious guidance for video under-
standing than rough frame-level background snippets. In
addition, in texts involving causal reasoning, some phrases
are also prone to become confounders. This paper will unify
the analysis of causal inference on multimodal data.
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Figure 2. Causal formulation of VideoQA. Gray variables are ob-
served data. V is a specific video and S is a specific sentence. D
represents the data domain determined by the collected dataset. It
causes the co-occurring of objects in video V, various words in
sentence S, and answer label Y. The ideal causal inference is that
model extracts video event features Ev from videos and text event
features Es from words. Then it integrates different modal event
representations and filters out the event of interest E for answer
selection Y. Here, we provide the backdoor adjustment from D to
V and from D to S, which produces our MCR architecture.

3. Method

3.1. Formulation of VideoQA

Causal Preliminaries. We formalize cross-modal
causality for the VideoQA task via a Structure Causal
Model [27]. In Fig. 2, we represent the key factors in the
VideoQA task as components in the causal graph, and rep-
resent the relationships between factors as connecting links
that are built by current models [18,23,26,33] as default, in-
cluding data domain D, video V, sentence S, label Y, visual
event features Ev , and textual event features Es, alignment
events E.

V → Ev → E ← Es ← S denotes feature extrac-
tion and alignment of multimodal data. Ev and Es repre-
sent the complete events feature extracted from the video
and sentence, respectively. In visual domain, pre-trained
feature extraction models extract different objects and in-
teractions as events. In textual domain, pre-trained models
represent linguistic concepts in stages as events according
to punctuation and connectives. Ev → E ← Es represents
multimodal event selection and alignment. The deep model
references language events to select video events of inter-
est. Then it aligns event representations and infers a unified
event representation E.

E→ Y represents the direct causal effect from the uni-
fied feature of the concerned event to the label, which is
an ideal way that remains invariant in other data D with
different data distributions. For example, ”play cricket” is
causally related to cricket bat and swing, and irrelevant to
”indoor” and ”outdoor”.

V ←D→ Y denotes that the data domain D as a con-
founder provides a spurious shortcut from video V to label
Y in the visual domain. Specifically, the data domain D
represents the statistical relationships contained in the lim-

ited collected video data to represent the co-occurrence of
objects and labels. In the top example in Fig. 1, ”TV” and
”indoor” provide the shortcut connection that is identified
as ”karaoke” because of lacking human interaction event.

S ← D → Y denotes that the data domain D also es-
tablishes spurious associations between sentence S and la-
bel Y. This is reflected in the fact that the model is easy to
establish the association between labels and local concerned
expressions of sentences while ignoring the overall expres-
sions. Especially in multiple-choice questions, the model
shows a stronger preference for the local ”key” representa-
tion. For example, in the below example in Fig. 1, the model
selects the locally correct answer, ”someone” and ”help”.

Causal Intervention. The well-known backdoor adjust-
ment [27] helps in eliminating spurious correlations, result-
ing in better generalization for the model. We present the
true causality from V and S to Y as P (Y |do(V, S)), where
do() denotes the interventional operation. P (Y |do(V, S))
can cut off the link D → V and D → S to block this
backdoor path by changing the original training data into
new data T = {τ1, ..., τh}. Each of them donates a con-
founder stratum (total h), guiding the model to find invari-
ants from the confounder. The backdoor adjustment can be
represented as:

P (Y | do (V, S)) =
∑
τ∈T

P (Y |V, S, τ)P (τ)

=
∑

τv∈Tv

P (Y | V, τv)P (τv)

+
∑
τs∈Ts

P (Y |S, τs)P (τs)

(1)

where P (Y |V, S, τ) denotes the prediction in each new data
split τ . P (τ) denotes confounder selection probability for a
specific video and sentence, calculated by P (τ) := 1

h . We
calculate probability estimates separately by two individ-
ual architectures for video and text. In this way, the inter-
action cuts off the confounder effect in V ← D → Y
and S ← D → Y as shown in Fig. 2. Take video
data as an example, traversing all the confounders for a
video is expensive. When the video number in the dataset
is M, Eq. 1 expands the training data from M to M2

within one epoch with additional memory consumption.
Therefore, to balance the scale of confounder set Tv and
training speed, we find the confounder by our MCR and
combine it with original data V every epoch. After K
training epochs, we can approximate the visual part of the
adjustment equation, i.e.

∑
τv∈Tv

P (Y | V, τv)P (τv) ≈∑K
k=1

∑
τv∈Tv

k P (Y | V, τv)P (τv).
Preliminary. Given a video I , VideoQA aims to un-

derstand acting events by asking questions q and predict the
correct answer ã from a answer candidate set A = {az}Zz=1.
Z is the candidate number. The process is generally formu-
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Question: What is the color of the wall?
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Figure 3. Visual Causal Module. Before the appearance information and motion information are sent to the backbone for question answer-
ing, we propose a visual causal module to find object-level causal features and irrelevant features in video data. The image-level visual
features are first divided into object-level visual features by the detected bounding box. The category information, location information
and interaction relationship of each object are modeled by Interaction Detector. According to the question prompt, the Indicator judges
whether the features of different objects are causally related or irrelevant. The uniform representation of causal and irrelevant features are
used for further prediction in the VideoQA backbone.

lated as follows:

ã = argmax
a∈A

Fθ (a|q, I), (2)

where θ represents the set of model parameters of VideoQA
function F , which maps a pair of video and question into
the same feature domain to find the answer. In our work,
we do not change the VideoQA function F . In a causal
view, we intervene video I and answer candidate A.

3.2. Visual Causal Module

To answer the question with accurate causally related
features, we propose a visual causal module that disentan-
gles the confounder and causal factors at the object level.
As shown in Fig. 3, the video with shape W × H × L is
encoded by 2D ConvNet, 3D ConvNet into a list of appear-
ance feature and motion feature with shape W

16 ×
H
16 ×

L
2 .

They are uniformly represented by frame feature sequence

V = {vt}
L
2
t=1, where t means timestamp. The object-

level grounding is detected by pre-trained Detection Con-

vNet and donated as the bounding box B = {bn,t}
N,L2
n=1,t=1,

where N is the detected object number. We use Region of
Interest (ROI) Align [13] to extract object visual features

O = {on,t}
N,L2
n=1,t=1, expressed as O = ROIAlign (V|B).

Since the scene in the real video is ever-changing, some
objects in the video may suddenly disappear or appear, mak-

ing it difficult to obtain accurate instance tracking data.
Therefore, we extract unified features for the same category
of targets, e.g. human, chairs. When objects of this cate-
gory do not appear in part of the consecutive frames, we fill
the feature with 0 value.

For each object feature, we employ Multilayer Percep-
trons (MLP) and Long short-term memory (LSTM) [12] to
encode the temporal embedding for visual feature:

Og = LSTM(MLP (O)), (3)

where Og = {ogn}Nn=1 ∈ Rd is the global N object repre-
sentations, and d is the hidden dimension of LSTM. In ad-
dition to the visual encoding, we also model the bounding
box position correlations B, object category C, and spatio-
temporal inter-object and intra-object interactions in an In-
teraction Detecting stream. They are implemented by Non-
local Net [30] with MLP:

Lg = NonL(MLP (MLP (B);MLP (C))), (4)

where ; represents channel concatenation. Lg = {lgn}Nn=1 ∈
Rd means detected interaction feature. The outputs of two
feature extraction streams are then fused by channel con-
catenation: Og = [Og;Lg]. All objects are causal or irrele-
vant candidates. Their identities are determined by the lan-
guage semantics of the question. Therefore, given a ques-
tion sentence, we apply Word Parser and Event Embedding
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to get the global question representation qg . The Event Em-
bedding is implemented by LSTM:

qg = LSTM(Parser(q)), (5)

where Parser uses a pre-trained GloVe model [28] or BERT
model [6]. LSTM is implemented by the question embed-
ding model of the VideoQA backbone. With the specific
question, causally related objects are usually a small part
of object set Og and are interconnected internally. Reason-
ing about their relationship to unrelated objects is redun-
dant and prone to spurious associations. Therefore, inspired
by [22] ,we use hard segmentation [22] in Indicator to ex-
plicitly divide object features into causally related features
and irrelevant features, rather than soft GCN inference or
attention-based models. Specifically, the question embed-
ding qg and objects feature Og are mapped into the same
space by MLP. The Indicator computes a score for each ob-
ject feature and uses Gumbel-Softmax [17] to classify the
causal attribute labels of objects:

Oc = GS(MLP (qg) · (MLP (Og)T )) ◦ O,
Oc̄ = O −Oc,

(6)

where GS means Gumbel-Softmax and · means matrix
multiplication. ◦ means multiply by index. Oc =
{ocn}N

c

nc=1,Oc̄ = {oc̄nc̄}N c̄

nc̄=1 are causal object features
set and irrelevant features set, respectively, where the cor-
ner mark of length is omitted for clarity. We average the
features in these sets to obtain causal visual features and
irrelevant visual features, respectively: Vc = 1

Nc

∑
Oc,

V c̄ = 1
N c̄

∑
Oc̄.

According to the deduction of Eq. 1, in the visual part,
the video V and the average sampling confounder are com-
bined to predict the label. In model designing, the video
V can be present by causal object features Vc. The con-
founder is from the confounder of another example in the
same mini-batch, represented by:

V̂ =
1

N c +N ′c̄

∑
(O

c
+O′c̄), (7)

where V̂ is the blended features. O′c̄ is the confounder of
another example. N ′c̄ is the object number of O′c̄. Both
V , Vc, V c̄, and V̂ are sent to the VideoQA backbone for
training the visual causal module. The visual module can
capture causal relationships between object features and la-
bels, providing a stable association for multimodal data.

3.3. Textual Causal Module

For textual causal inference, prediction is often plagued
by correlations between local language semantics and vi-
sual features. Therefore, the key to getting rid of text
confounders is to enhance the model’s ability to recognize

Answer:  "It is orange."

Candidates:  

"Black" 

"It is blue”

Indicator
Word 

Parser

Event

Embedding

“It is .” Other word(s)

New Candidates:  

"Black and orange"

"It is blue and orange”
Intervenor

Textual Causal Module
Question & Vision

Alignment Feature

“orange” Key word(s)

… …

Figure 4. Textual Causal Module. Keywords are selected as con-
founders from the prediction results by the indicator. They are sent
to the intervenor to generate new candidates.

such confusing samples which are implemented by a textual
causal module.

In the VideoQA base model, the visual information and
the question have been aligned, containing the events infor-
mation related to the answer. Therefore, we use the align-
ment feature fqv = F(Vc, qg) to retrieve the keywords in
the answer. As shown in Fig. 4, the same with question em-
bedding, we encode the answer by Word Parser and Event
Embedding:

ag, al = LSTM(Parser(a)), (8)

where ag is the global representation of the answer, and al

is the local representation of each word. The same with
visual Indicator, we select the keyword by the relation score
between ag and fqv:

ac̄ = GS(MLP (fqv) · (MLP (ag))T ) ◦ al, (9)

where ac̄ represents the keywords, which are potential con-
founders in this question. ac = al − ac̄ represents other
words.

According to the textual part of Eq. 1, the label is pre-
dicted by the sentence and confounder. Due to the correla-
tion between sentences and videos, we look for confounders
of sentences from the same video, especially the predicted
answer by VideoQA backbone which contains factors that
increase the score. Similar to visual intervention, we pick
confounders once per epoch.

Confounders are used to augment the hard sample of
candidates that changes the textual distributions. The model
joint original candidates A = {az}Zz=1 with ac̄ by inserting
ac̄ at the beginning or end of a sentence and generate a new
candidates set Â = {âz}Zz=1. In the training process, we
randomly replace the negative example from the new can-
didates set Â.

3.4. Training

In this section, we introduce our training targets and
training pipeline for multimodal data. The algorithm can
be found in Supplementary. First of all, to ensure the do-
main consistency of training sets and test sets, we train
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the VideoQA backbone with raw data (V,A), which also
guarantees that the training process satisfies the pre-defined
causal formulation:

Lo = XE(F ((V, q) , (V,A)) , a) , (10)

where XE is the cross-entropy loss. F calculates the
dot-product between question-related visual features and
answer-related visual features as the predicted results. At
test time, we use the candidate with the highest score as the
predicted result as in Eq.2.

Visual Module Loss. Visual module loss aims to cap-
ture causal object features and non-causal object features
for further robust prediction. In the training stage, the causal
visual features have the same ability for question answer-
ing, which is restricted by the cross-entropy loss: Lv

c . In
contrast, non-causal objects are irrelevant to the question
and should be unbiased toward answer candidates: Lv

c̄ . The
blended data V̂ are supposed to obtain the same effect with
causal feature: Lv

ô . The formulation of visual module loss
shows as follows:

Lv
c = XE(F ((Vc, q) , (Vc,A)) , a)

Lv
c̄ = MSE

(
F
((
V c̄, q

)
,
(
V c̄, A

))
, avg

)
Lv
ô = XE(F((V̂, q), (V̂, A)), a),
Lv = Lv

c + Lv
c̄ + Lv

ô ,

(11)

where avg is the average score of all candidates, avg =
F ((V, q), (V, A)). MSE means Mean Square Error for
non-causal objects to get a neutral score.

Textual Module Loss. The text module loss aims to find
keywords from the prediction results that directly affect the
model selection and reduce the sensitivity of the model to
keywords. Intuitively, keywords have the ability for predic-
tion, while other words are difficult to judge the results. We
use cross-entropy loss for keywords Ls

c̄ and MSE for other
words Ls

c. The blended answer is restricted by the cross-
entropy loss Ls

ô. The formulation of textual module loss is:

Ls
c̄ = XE

(
F
(
(V, q),

(
V, ac̄

))
, a
)

Ls
c = MSE (F ((V, q), (V, ac)) , avg)
Ls
ô = XE(F((V, q), (V, Â)), a)

Ls = Ls
c + Ls

c̄ + Ls
ô.

(12)

The overall loss of our model can be expressed as:

L = Lo + λ1Lv + λ2Ls, (13)

where λ1 and λ2 are the hyper-parameters to balance the
visual loss and textual loss.

Intervene Pipeline. We show the Intervene pipeline in
Fig. 5. The textual intervention and the visual intervention
are accomplished in two steps. Visual causal loss is com-
puted with Eq. 11 and used to obtain causally related ob-
ject features and irrelevant object features. They are used

Visual Data

Textual Data

Visual Data

Textual Data

Eq. 11

Intervenor

E
q
. 
1
2

In
te

rv
en

o
r

execute K2 epochs1 2

1

2
execute K1 epochs

Figure 5. Causal intervention pipeline.

to generate blended visual data with an intervenor, which
is implemented by Eq. 7. Textual causal loss is computed
with Eq. 12 and used to obtain keywords. Keywords are
sent to textual interveners to generate blended textual data.
We execute K2 epochs textual interventions after executing
K1 epochs visual interventions for the visual causal module
and the textual causal module.

4. Experiment
4.1. Dataset

We evaluate our Multimodal Causal Reasoning (MCR)
framework on two recent large causal-related VideoQA
datasets: Causal-VidQA [21] and NExT-QA [32]. In these
datasets, models need to answer not only simple descriptive
or statistical questions but also implicit global evidence rea-
soning. The collected video data is close to the real open
scene, including a variety of objects and interactive actions.
Answer candidates are sentences with different expression
structures and are not limited to a single sentence.

The Causal-VidQA dataset selects 26,900 video clips
from Kinetics-700 [2] and asks 107,600 questions, includ-
ing description, explanation, prediction, and counterfac-
tual questions. Each question has 5 answers, with 5 more
reasons in predictions and counterfactuals. For question-
answer accuracies, we adopt the previous causal VideoQA
evaluation metrics [21] that report accuracy for each ques-
tion type, as well as the accuracy of the consistency between
answers and reasons.

NExT-QA dataset contains 5,440 videos from Vi-
dOR [29] and proposes 47,692 questions for the multi-
choice task, including description, explanation, and tempo-
ral reasoning questions. We also report accuracy for each
question type.

4.2. Experimental Settings

We use a unified feature extraction method for both
datasets. Each video with varying length is divided into
8 clips, each containing 16 frames. For the object-level
motion feature, we uniformly sample from the frame-level
appearance features and clip-level motion features by ROI
Align [13]. The bounding boxes in each frame are extracted
by pre-trained Mask R-CNN [13]. The appearance features
and motion features are extracted by ResNet-101 [14] and
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Table 1. Comparison of accuracy with state-of-the-art methods on Causal-VidQA dataset. D means description question. E means expla-
nation question. P means prediction question. C means counterfactual question. QA means to answer the answer. QR means to answer the
reason. QAR means the answer and reason are both accurate.

Method Text Feature Acc-D Acc-E Acc-P Acc-C Acc
QA QR QAR QA QR QAR

HME [8] GloVe 47.25 43.80 41.02 42.53 23.25 35.29 34.19 15.34 32.41
HCRN [20] GloVe 58.89 53.53 43.14 45.07 26.17 43.69 43.47 22.75 40.33
HGA [18] GloVe 60.32 55.02 46.55 47.21 28.53 44.00 44.04 23.63 41.88
B2A [26] GloVe 61.29 56.43 46.82 48.17 30.01 45.12 44.99 25.29 43.26

IGV [22]+B2A GloVe 59.24 48.41 45.70 47.32 28.20 38.99 40.97 18.84 38.67

MCR+B2A GloVe 66.72 61.26 50.46 52.17 32.13 52.17 51.50 31.91 48.01

HME [8] BERT 63..36 61.45 50.29 47.56 28.92 50.38 . 51.65 30.93 46.16
HCRN [20] BERT 65.35 61.61 51.74 51.26 32.57 51.57 53.44 32.66 48.05
HGA [18] BERT 65.67 63.51 49.36 50.62 32.22 52.44 55.85 34.28 48.92
B2A [26] BERT 66.21 62.92 48.96 50.22 31.15 53.27 56.27 35.16 49.11

IGV [22]+B2A BERT 65.92 62.13 52.77 53.47 35.00 50.67 52.29 31.22 48.57

MCR+HCRN BERT 68.68 65.97 55.44 58.18 37.63 52.24 52.39 31.17 50.86
MCR+B2A BERT 67.47 65.59 56.46 56.42 37.82 52.39 54.08 33.38 51.06

3D ResNeXt-101 [34] with the pre-trained model, respec-
tively. For textual data, word token representation for ques-
tions and answers is provided by GloVe [28] and BERT [6]
respectively, which greatly affects the performance of mod-
els [21]. MLP is implemented by fully connected layers,
followed by Batch Normalization [16] and ReLU [11]. λ1

and λ2 are both set as 1. K1 and K2 are set as 1 and 3,
respectively. During training, we use Adam optimizer with
the initial learning rate of 1e-4 and halve the learning rate
in every 5 epochs. The batch size is set as 128 in Causal-
VidQA dataset and 64 in NExT-QA dataset.

4.3. Comparision with State-of-the-Arts

Results on Causal-QA. Table 1 presents the results
of four state-of-the-art baseline methods and one causal
method on the Causal-VidQA dataset, including HME [8],
HCRN [20], HGA [18], B2A [26], and IGV [22]. Com-
pared to all existing VideoQA methods, MCR achieves the
best performance across almost all types of questions. It is
worth noting that MCR improves accuracy across all ques-
tion types when using GloVe as the text model, which has
an average performance improvement of 4.75% over B2A
(48.01% vs. 43.26%). Compared with the IGV, MCR im-
proves by 9.44% (48.01% vs. 38.67%). Our result is even
comparable to the backbones of using BERT as a language
model. When using BERT as the text model and B2A as the
VideoQA backbone, MCR achieves an accuracy improve-
ment of 1.85% on average. In counterfactual questions, it
is difficult to answer the content of the associative question
with limited knowledge learning from the dataset. Involving
additional commonsense knowledge may be helpful. Ex-
perimentally, in the absence of commonsense knowledge,
VideoQA backbones that rely on data bias can also achieve

Table 2. Accuracies on NExT-VidQA of different architectures.
Models Causal Temp Descrip All

HME [8] 46.76 48.89 57.37 49.16
HCRN [20] 47.07 49.27 54.02 48.82
HGA [18] 48.13 49.08 57.79 50.01
B2A [26] 47.37 49.01 58.3 49.60
IGV [22] 48.56 51.67 59.64 51.34

MCR+B2A 47.3 50.25 61.26 50.42
MCR+HGA 49.19 51.98 62.29 52.35

good performance for counterfactual questions.

Our proposed framework is in parallel with the VideoQA
backbone that helps it discover the causal reason. To verify
the effectiveness of the parallel strategy, we combine the
MCR with different backbones, including HCRN [20] and
B2A [26]. We can see that our method has remarkable ef-
fects on existing methods. This is due to previous methods
being confused by confounders in multimodal data, result-
ing in poor generalization. Our MCR can effectively allevi-
ate the biased modeling of these methods.

Results on NExT-QA. For further comparison, we eval-
uate our method on the NExT-QA dataset and report the
evaluation results in Table 2. Compared with the base-
lines, our proposed MCR achieves the top performance in
all question types. Specifically, when using B2A as the
VideoQA backbone, our MCR is able to improve 0.82% on
average accuracy. When combined with HGA, our MCR
surpasses the previous backbone and causal method by clear
margins, e.g. 2.34% and 1.01% higher than HGA and IGV,
respectively. These validate that our multimodal causal rea-
soning indeed improves the robustness and generalization
of baseline on causal reasoning dataset.
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B2A MCR+B2A B2A MCR+B2A

Question: What is [person_1] going to do?

a1 [person_1] is going to continue smoking.

a2  [person_1] is going to play the flute.

a3  [person_1] will stop the lecture.

a4  [person_1] may stop.

a5  [person_1] is going to pray.

Question: What will [person_1] do next?

a1  [person_1] will continue to perform after [person_1].

a2  [person_1] will lift the third one.

a3  [person_1] will separate the two legs.

a4  [person_1] will keep on dancing.

a5 [person_1] will further introduce this stopper.

[Person_1] [Person_1]

causal
confounder

confounder

causal

Figure 6. Qualitative comparison on Causal dataset validation split. The green bold answer denotes the ground-truth one. The yellow
arrows indicate that our method can improve the score of predictions by finding the causal association.

4.4. Ablation Study

Table 3. Performance comparisons of different variants on Causal-
QA dataset. ”MCRv” and ”MCRt” denote the visual causal mod-
ule of MCR and the textual module of MCR, respectively.

Method Acc-D Acc-E Acc-P Acc-C Acc

B2A 66.21 62.92 31.15 35.16 49.11
B2A+MCRv 67.76 65.38 35.55 32.95 50.41
B2A+MCRt 68.57 64.38 33.73 31.61 49.57
B2A+MCR 68.72 65.01 36.92 33.21 50.96

We analyze the effectiveness of different modules of
MCR in Table 3. When adopting the visual causal module
of MCR, we can achieve comparable improvements (1.30%
on average), indicating that the visual indicator can change
the co-occurrence relationship between irrelevant objects
and labels, which improves the robustness of the model
to visual data. With only MCR’s text module, B2A im-
proves by an average of 0.46%. This is because we elim-
inate the misleading of local language semantics attention.
When adopting both causal modules for multimodal data,
B2A+MCR achieves the best performance.

Table 4. The influence of hype-parameters of training pipeline on
Causal-VideoQA Dataset.

k1/k2 1 3 5 1/3 1/5

Acc 46.65 50.58 49.58 48.23 46.37

Hyper-parameters. In this paper, we propose a causal
intervention pipeline for multimodal data. Here, we conduct
ablation studies on the hyper-parameters setting in Tab. 4.
When we interact textual data every 3 epochs and video data
every 1 epoch, MCR performs best on average accuracy.
More Hyper-parameters about λ1, λ2 and the ablation study
of single loss function are shown in Supplementary.

4.5. Qualitative Analysis

Fig. 6 shows the qualitative comparison between our
MCR and B2A. Our MCR can reduce the scores of con-
fusing candidates and enhance the confidence for the accu-
rate answer. In the example on the left, B2A chooses the
third answer because both the body pose of the human and
the environment are related to ”lecture”. Our approach ex-
plicitly helps B2A reduce the influence of irrelevant factors
and find the causal motion ”smoking”. In the right example,
B2A is perturbed by the correlation between ”third” in the
text and the three bottles on the table in the video. Accord-
ing to the causal object selection, MCR effectively arrives
at a lower score for it. These examples demonstrate that our
model can perform real and generalizable reasoning.

5. Conclusion
In this paper, we revisit causal effects in multimodal data

and propose a causal prediction architecture to model the
causal association between video and text for the VideoQA
task. Compared with previous methods, MCR can mod-
ify the distribution of data according to the backdoor ad-
justment and improve the robustness of the model. Con-
sidering limitations, our method intervenes in the textual
data by word insertion. Some post-intervention examples
express eccentric sentence structures that are easy to dis-
tinguish. Intervening the textual data with a reasonable
text generator would be a reasonable future work. Besides,
MCR cannot be directly adapted to the Video Story QA task
in which most videos are human-human interactions rather
than human-object interactions. Enhancing interventional
operations for human instances may be another future work.
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