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Abstract

Open-set Unsupervised Video Domain Adaptation (OU-
VDA) deals with the task of adapting an action recognition
model from a labelled source domain to an unlabelled tar-
get domain that contains “target-private” categories, which
are present in the target but absent in the source. In this
work we deviate from the prior work of training a spe-
cialized open-set classifier or weighted adversarial learn-
ing by proposing to use pre-trained Language and Vision
Models (CLIP). The CLIP is well suited for OUVDA due
to its rich representation and the zero-shot recognition ca-
pabilities. However, rejecting target-private instances with
the CLIP’s zero-shot protocol requires oracle knowledge
about the target-private label names. To circumvent the
impossibility of the knowledge of label names, we propose
AutoLabel that automatically discovers and generates
object-centric compositional candidate target-private class
names. Despite its simplicity, we show that CLIP when
equipped with AutoLabel can satisfactorily reject the
target-private instances, thereby facilitating better align-
ment between the shared classes of the two domains. The
code is available1.

1. Introduction
Recognizing actions in video sequences is an important

task in the field of computer vision, which finds a wide
range of applications in human-robot interaction, sports,
surveillance, and anomalous event detection, among others.
Due to its high importance in numerous practical applica-
tions, action recognition has been heavily addressed using
deep learning techniques [32, 44, 58]. Much of the success
in action recognition have noticeably been achieved in the
supervised learning regime [6, 17, 49], and more recently
shown to be promising in the unsupervised regime [20, 34,
56] as well. As constructing large scale annotated and cu-
rated action recognition datasets is both challenging and ex-
pensive, focus has shifted towards adapting a model from a
source domain, having a labelled source dataset, to an un-

1https://github.com/gzaraunitn/autolabel

labelled target domain of interest. However, due to the dis-
crepancy (or domain shift) between the source and target
domains, naive usage of a source trained model in the target
domain leads to sub-optimal performance [51].

To counter the domain shift and and improve the trans-
fer of knowledge from a labelled source dataset to an unla-
belled target dataset, unsupervised video domain adaptation
(UVDA) methods [7, 9, 42] have been proposed in the liter-
ature. Most of the prior literature in UVDA are designed
with the assumption that the label space in the source and
target domain are identical. This is a very strict assumption,
which can easily become void in practice, as the target do-
main may contain samples from action categories that are
not present in the source dataset [43]. In order to make
UVDA methods more useful for practical settings, open-
set unsupervised video domain adaptation (OUVDA) meth-
ods have recently been proposed [5, 8]. The main task in
OUVDA comprise in promoting the adaptation between the
shared (or known) classes of the two domains by excluding
the action categories that are exclusive to the target domain,
also called as target-private (or unknown) classes. Exist-
ing OUVDA prior arts either train a specialized open-set
classifier [5] or weighted adversarial learning strategy [8]
to exclude the target-private classes.

Contrarily, we address OUVDA by tapping into the very
rich representations of the open-sourced foundation Lan-
guage and Vision Models (LVMs). In particular, we use
CLIP (Contrastive Language-Image Pre-training) [45], a
foundation model that is trained on web-scale image-text
pairs, as the core element of our framework. We argue that
the LVMs (e.g., CLIP) naturally lend themselves well to
OUVDA setting due to: (i) the representation learned by
LVMs from webly supervised image-caption pairs comes
encoded with an immense amount of prior about the real-
world, which is (un)surprisingly beneficial in narrowing the
shift in data distributions, even for video data; (ii) the zero-
shot recognition capability of such models facilitates identi-
fication and separation of the target-private classes from the
shared ones, which in turn ensures better alignment between
the known classes of the two domains.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Comparison of AutoLabelwith CLIP [45] for zero-shot prediction on target-private instances. (a) CLIP assumes the knowledge
about the oracle zero-shot classes names (ride horse, shoot ball); (b) Our proposed AutoLabel discovers automatically the
candidate target-private classes (horse person, person ball) and extends the known classes label set

Zero-shot inference using CLIP requires multi-modal in-
puts, i.e., a test video and a set of all possible prompts “A
video of {label}”, where label is a class name, for
computing the cosine similarity (see Fig. 1a). However in
the OUVDA scenario, except the shared classes, a priori
knowledge about the target-private classes label names are
not available (the target dataset being unlabelled). Thus, ex-
ploiting zero-shot capability of CLIP to identify the target-
private instances in an unconstrained OUVDA scenario be-
comes a bottleneck. To overcome this issue we propose
AutoLabel, an automatic labelling framework that con-
structs a set of candidate target-private class names, which
are then used by CLIP to potentially identify the target-
private instances in a zero-shot manner.

In details, the goal of AutoLabel is to augment the set
of shared class names (available from the source dataset)
with a set of candidate target-private class names that best
represent the true target-private class names in the tar-
get dataset at hand (see Fig. 1b). To this end, we use
an external pre-trained image captioning model ViLT [31]
to extract a set of attribute names from every frame in
a video sequence (see Sec. 3.2.1 for details). This is
motivated by the fact that actions are often described by
the constituent objects and actors in a video sequence.
As an example, a video with the prompt “A video
of {chopping onion}” can be loosely described by
the proxy prompt “A video of {knife}, {onion}
and {arm}” crafted from the predicted attribute names. In
other words, the attributes “knife”, “onion” and “arm”
when presented to CLIP in a prompt can elicit similar re-
sponse as the true action label “chopping onion”.

Naively expanding the label set using ViLT predicted at-
tributes can introduce redundancy because: (i) ViLT pre-
dicts attributes per frame and thus, there can be a lot of dis-
tractor object attributes in a video sequence; and (ii) ViLT
predicted attributes for the shared target instances will be
duplicates of the true source action labels. Redundancy
in the shared class names will lead to ambiguity in target-
private instance rejection.

Our proposed framework AutoLabel reduces the re-
dundancy in the effective label set in the following manner.

First, it uses unsupervised clustering (e.g., k-means [36]) on
the target dataset to cluster the target samples, and then con-
structs the top-k most frequently occurring attributes among
the target samples that are assigned to each cluster. This
step gets rid of the long-tailed set of attributes, which are
inconsequential for predicting an action (see 3.2.2 for de-
tails). Second, AutoLabel removes the duplicate sets of
attributes that bear resemblance with the source class names
(being the same shared underlying class) by using a set
matching technique. At the end of this step, the effective
label set comprises the shared class names and the candi-
date sets of attribute names that represent the target-private
class names (see Sec. 3.2.3 for details). Thus, AutoLabel
unlocks the zero-shot potential of the CLIP, which is very
beneficial in unconstrained OUVDA.

Finally, to transfer knowledge from the source to the tar-
get dataset, we adopt conditional alignment using a sim-
ple pseudo-labelling mechanism. In details, we provide to
the CLIP-based encoder the target samples and the extended
label set containing the shared and candidate target-private
classes. Then we take the top-k pseudo-labelled samples for
each predicted class and use them for optimizing a super-
vised loss (see Sec. 3.2.4 for details). Unlike many open-set
methods [5, 8] that reject all the target-private into a single
unknown category, AutoLabel allows us to discriminate
even among the target-private classes. Thus, the novelty of
our AutoLabel lies not only in facilitating the rejection of
target-private classes from the shared ones, but also opens
doors to open world recognition [1].

In summary, our contributions are: (i) We demonstrate
that the LVMs like CLIP can be harnessed to address OU-
VDA, which can be excellent replacement to complicated
alignment strategies; (ii) We propose AutoLabel, an au-
tomatic labelling framework that discovers candidate target-
private classes names in order to promote better separation
of shared and target-private instances; and (iii) We conduct
thorough experimental evaluation on multiple benchmarks
and surpass the existing OUVDA state-of-the-art methods.
2. Related Work
Action Recognition. A plethora of deep learning meth-
ods have been proposed for action recogniton, which can
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be roughly categorized based upon the type of network
architecture used to process the video clips and the in-
put modalities (see [32] for an extensive survey). The
most common methods rely on 2D-CNNs [29, 54] cou-
pled with frames aggregation methods [14, 23, 28], and
on 3D-CNNs [6, 24, 27, 52]. Furthemore, the task has
been addressed with two-stream methods introducing opti-
cal flow [18, 49] and more recently with transformer-based
architectures [4, 22, 40]. Despite the impressive success,
these models rely on large annotated datasets to train, which
is indeed a bottleneck when no annotations are available.
Our work focuses on adapting a model to an unlabelled
target domain by exploiting the knowledge from a labelled
source domain.

Open-set Unsupervised Domain Adaptation. Mitigating
domain-shift with unsupervised domain adaptation meth-
ods has been an active area of research for both images
(see survey in [10]) and videos [5, 7–9, 12, 42]. In partic-
ular, closed-set video domain adaptation has been realized
using the pretext task of clip order prediction [9], adver-
sarial learning coupled with temporal attention [7, 41] and
contrastive learning with multi-stream networks [30, 42],
among others. Closed-set domain adaptation being unre-
alistic, adaptation methods have been proposed to address
the open-set adaptation scenario, but are mostly limited to
the image classification task (see survey in [11]). However,
for OUVDA the prior work [5, 8] is quite scarce. Busto et
al. [5] proposed a method that first learns a mapping from
the source to the target. After the transformation is learned,
linear one-vs-one SVMs are used to separate the unknown
classes. CEVT [8] tackles OUVDA by modelling the en-
tropy of the target samples as generalised extreme value dis-
tribution, with the target-private samples lying at the tail of
the distribution. The entropy is then used as weights to con-
duct weighted adversarial alignment. Differently, our work
leans on the excellent zero-shot capability of CLIP [45] to
detect the target-private instances. Post detection, we resort
to conditional alignment to align the shared classes in the
source and target domains using pseudo-labelling.

Language and Vision Models. Off late, the vision commu-
nity has witnessed a paradigm shift with the advent of the
language and vision (LVM) foundation models [2]. LVMs
derive strength from the large scale pre-training with web-
scale multi-modal image-text or image-audio training pairs.
In particular, CLIP [45] has demonstrated excellent down-
stream performance on zero-shot classification. Inspired
by its success, CLIP has been adapted as ActionCLIP [55]
and VideoCLIP [57] for addressing zero-shot action recog-
nition and action segmentation, respectively. While Ac-
tionCLIP assumes knowledge about the oracle zero-shot
classes, VideoCLIP uses a thresholded closed-set predictor
to identify the unknown classes. We argue that both are im-
practical and sub-optimal, and therefore propose to discover

the target-private classes in an automatic manner. Very re-
cently, Esmaeilpour et al. [16] indeed proposed to detect
zero-shot classes without any oracle knowledge, but limit
themselves to image classification task only. In contrast,
our AutoLabel takes additional care in reducing redun-
dancy and is thought-out for the action recognition task.

3. Methods
In this work we propose AutoLabel to tackle the task

of adapting a model from a labelled source dataset to an un-
labelled target dataset, under the constraint that the target
contains samples from action categories that are not present
in the source domain. Before we describe the details of
AutoLabel we formalize OUVDA and present the pre-
liminaries used in our framework.
Problem Definition and Notations. Let us assume that
we are given a source dataset containing labelled video se-
quences DS = {(XS

i , l
S
i )}ni=1, where X ∈ X represents

the input video and lS ∈ YS = {l1, l2, . . . , lK} being the
K shared class names, instead of class indices. For e.g.,
YS = {“climb”, “fencing”, . . . , “push up”}. More-
over, we are also given an unlabelled target dataset DT =
{XT

i}ni=1 containing n samples from classes YT. In particu-
lar, YT = YS ∪ YU, where YU = {lK+1, lK+1, . . . , lK+M}
represents the M target-private class names and are not
known to us a priori. Each video sequence is composed
of r frames X = {xj}rj=1 depicting an action with label l.

The goal in OUVDA is to learn a parameterized function
fθ : X → Y using DS ∪ DT, that can correctly predict the
shared target instances to be belonging to one of the classes
in YS and reject the target-private instances as “unknown”.
Overview. To address OUVDA we propose AutoLabel
(see Fig. 2), a CLIP-based framework, that comprise of a
transformer [53] as the text encoder and ViT [15] as the vi-
sion encoder. In practice, we use the ActionCLIP architec-
ture [55] that has an additional self-attention temporal pool-
ing to aggregate the frame-level features to output video-
level feature. To enable the identification of target-private
instances without any access to YU, AutoLabel generates
a set of candidate target-private classes names.

In details, AutoLabel uses pre-trained ViLT [31] to
predict a set of attributes from the frames in target video se-
quences. Then it uses unsupervised clustering on the video-
level target features to cluster the video sequences into re-
spective semantic clusters. All the predicted frame-level at-
tributes, pertaining to the video sequences that are assigned
to a given cluster, are filtered to yield the top-k most salient
attributes. These top-k attributes are then concatenated to
form a proxy action label name. Note that this step will
produce one candidate label name per cluster, including the
ones corresponding to the shared classes. To disambiguate
and merge the redundant class label names with the known
shared class names we use set matching. At the end of this
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the target dataset are discovered in an unsupervised manner; (d) redundant candidate labels are discarded and candidate target-private class
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step the effective label set will comprise of the shared class
names and the candidate target-private class names.

Following the extended label set creation, pseudo-labels
are computed for the unlabelled target samples by provid-
ing to the text and vision encoders of ActionCLIP, as in-
put, the target video sequences and the extended label set,
respectively. The top-k% most confident predictions from
each predicted class (computed using argmax on the out-
put probability distribution) are then used as hard pseudo-
labels for optimizing the ActionCLIP multi-modal training
objective. Below we summarize the ActionCLIP.
3.1. Preliminaries

ActionCLIP [55] is a transformer-based multi-modal su-
pervised action recognition framework that consist of a text
encoder GW (·) to extract features of text labels and a video
encoder GV (·) to extract spatio-temporal features from a
corresponding video (see Fig. 2a). The video encoder con-
sists of an image encoder GI(·), operating at frame-level,
and a temporal transformer GT (·) for aggregation, such that
GV = GT ◦GI . ActionCLIP is trained to maximize the co-
sine similarity cos(·, ·) between the pairwise video and label
representations, which is defined as:

cos(X, l) =
v ·wT

||v|| ||w||
(1)

where v = GV (X) and w = GW (l) are the feature rep-
resentations of the video and text modalities, respectively.
The softmax-normalized similarity score for the ith training
pair is given as:

pl(Xi, li) =
exp(cos(Xi, li)/τ)∑N
j=1 exp(cos(Xi, lj)/τ)

(2)

where N is the number of training pairs in a mini-batch and
τ is a temperature hyperparameter. The ground-truth simi-
larity score q is 1 and 0 for positive and negative pairs, re-
spectively. The symmetric video-text constrastive loss used
to train ActionCLIP on the source dataset is defined with
the Kullback-Leibler (KL) divergence as:

LActionCLIP =
1

2
E(XS,lS)∼DS [KL(p|q) + KL(q|p)] (3)

3.2. AutoLabel Framework

The main task of the proposed AutoLabel framework
is to equip the ActionCLIP with zero-shot detection capa-
bilities such that the resulting framework can be used in
OUVDA, without any oracle knowledge about the target-
private class names YU. To this end, AutoLabel relies
on a series of four sub-modules: (i) Attribute extraction is
in charge of extracting a set of frame-level attributes (e.g.,
actors and objects) depicted in a video frame (see Fig. 2b);
(ii) the second sub-module (see Fig. 2c) uses the predicted
attributes to construct a set of candidate labels for the tar-
get domain that correspond to different semantic categories;
(iii) Attribute matching sub-module (see Fig. 2d) further
reduces the redundancy in the candidate label names that
are duplicates of the known shared class names YS; and
(iv) Pseudo-labelling (see Fig. 2e) sub-module then uses

11507



the shared and candidate target-private class names to reject
the target-private instances. Next we elaborate each sub-
module of AutoLabel in detail.
3.2.1 Attribute Extraction

As discussed in Sec. 1, our automatic labelling approach is
motivated by the fact that actions are often times described
by the objects and actors in a video. Thus, modelling the
attributes alone and constructing the candidate label names
from such attributes can suffice to reject target-private in-
stances, which is one of the two main goals in OUVDA. We
use an off-the-shelf image captioning model ViLT [31] and
prompt it in a way to obtain a set of attributes per frame.

Specifically, we give to the ViLT model a video frame
xT
j and a prompt z = “There is a [MASK], a

[MASK] and a [MASK]”. The model outputs a set
of most probable words for the m masked tokens as:

A(xT
j) = ViLT(xT

j , z) (4)

where A denote a set of attributes with m = card(A). As an
example in the Fig. 2b, the ViLT predicts m = 3 attributes:
“horse”, “person” and “fence” corresponding to the
three masked tokens in the prompt z.

In a similar spirit, ZOC [16] used an image captioning
model to generate attributes for enabling zero-shot predic-
tion. However, we differ from ZOC in the following ways:
(i) ZOC addresses image classification whereas we tackle
action recognition, (ii) ZOC treats each attribute as a can-
didate class, while we create compositional candidate class
names by combining multiple attributes. This is crucial in
action recognition because action names arise from the in-
teraction of objects and actors; and (iii) Unlike us, ZOC
does not handle the redundancy caused by duplicate candi-
date label and shared class names. Next we describe how
AutoLabel combines attributes to create candidate action
label names and how such redundancies can be eliminated.
3.2.2 Discovering Candidate Classes

As mentioned above, an action label name is a product of
the interaction between object(s) and actor(s). For instance,
the action label “ride horse” depicts an interaction be-
tween a “horse” and a “person”. If the attributes in A
are treated as candidate labels in isolation, like ZOC, then
for a video of horse riding the cosine similarity between
the visual and text representations of both “horse” and
“person” text will be high. Moreover, there can be other
distractor attributes such as “fence”, which if present in a
frame, will also elicit high response from CLIP. In order to
uniquely model the true label “ride horse” we propose
the following strategy.

First, we use the video encoder GV to cluster all the tar-
get videos of DT into C target clusters, which ideally should
represent semantic categories. Note that we do not assume
a priori knowledge about the true cardinality of |YU| and

we set |C| > |YS|. In details, we use the standard clustering
algorithm k-means [37] that takes as input a set of the video-
level features vT = GV (X

T) and assigns them to C distinct
centroids µc, with the cluster assignment for the ith video
sequence given as yi ∈ {0, 1}|C|. Next, we construct a his-
togram per target cluster (see Fig. 2c), by using all the at-
tributes Λc,T = {A(xT)|xT ∈ XT

ŷc,T ,XT ∈ DT} associated
to a target cluster c, where ŷc,T = arg minc∈C ||µc − XT||.
Note that this step is carried out at the beginning of each
training epoch.

We expect the most frequent attributes associated to a
cluster to be the most salient and descriptive of the ac-
tion. As shown in Fig. 2c, in the “ride horse” clus-
ter, “horse” and “person” will be the most frequent at-
tributes, and the rest will lie in the tail of the distribution.
We filter the t most common and relevant attributes in Λc,T

to obtain Λ̄c,T = tfidf(argtopk(Λ
c,T)). Finally, we con-

catenate the attributes in Λ̄c,T to form the candidate label:

lcand,T
c = Λ̄c,T

1 || . . . ||Λ̄c,T
t (5)

where ·||· represent the concatenation operation separated
by a space. Details about the tfidf(·) operator is provided
in the Supp Mat. Since, the target is unlabelled, we can not
yet distinguish the shared candidate labels from the target-
private ones. Thus, to identify the target-private instances
we need a mechanism to tell apart the target-private class
names, which we describe next.
3.2.3 Attribute Matching

The attribute matching step is in charge of finding the can-
didate label names that correspond to the target-private
classes. To this end, we simply find the candidate label
names in Ycand,T = {lcand,T

1 , . . . , lcand,T
|C| } that correspond to

the shared label names in the source YS. This will essen-
tially leave us with the candidate target-private label names
that have no match with the source (see Fig. 2d).

In details, we repeat the sub-module described
in Sec. 3.2.2 on the source samples to obtain the set of at-
tributes Λ̄lS , where lS is a source label name. Then we cre-
ate a similarity matrix S ∈ RK×|C|, where an entry si,j
in S denotes how similar a ith source label name lSi is to a
jth candidate label name lcand,T

j , and is formally defined as:

si,j = sim( Λ̄lSi , Λ̄j,T ) (6)

attributes of ith source label

attributes of jth target label

where sim(·, ·) is a scoring function that computes a simi-
larity score based on the common attributes between the two
sets and their occurrences. More details about the sim(·, ·)
can be found in the Supp Mat. If the score is higher than a
threshold γ, the two sets are considered as matched, and the
jth target candidate label is discarded. After this threshold-
ing step, the candidate labels in Ycand,T that are not matched
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with any of the source labels become the candidate target-
private label names, such that Ypriv,T ⊂ Ycand,T.

3.2.4 Conditional Alignment

After the attribute matching, we have an extended label set
YAutoLabel = YS ∪ Ypriv,T, which comprise of the shared
labels YS and the candidate target-private labels Ypriv,T. The
CLIP is now equipped to detect target-private instances.
Specifically, for a target sample XT we compute the pre-
dicted label (see Fig. 2e) as:

l̂ = arg maxl∈YAutoLabel

exp(cos(XT, l)/τ)∑|YAutoLabel|
j=1 exp(cos(XT, lj)/τ)

(7)
where the XT is considered as a target-private if l̂ ∈ Ypriv,T.

To align the shared classes of the two domains we resort
to a simple conditional alignment strategy with the usage
of pseudo-labels computed using Eq. (7). In practice, we
extract the top-k% most confident pseudo-labels per pre-
dicted class and backpropagate the supervised ActionCLIP
loss in Eq. (3) for the pseudo-labelled target samples. Be-
sides the shared classes, this loss also promotes discrimina-
tion among the target-private classes as gradients are also
backpropagated corresponding to the discovered candidate
target-private classes Ypriv,T. This is indeed promising from
the open world recognition point of view because the target-
private samples are assigned to their respective semantic
categories, instead of a single “unknown” category.

4. Experiments
Datasets and Settings. We evaluate our proposed method
and the baselines on two benchmarks derived from the
datasets HMDB [33], UCF101 [50] and Epic-Kitchens [13],
for the OUVDA task. The first OUVDA benchmark is the
HMDB↔UCF, introduced by Chen et al. [8], that com-
prises action categories, where six of them are shared be-
tween the two domains and the remaining six are target-
private. The second benchmark is the Epic-Kitchens (EK)
that is composed of egocentric videos from three kitchen
environments (or domains D1, D2 and D3). We extend the
closed-set UVDA EK benchmark, used in [30, 42], to the
OUVDA scenario where there are eight shared action cate-
gories and all the remaining ones in each kitchen environ-
ment are considered as target-private. The statistics of the
two benchmarks are provided in the Supp Mat.
Implementation details. As discussed in the Sec. 3.1, we
employ the network architecture from ActionCLIP [55],
which is composed of transformer-based video and text en-
coders. In particular, the video encoder contains a ViT-
B/32 vision transformer, which is a pre-trained CLIP en-
coder [45], while the temporal transformer is initialized
from scratch. The label representations are obtained with
a 512-wide transformer containing 8 attention heads.

We extract five attributes (m = 5) from the pre-trained
image captioning model ViLT [31], and set the number of
attributes t in a candidate label to 5 and 2 for HMDB↔UCF
and EK, respectively. To train our framework, we used
AdamW optimizer [39], with a learning rate of 5 × 10−5

and a weight decay rate of 0.2. The models were trained for
20 epochs using a total mini-batch size of 96. Each training
video sequence is composed of randomly sampled r = 8
frames, each of resolution 224 × 224.
Evaluation Metrics. We evaluate the performance of the
models on the target dataset using standard open-set met-
rics, as in [8]. In particular, we report: the ALL accuracy
which is the percentage of correctly predicted target sam-
ples over all the target samples; the closed-set OS∗ accu-
racy which computes the averaged accuracy over the known
classes only; the UNK recall metric which denotes a ratio
of the number of correctly predicted unknown samples over
the total number of unknown samples in the target dataset;
and HOS is the harmonic mean between OS∗ and UNK
metrics, i.e., HOS = 2 × OS∗×UNK

OS∗+UNK . As the HOS takes into
account both the closed and open-set scores, it is consid-
ered as the most meaningful metric for evaluating open-set
algorithms [3, 8, 46].

4.1. Comparison with the State of the Art

Baselines. We compare our AutoLabel with CEVT [8],
an existing state-of-the-art method for OUVDA. However,
note that CEVT uses ResNet-101 [25] (pre-trained on
ImageNet-1k) as a backbone for extracting frame-level fea-
tures, which is weaker w.r.t. the CLIP pre-trained backbone
used by AutoLabel. To be fairly comparable, we create a
baseline CEVT-CLIP that replaces the ResNet-101 back-
bone of CEVT with the stronger CLIP vision encoder.

Additionally, we introduce few more baselines for OU-
VDA that use the representation power of CLIP, but without
the a priori knowledge about the true target-private label
set names. These baselines differ by how the target-private
instances are rejected: (i) the ActionCLIP baseline that re-
jects target-private instances by thresholding the similarity
values computed using the shared class names, (ii) the Ac-
tionCLIP-ZOC baseline implements the target-private re-
jection mechanism of ZOC [16]; and (iii) the ActionCLIP-
Oracle that assumes the knowledge of the true target-private
label set names, as described in [19]. Note that all these
baselines then fine-tune on the pseudo-labelled target data,
similar to our proposed AutoLabel framework.

For the HMDB↔UCF adaptation scenario we also in-
clude the baselines reported in [8], which are closed-
set [7,21,38] and open-set methods [48] adapted to the OU-
VDA setting, accordingly.
Results on HMDB↔UCF. In Tab. 1 we report the results
obtained on the HMDB↔UCF benchmark. We separately
report the baselines that use ResNet101 and CLIP back-
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Method Backbone HMDB→UCF UCF→HMDB
ALL OS∗ UNK HOS ALL OS∗ UNK HOS

DANN [21] + OSVM [26]

ResNet101 [25]

64.6 62.9 74.7 68.3 66.1 48.3 83.9 61.3
JAN [38] + OSVM [26] 61.5 62.9 73.8 67.9 61.1 47.8 74.4 58.2
AdaBN [35] + OSVM [26] 62.9 58.8 73.3 65.3 62.9 58.8 73.3 65.3
MCD [47] + OSVM [26] 66.7 63.5 73.8 68.3 66.7 57.8 75.6 65.5
TA2N [7] + OSVM [26] 63.4 61.3 79.0 69.1 65.3 56.1 74.4 64.0
TA3N [7] + OSVM [26] 60.6 58.4 82.5 68.4 62.2 53.3 71.7 61.2
OSBP [48] + AvgPool 64.8 55.3 85.7 67.2 67.2 50.8 84.5 63.5
CEVT [8] 70.6 66.8 84.3 74.5 75.3 56.1 94.5 70.4
CEVT-CLIP [8]

CLIP [45]
70.9 68.0 92.5 78.4 78.3 61.2 92.1 73.5

ActionCLIP [55] 79.7 81.1 94.3 87.2 84.8 75.7 91.5 82.9
ActionCLIP-ZOC [16] 74.7 84.0 68.5 75.5 85.4 75.5 93.2 83.4
AutoLabel (ours) 79.7 82.5 94.3 88.0 86.0 82.9 88.2 85.5
ActionCLIP-Oracle [19] CLIP [45] 93.3 93.7 100.0 96.7 92.8 86.5 98.3 92.0

Table 1. Comparison with the state-of-the-art on the HMDB↔UCF benchmark for OUVDA. The best performances of the CLIP-based
and ResNet-based methods are shown in bold and underlines, respectively. The Oracle performance is shown in italics. Using CLIP as
backbone greatly improves the HOS scores. The target-private rejection with our AutoLabel outperforms all the baseline methods

Method
Epic-Kitchens

D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3 Avg

CEVT [8] 13.2 14.7 8.4 16.0 8.1 11.3 12.0
CEVT-CLIP [8] 13.2 17.4 13.3 14.3 10.2 10.1 13.0
ActionCLIP [55] 31.3 28.3 38.1 43.4 29.0 24.2 32.4
ActionCLIP-ZOC [16] 25.9 26.8 31.7 41.3 28.0 32.1 30.9
AutoLabel (ours) 34.8 38.3 44.1 50.4 31.9 29.8 38.2

ActionCLIP-Oracle [19] 33.2 33.1 37.1 44.6 24.2 28.9 33.5

Table 2. Comparison with the state-of-the-art on the Epic-Kitchens benchmark for OUVDA. The HOS scores are reported for all the
methods. The best performances are shown in bold. Overall, our AutoLabel surpasses all the baselines, including the Oracle

bones as feature extractors. It is evident that the usage of
CLIP-based backbone can significantly improve the HOS
scores over the baselines that use ResNet101 as feature
extractor. For e.g., by changing the backbone alone, the
CEVT-CLIP is +3.9 and +3.1 points better than the CEVT
for the settings HMDB→UCF and UCF→HMDB, respec-
tively. This highlights the importance of the LVMs in clos-
ing the domain gap for the OUVDA task.

Next, we demonstrate that OUVDA can further bene-
fit from CLIP by successfully rejecting the target-private
instances with our AutoLabel, where we observe +9.6
and +12.0 points improvement over CEVT-CLIP on the
two settings, as far as the HOS scores are concerned. Our
AutoLabel also surpasses the ActionCLIP baseline in
HOS score (by +0.8 and +2.6 points), which does not model
the unknown classes and uses a threshold-based target-
private rejection with the closed-set classifier. Interest-
ingly, the ActionCLIP-ZOC baseline, which indeed mod-
els the unknown classes using externally trained image-
captioning model like AutoLabel, exhibits inferior per-
formance than AutoLabel on both the occasions (-12.5
and -2.1 points). This emphasizes the importance of care-
fully modelling the candidate target-private label names for
the action recognition task, which is lacking in ZOC [16],
as previously discussed in Sec. 3.2.1.
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Figure 3. Impact of varying the number of target clusters C.

Finally, when the oracle target-private label set names
are available, CLIP demonstrates even stronger perfor-
mance, as shown in the last row of Tab. 1. However,
when such privileged information about target datasets is
not available, our AutoLabel can effectively close the
gap, reaching closer to the upper bound performance.

Results on Epic-Kitchens. In Tab. 2 we report the re-
sults obtained on the more challenging Epic-Kitchens (EK)
benchmark. Due to the lack of space we only report the
HOS scores for the six directions of EK. Detailed met-
rics can be found in the Supp Mat. The observations
on the EK benchmark is consistent with the trends ob-
served in the HMDB↔UCF benchmark. In particular,
the ActionCLIP baseline achieves a much superior per-

11510



1 2 3 4 5

75

80

85

90

95

100

t (# attributes in label name)

H
O

S
(%

)

HMDB → UCF

AutoLabel

2 3 4 5 6 7 8

20

25

30

35

40

45

50

t (# attributes in label name)

H
O

S
(%

)

Epic Kitchens (D1 → D2)

AutoLabel

Figure 4. Impact of varying the number of attributes t in candi-
date label name.

formance (+20.4 points) over the existing prior art CEVT.
Moreover, when ActionCLIP is powered by our proposed
AutoLabel, the average HOS score further improves
from 32.4 to 38.2. Note that the low overall performance
on EK by every method hints at the fact that the actions
depicted by the egocentric videos in EK are far more chal-
lenging. Despite the complexity in such actions, our pro-
posed AutoLabel sets a new state-of-the-art performance
in OUVDA, surpassing the competitors by a large margin.

Contrary to our previous observation, the ActionCLIP-
Oracle baseline is outperformed by our AutoLabel. We
hypothesize that the true target-private label names in the
EK (e.g., flatten) are quite generic and not descriptive
enough to reject the target-private instances. Whereas, our
AutoLabel models the objects associated with such ac-
tions (e.g., “rolling pin” for flatten), leading to an
improved disambiguation of such action categories.

4.2. Ablation Analysis

Number of target clusters. Given the significant role of the
clustering step for semantically modeling the target domain,
we show in Fig. 3 the impact of varying the number of tar-
get clusters C on the HOS scores for the HMDB→UCF and
EK (D1 → D2) settings. The dashed red line indicates the
ground truth number of target categories, i.e., |C| = |YT|.
We can observe that, in both cases, the HOS peaks for val-
ues of |C| in the range 35-45, which are higher and lower
than the actual number of target classes for HMDB→UCF
and Epic-Kitchens, respectively.

For HMDB→UCF these findings suggest that due to the
wide diversity of actions, the discrimination of the frame-
work is increased by modeling the target domain at a higher
granularity. Whereas, for the EK, due to visual similarity of
multiple actions, the discovered granularity in the label set
is far less excessive than the ground truth action categories.

Number of tokens in the candidate target-private labels.
In Fig. 4 we ablate on the number of attributes t used to
build the final target-private label candidate. In line with our
hypothesis in Sec. 3.2.1, the ablation suggests that the can-
didate target labels composed by 2-3 attribute tokens to be

a reasonable choice for effectively describing the candidate
target action label names. In particular, when the value of t
increases significantly, the HOS scores for both the bench-
marks show a steady decline due to the overcharacterization
of the action labels with spurious attributes.
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Figure 5. Impact of varying the number of pseudo-labels.

Number of target pseudo-labels. Finally, in Fig. 5 we
analyse the impact of the number of most confident pseudo-
labels employed in order to fine-tune the model on the un-
labelled target domain. In both the considered settings, we
notice that the optimal percentage of pseudo-labels to be
used for target fine-tuning lies around 20%. Further addi-
tion of pseudo-labels leads to reduced performance, possi-
bly due to the accumulation of noisy target pseudo-labels.

Limitations
The proposed AutoLabel models the target-private

label name by indirectly modelling the objects and ac-
tors depicted in an action. Currently it can not disam-
biguate among different actions that involve the same ob-
jects and actors. For instance, “polo”, “equestrian”
and “skijoring” will all be described by the same can-
didate target-private label “horse person”. Exploring
the relationships between the actors and objects, along with
their states, remains as a future work to overcome this limi-
tation.

5. Conclusions
In this work we presented AutoLabel, a CLIP-based

automatic labelling framework for addressing the open-
set unsupervised video domain adaptation. Our proposed
AutoLabel automatically discovers the candidate target-
private class label names and extends the shared class names
in order to equip CLIP with zero-shot prediction capabili-
ties, which is indeed necessary for rejecting target-private
instances. Empirically we show that AutoLabel enabled
CLIP models bode well for the OUVDA task due to their
rich representations and zero-shot detection capabilities.
Acknowledgment. This work was supported by the
AI@TN project, the EU H2020 project SPRING funded
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