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Abstract

Contrastive Language-Image Pre-training, benefiting
from large-scale unlabeled text-image pairs, has demon-
strated great performance in open-world vision understand-
ing tasks. However, due to the limited Text-3D data pairs,
adapting the success of 2D Vision-Language Models (VLM)
to the 3D space remains an open problem. Existing works
that leverage VLM for 3D understanding generally resort
to constructing intermediate 2D representations for the 3D
data, but at the cost of losing 3D geometry information.
To take a step toward open-world 3D vision understand-
ing, we propose Contrastive Language-Image-Point Cloud
Pretraining (CLIP?) to directly learn the transferable 3D
point cloud representation in realistic scenarios with a
novel proxy alignment mechanism. Specifically, we exploit
naturally-existed correspondences in 2D and 3D scenarios,
and build well-aligned and instance-based text-image-point
proxies from those complex scenarios. On top of that, we
propose a cross-modal contrastive objective to learn se-
mantic and instance-level aligned point cloud representa-
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Figure 1. Illustration of our open-world recognition results. Benefiting from our CLIP?, the 3D representation is aligned to the open-
world language representation, which enables flexible zero-shot transfer. Best viewed in colors.

tion. Experimental results on both indoor and outdoor sce-
narios show that our learned 3D representation has great
transfer ability in downstream tasks, including zero-shot
and few-shot 3D recognition, which boosts the state-of-the-
art methods by large margins. Furthermore, we provide
analyses of the capability of different representations in real
scenarios and present the optional ensemble scheme.

1. Introduction

Powerful 3D point cloud representation plays a cru-
cial role in various real-world applications, e.g., 3D object
recognition and detection [10, 20, 31, 40, 44]. Compared
to 2D images, 3D point cloud provides specific informa-
tion like accurate geometry that is robust to illumination
changes. However, current methods [25,40] that learn 3D
representations generally rely on the predefined number of
object categories and require plenty of labor-intensive an-
notations. Those learned 3D representations are insufficient
for safety-critical scenarios like self-driving which includes
a long-tail class distribution far beyond the predefined tax-
onomy. Therefore, it is highly demanded to learn a transfer-
able 3D representation equipped with zero-shot recognition
ability in vocabulary scalable real-world scenes. Figure 1
shows an open-world recognition example by our CLIP? in
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outdoor and indoor scenes, where the 3D objects can be
classified with the correlation alignment between 3D repre-
sentations and open-world vocabularies.

The critical ingredient of open-world understanding is
that the models learn sufficient knowledge to obtain general
representations. To achieve this, recent Vision-Language
Models (VLM) [14, 27, 38] leverage Internet-scale text-
image pairs to conduct vision-language pretraining, which
facilitates transferable 2D representation and demonstrates
promising performance in 2D open-vocabulary tasks. How-
ever, 3D vision-language pretraining remains unexplored
due to the limitation of existing 3D datasets in diversity and
scale compared to the massive data sources in 2D counter-
parts [14,15,27,38]. Though some recent works [12,13,43]
try to avoid this problem by transferring the pretrained 2D
VLM into the intermediate representation including pro-
jected image patches [12, 18] or depth maps [1,43], those
representations suffer from the loss of 3D geometric infor-
mation and limited viewpoints under realistic scenarios. Es-
pecially the camera images are only sometimes available
due to the sensor failure in 3D scenes. We believe the 3D
representation based on original point cloud data retains
most information and is the optimal solution for 3D real
world understanding, which requires a rethink of learning
the transferable 3D representation under realistic scenarios.

To this end, we propose a Contrastive Language-Image-
Point cloud Pretraining framework, short for CLIP2, which
directly aligns 3D space with broader raw text and advances
the 3D representation learning into an open-world era.
Our learning process can be decomposed into two stages:
Firstly, we introduce a Triplet Proxy Collection to alleviate
the limitation of accessible pretraining data by construct-
ing language-image-point triplets from real-world scenes.
Since the large-scale realistic 3D datasets for outdoor driv-
ing [2,19] and indoor scenarios [9,32] are collected in open-
world, it contains huge amounts of realistic objects that
vary in semantics and diversity. Thus we consider them
as potential pretraining data sources without extra human
supervision. Specifically, we propose “Proxy” instances as
the bridges between language descriptions, 2D images and
3D point clouds. Enabled by a well-aligned VLM, a scal-
able caption list and the geometry transformation between
2D and 3D, we automatically create more than 1 million
triplets to facilitate pretraining. Secondly, we further pro-
pose a Cross-Modal Pretraining scheme to jointly optimize
the feature space alignments of three modalities, i.e.point
cloud, language and image. It contains both the contrastive
learning objective of semantic-level text-3D correlation and
instance-level image-3D correlation, which contributes to
better transferability of learned 3D representation.

We study the transferable capability of CLIP? by bench-
marking the zero-shot recognition performance on four pop-
ular indoor and outdoor real-world datasets, and find a sig-
nificant improvement over current methods, achieving Top1
accuracy 61.3% on SunRGBD [32], 43.8% on ScanNet [9]),

28.8% on nuScenes [2] and 56.0% on ONCE [19]. For a
fair comparison with existing methods [1, 13, 36, 43], we
conduct zero-shot and few-shot classification on single ob-
ject dataset ScanObjectNN [34] and find consistent dom-
inance, 16.1% relative improvement on zero-shot classifi-
cation over previous state-of-the-art method [13]. To vali-
date the vocabulary-increasing ability of CLIP?, we report
the quantity results and visualizations to show the improved
discovery of the long-tail categories. Moreover, we make
ablations and analisis on different representations, and in-
vestigate ensembling alternatives to merge complementary
knowledge of all available representations in realistic appli-
cations. Our contributions can be summarized as follows:

* We propose a novel CLIP? framework that aligns 3D
space with open-world language representation, facili-
tating zero-shot transfer in realistic scenarios.

* We present a Triplet Proxies Collection scheme in real-
world scenes, which alleviates the shortage of text-3D
data sources and facilitates the pretraining methods.

* CLIP? jointly optimizes the correlation alignment be-
tween point cloud, language and image by proposed
cross-modal pretraining mechanism, which enhances
the transferability of learned 3D representation.

e Our CLIP? achieves the state-of-the-art zero-shot
transfer performance on 5 datasets (indoor/outdoor
scenes and single-object) and shows quality results on
vocabulary-increasing discovery in real world.

2. Related Work

Vision-Language Model. Large vision language models
(VLM) [14,15,27,38] have demonstrated successful perfor-
mance in downstream zero-shot tasks with the learned trans-
ferable 2D representations. CLIP [27] and ALIGN [14]
push the limit by collecting Internet-scale image-text pairs
and then learning the correlation alignment between image
and language feature space with contrastive pretraining ob-
jectives. Those models can be directly transferred to zero-
shot 2D recognition and achieve impressive results. Recent
DetClip [38] learns to align image patches to test phrases
after pretraining under hybrid supervision from detection,
grounding and image-text pair data, which extends the abil-
ity to localize open-vocabulary 2D proposals in images. In
this paper, we attempt to transfer the open-vocabulary abil-
ity of pre-trained VLM to the 3D domain, making language
applicable to zero-shot point cloud recognition.

Zero-shot/Open-world Learning in 3D. Recognizing 3D
objects with a large vocabulary is necessary for safety-
critical autonomous driving and robotic tasks, yet remains
under-explored. Cheraghian et al. [5—8] first attempt to as-
sociate PointNet [25] feature with category semantic infor-
mation via a projection function, and separately proposed
an unsupervised skewness loss [5] to mitigate the hubness
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Figure 2. Overview of CLIP? framework. The main components contain two parts, the Triplet Proxy Collection and the Cross-Modal
Pretraining. The defined Triplet Proxy set Dyroyy consists of language captions X7, corresponding image instances X’ and raw 3D point
cloud instances X7, which come from the free data source under realistic scenarios without any labeling labor. On top of that, we
pretrain a point cloud encoder E¥ with the cross-modal contrastive learning objective. Equipped with CLIP?, the learned 3D point cloud
representation F'* is well aligned to the language representation, which facilitates downstream zero-shot 3D transfer tasks in the real world.

problem. The transductive case [0] is discussed in which
extends [5] using a triplet loss. Notably, the above works
conduct experiments on synthetic datasets and need to di-
vide datasets into “seen” categories as training data and “un-
seen” categories as testing data. Thus they are not suitable
for realistic scenarios due to the domain gap between syn-
thetic and real-world data, as well as the limited vocabulary-
increasing ability. Recently, inspired by the success of
VLMs [14,27] in 2D tasks, some works [13, 43] propose
to transfer the zero-shot recognition ability of pretrained
CLIP [27] into 3D area. PointCLIP [43] directly projects
point cloud into multi-view depth maps as image-like data
input for pretrained CLIP to make classification predictions.
While CLIP2Point [13] trains an image-depth embedding
on ShapeNet [39] to better align the depth representation to
the pretrained image space of CLIP. However, depth maps
lost plenty of geometry information of the original point
cloud data structure, resulting in poor performance espe-
cially in realistic scenarios. By contrast, we aim to learn
transferable 3D representation based on the original point
cloud data structure in realistic scenarios.

3D Representation Learning. Much progress has been
made in learning a comprehensive 3D representation in an
unsupervised manner. Most works [1, 16,17,23,30,37,41,

] follow the paradigm that conducts pretraining on unla-
beled datasets and then finetunes on the limited downstream
annotations. Though the improved transferability of 3D rep-
resentation, they can not be directly transferred to zero-shot
tasks with open-world vocabularies. In this work, we con-

duct language-image-point cloud pretraining, which learns
transferable 3D representation aligned to open-vocabulary
language space to facilitate the zero-shot transfer.

3. Method

In this section, we introduce CLIP? to learn a transfer-
able 3D point cloud representation with arbitrary category
recognition ability under realistic scenarios, illustrated in
Figure 2. We will first present the Triplet Proxy Collec-
tion in Section 3.1, which utilizes a pretrained VLM and
geometric transformation to obtain language-image-point
triplets from real-world scenes. Then we will elaborate
Cross-Modal Contrastive Pretraining mechanism in Sec-
tion 3.2, which jointly optimizes the alignment correlations
between language, image and point cloud feature space.

3.1. Triplet Proxy Collection

Inspired by the significant performance of 2D VLMs
on open-vocabulary tasks, we aim to develop 3D vision-
language pretraining to facilitate category-increasing capac-
ity for real-world scenarios. However, the core challenge
is the shortage of pretraining data. Compared to the 2D
vision-language pretraining framework CLIP [27], which
takes more than 400M image-language pairs from the In-
ternet, the largest 3D single-object dataset ShapeNet [39]
only contains S0K CAD models with 55 categories. In ad-
dition to the insufficiency of data scale, pretraining on such
synthetic data fails to transfer well in the real world due
to the huge domain gap. Enlightened by the recent emer-
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Figure 3. Illustration of three representation modals of two 3D
objects examples under indoor and outdoor scenarios.

gence of large-scale point cloud datasets collected in in-
door [9,32] and outdoor scenarios [2, 19], we observe that
those naturally-collected datasets potentially contain vast
amounts of open-world objects that vary in semantics and
diversity. Considering the data collection itself is cheap
except for laborious annotation, we novelly take leverage
of those available datasets without human annotations as a
practical yet effective pretraining data source.

Specifically, given the realistic scene data & =
{(P,,1,)'SL}, where P, € RN?*3 and I, € RNixHxWx3
are corresponding 3D point clouds and images of scene s,
we propose a novel concept, Proxy, as the bridge between
language, image and 3D point cloud. As illustrated in Fig-
ure 2, equipped by those proxy instances, we can automat-
ically collect a massive number of language-image-point
cloud pairs Dproxy in the format of proxies under open-world
scenes. We detail the process as follows.

Language Proxy. We set the language proxies X* € R as
a raw text list from the 2D open-world dataset [1 1], where
V' = 1206 denotes the vocabulary size of language proxies.
Image Proxy. Next, we obtain the image proxies X' by
an open vocabulary detector DetCLIP [38], denoted as M,
which is trained with open-world data and performs open-
set detection. Concretely, given language proxies X' and
input scene image I, we extract corresponding image pro-
posals as image proxies X! with M by the similarity be-
tween input language embeddings and proposal features as

{(X}seis) = M({ILs}seis, X7). (1)

3D Proxy. We exploit the naturally-existed geometry rela-
tions between 2D and 3D scenes to obtain 3D proxies X,
which consists of point cloud instances corresponding to
image proposals in X7 we simplify the geometry trans-
formation as G(-) and formulate the relations as:

X7 =G(x]). @
Detailedly, for indoor scenes equipped with RGB-D sen-
sors, we first remove the background pixels by unsuper-
vised segmentation algorithm [28] for each image proxy
X SI ;» i € |XL|. Since depth information is known, we
then transform the segmented pixels from uwvd coordinate
X1t € R™? to ayz coordinate X € R"3 asa 3D
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Figure 4. Comparison of different pretraining strategies. (a)
CLIP aligns image and language embedding space [27] as Lz
based on large-scale text-image pairs. (b) PointClip [27] aligns
projected depth map to CLIP language space as Lrp. (c¢)
Clip2Point aligns depth map to CLIP image space as L;p. (d)
our CLIP? aligns original 3D point cloud to both CLIP language
space and image space via cross-modal objective Lcoas.

point cloud proxy with the given camera parameters. For
outdoor scenes captured by LiDAR sensors, we first cre-
ate a 3D frustum for each image proxy by extruding the 2D
image proposal into 3D space following [22,24]. Then we
conduct DBSCAN algorithm [29] within frustum and select
the point cloud cluster as the point proxy X »*¥?,

Eventually, we construct Triplet Proxy Dproxy =
(xT xI xF }\ill by combining corresponding language
proxies X”, image proxies X' and 3D proxies XP | where
X/'= {Xf}‘3'1 and XP={XP}l 220K and 1.4M proxy
triplets are formed for indoor and outdoor scenes, respec-
tively. More details can be found in the appendix.

3.2. Cross-Modal Contrastive Pretraining

With the triplet proxies Dyroxy, a straightforward pre-
training objective is forcing the alignment between the em-
bedding spaces of point cloud X/ and language X! from
scratch. However, it might not promise good transferabil-
ity of learned representation, since the number of language-
image-point pretraining data triplets remains two orders of
magnitude smaller than the language-image pairs adopted
by CLIP [27] and the vocabulary size is much more lim-
ited. Therefore, we design to learn the correlation alignment
based on the pretrained embedding space of CLIP.

The comparison of current pretraining strategies [13,43]
is illustrated in Figure 4, which is a series of 3D vari-
ants of CLIP. Notably, both existing methods exploit pro-
jected depth map as the intermediate representation of point
cloud, which are respectively learned to align to language
space [43] and image space [13]. Intuitively, as illustrated
in Figure 3, depth representation lost plenty of geometry in-
formation compared to the original point cloud, especially
in outdoor scenarios. Moreover, images are sometimes un-
available for 3D objects. Thus we conduct pretraining on
original 3D point cloud data as an optimal representation.

Toward learning more transferable representation, we
introduce a cross-modal contrastive learning objective to
jointly optimize the correlation alignment across lan-
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guage, image and point cloud, including Semantic-Level
Language-3D Alignment and Instance-Level Image-3D
Alignment. Specifically, the overall architecture of CLIP2,
shown in Figure 2, contains language encoder Ej , point
cloud encoder Eg’ and visual encoder Eér , which respec-
tively embed the triplet proxies into text feature f7 &
RI*CET | point cloud feature f € R P and image fea-
ture f1 € RI*Cr where C is the embedding dimension.

Semantic-Level Language-3D Alignment. In order to in-
herit the open-world recognization ability from pretrained
CLIP [27], we align the point cloud feature f© with text
embedding f7 from well-trained CLIP with Language-
Point Proxy { X[, X'} input. We replace classname in the
prompts, like “point cloud of a { classname } > with raw
text in proxy X/ as language sentences. The core idea is
to drive the feature centroids of 3D instances and the corre-
sponding text prompt closer. We compute the loss function
of between of language proxy and point cloud proxy as:

. exp(f - fF/7)
exp(f- f/7) + >

JeN,XT#XT

=t oL T

3
where N is the mini-batch size, 7 is the temperature co-
efficient. Within a training mini-batch, the language-3D
alignment objective L(7T, P) can be described as:

LT, P) =+ ST IG,T, P). @

i€N

Instance-Level Image-3D Alignment. In addition to the
alignment between semantic language and 3D proxy in-
stances, we further introduce the contrastive alignment be-
tween instance-wise image proxy and 3D proxy instances.
Note that the instance-aware visual concept has been well-
studied in the embedding space of pretrained CLIP. We be-
lieve instance-sensitive learning can contribute to further
correlation learning and benefits to the transferability of
learned 3D representation. The contrastive aligned objec-
tive L(I, P) across point cloud and image is formulated as:

eXp(fiI ) sz/T)

LR = 2108 ST TP+ > explT - JT77)
JEN,j#i

)

L(I,P) = % > 13,1, P). (6)

i€N
Finally, we obtain the resultant cross-modal contrastive
learning objective Lo (T, I, P) as the combination of
L(T, P) and L(I, P), where both alignments of semantic-
level text-3D correlation and instance-level image-3D cor-
relation are injected:

Loy (T,I,P)=ML(T,P)+ M L(I,P), 7)

where the hyper-parameters A; and Ay are both set to 0.5.

4. Experiment

In this section, we evaluate CLIP? on realistic indoor and
outdoor scenarios. We report the zero-shot transfer results
on various datasets [2,9, 32—34] and make further analysis
on the designs of pretraining strategy.

4.1. Zero-shot Transfer

Setting.  After pretraining, natural language is applied
to reference learned 3D representation to enable follow-
ing zero-shot transfer tasks. (i) Zero-Shot Recognition:
we evaluate zero-shot recognition performance for realis-
tic objects, where K category names are transferred to text
prompt “point cloud of {CLASS} ” to encode the text fea-
tures Fix € RE*C Then the classification logits are calcu-
lated with the 3D feature f© and text features as:

logits, = softmax(f/ (Fx)"). (8)

We present the results under both indoor and outdoor sce-
narios in Table 1, Table 2 and Table 5, as well as the object-
level benchmark in Table 6. (ii) Open-vocabulary recog-
nition: we enlarge the category vocabularies of ScanNet to
249 and 384 to study the open-vocabulary recognition abil-
ity in Table 3. (iii) Open-vocabulary localization: we
study the open-vocabulary localization ability by localizing
open-world 3D objects with our proxy generation process
and then classifying them with our learned 3D representa-
tion, of which the visualization is illustrated in Figure 5 and
evaluation results are reported in Table 4. Notably, we in-
vestigate representation ensembling alternatives to enable
knowledge merging of all available representations for real-
istic applications, illustrated in Table 8.

4.1.1 Indoor Scenarios

Datasets and details. We adopt the widely used indoor
3D dataset SUN RGB-D [32] as the realistic indoor sce-
nario that provides pretraining data source, a single-view
RGB-D dataset consisting of ~10K scenes. To validate the
transferability of learned 3D representation, we also evalu-
ate another popular indoor 3D dataset ScanNet [9], which
contains ~1.5K scenes of 3D reconstructed meshes. We
remove objects in ScanNet with less than 5 points, leav-
ing 384 noisy categories. For open-vocabulary recogni-
tion, we evaluate performance on the ScanNet 384-class
set and a 249-class merged set. In addition to the scene-
wise indoor dataset, we conduct evaluations on ScanOb-
jectNN [34], which collects ~3K individual realistic objects
with 15 categories and is applied in the previous zero-shot
evaluation [13,43]. During the proxy collection process,
we empirically set ¢ = 0.3 in [38] as a tradeoff between
filtering FPs and preserving TPs to generate image proxies.
Considering the occurrence frequencies of different indoor
categories vary a lot, we adopt the class balance strategy [4]
to mitigate the class imbalance. During pretraining process,
we adopt [26] as point cloud encoder and set the overall
training epoch number to 100.
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Method ‘ Avg. ‘ Bed Bookshelf Chair Desk Sofa Table toilet Bathhub Dresser Night Stand
PointClip [43] 11.5 | 0.0 94.0 0.0 00 00 147 00 0.0 6.1 0.0
Clip2Point [13] 18.6 | 10.9 20.6 643 344 138 141 262 0.0 1.4 0.0

PointClip [43] w/ TP. | 38.0 | 45.3 100.0 625 485 444 48 552 16.3 33 0
Clip2Point [13] w/ TP. | 56.9 | 78.0 87.6 362 366 647 374 821 71.5 67.6 1.2
CLIP? 61.3 | 84.0 75.5 70.7 473 755 338 862 65.3 71.8 2.4

CLIP? w/ En. 69.6 | 87.3 94.3 70.7 541 793 47.0 917 85.7 82.2 3.6

Table 1. Zero-shot recognition results in SUN RGB-D. Avg.: the mean average Topl accuracy across all categories. TP.: our Triplet

Proxy set. En.: our optional ensembling scheme for inference.

Method ‘ Avg. ‘ Cab Bed Chair Sofa Tabl Door Wind Bksf Pic Cntr Desk Curt Fridg Bath Showr Toil Sink
PointClip [43] 63 | 0.0 00 0.0 00 07 00 00 918 00 00 00 150 0.0 0.0 0.0 00 00
Clip2Point [13] 249 | 00 208 8.1 433 265 699 00 209 17 317 270 00 1.6 465 00 224 256
PointClip [43] w/ TP. | 26.1 | 557 0.0 728 5.0 5.1 1.7 00 772 00 00 517 03 0.0 0.0 403 853 492
Clip2Point [13]w/TP. | 352 | 3.0 11.8 451 276 105 615 26 719 03 336 299 47 115 722 924 861 340
CLIP? | 385|672 326 693 423 183 19.1 40 626 14 127 528 401 91 597 410 71.0 455

Table 2. Zero-shot recognition in ScanNet. Avg.

Top5 Acc. IN ouT
Method | 3415 24915, MO | yap, ARy mIoU‘ P R
(51 | 03 04 oo o1l - - -
05 | 64 70 0s1 | 130 377
cLP | 20 317 CLIP | 127 430 528 |67 874

Table 3. Recognition re- Table 4. Zero-shot localization re-
sults of vocabulary ex- sults. IN: indoor scenario SUN RGB-
pansion in ScanNet. D. OUT: outdoor scenario nuScenes.

Quantity results. For zero-shot recognition task, we take
two recent works as our baselines, i.e. PointClip [43] and
Clip2Point [13], which study the zero-shot classification
task on 3D object-level benchmarks [34,35] by leveraging
pretrained CLIP with projected depth maps. Focusing on
the real-world scenarios, we conduct comparison not only
on the realistic object-level [34] as illustrated in Table 6
but also on the scene-level datasets shown in Table 1 and
Table 2, where the evaluation follows the common classes
split in [10,44] and reports the instance Topl accuracy of
each class. As shown in tables, our CLIP? can outperform
baselines on all benchmarks by large margins. Besides, we
apply our triplet proxy generation mechanism (TP.) to base-
line methods, and achieve considerable improvements on
SUN RGB-D and ScanNet by 26.5% and 19.8% for Point-
Clip, 38.3% and 10.3% for Clip2Point. On the one hand, the
contrasts demonstrate the effectiveness of our triplet prox-
ies for open-world understanding. On the other hand, our
learned 3D representation is superior in 3D object recogni-
tion by retaining more 3D-specific information than depth
representation. Besides, we present the optional ensembling
scheme (En.) when camera images are available, which
can take advantage of multi-modal knowledge and further
boost the performance by 8.3%. To further validate the
open-vocabulary recognition ability, we conduct evaluation
on a larger category set of ScanNet in Table 3 and report
the instance Top5 accuracy, which illustrates the superior-

: the mean average Topl accuracy across all categories. TP.: our Triplet Proxy set.

ity of our CLIP? when vocabulary increases. Beyond that,
CLIP? is also equipped with zero-shot 3D localization abil-
ity by proxy generation. On indoor scenario SUN RGB-D,
we compare with a SOTA indoor 3D detector 3DETR [21]
and a recent work OV3D [18] that studies open-vocabulary
detection, where evaluation is conducted on the same “un-
seen” splitin [18]. Since CLIP? do not fit the tight bounding
boxes of point cloud instances, we estimate the maximum
bounding box of proxies and GT instances to conduct eval-
uation following the same metrics mAP55 and AR5 in [18],
as shown in Table 4. Notably, compared to baseline works
that train on “seen” 3D annotations and test on “unseen”
categories, we have no access to any 3D annotations yet
achieve comparable localization ability, which yields 5.3%
ARg5 improvement over OV3D [18]. We further evaluate
segmentation results in Table 4.

Quality results. The visualization results of CLIP? un-
der a indoor scene of SUN RGB-D [32] is shown in Fig-
ure 5(a). Our triplet proxy generation process can localize
open-world 3D objects in a point cloud scene. Moreover,
the 3D representation learned from our cross-modal pre-
training can provide more accurate classification results for
3D instances by exploiting original point cloud, which cor-
rects the mistaken ”People” prediction in image to Picture”
by considering the geometry information.

4.1.2 Outdoor Scenarios

Datasets and details. We exploit a prevalent large-scale
3D dataset nuScenes [2] as the outdoor data source and ex-
tra validate the performance on the ONCE dataset [ 19]. The
nuScenes dataset consists of ~28K frames with 10 cate-
gories, while ONCE contains 6 annotated sequences with
5 categories. Similarly, we set the e = 0.3 for image prox-
ies collection and adopt the class balance strategy [4].

Quantity results. Since the outdoor point cloud is col-
lected by LiDAR sensors, it has a wider perception range
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Method Av nuScenes ONCE
& | Car Truck Bus Ped. Bicycle Trailer C.V. Motor. Barrier T.C. | Car Cyc. Ped. Truck Bus
PointClip [43] 11.7 | 0.0 0.0 0.0 29.1 41.8 3.4 0.0 0.1 425 00 | 00 138 792 02 761
Clip2Point [13] 124 | 04 0.3 0.1 135 31.0 1.8 9.3 1.5 66.2 03 | 173 11.8 954 357 40
PointClip [43] w/ TP. | 28.3 | 18.8 0 55 740 17.9 57.0 1.9 4.5 2.1 297 1 51.8 92 998 50 468
Clip2Point [13] w/ TP. | 33.0 | 26.7 16.8 51.2 452 15.8 139 200 5.7 105 342|394 278 955 40.6 517
CLIP? ‘ 37.8 ‘ 419 413 225 403 21.1 206 248 224 173 353 ‘ 527 273 777 185 440

Table 5. Zero-shot recognition results in outdoor scenario: nuScenes (Left) and ONCE (Right). TP.: our Triplet Proxy set. Avg.: the
mean average Top1 accuracy across all categories of two benchmarks.

Plastic bag

Figure 5. Visualizations of the zero-shot localization and recognition results by CLIP? under open-world (a) indoor realistic scene [32]
and (b) outdoor scenes [2]. Notably, the whole pipeline of CLIP? not only has no access to human annotations, but also enables the
open-world vocabularies beyond groundtruth annotations, such as "Picture’ in (a) and "Plastic bag’, *Tire’ in (b). Best viewed in colors.
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Method ‘ A ‘

PointNet++ [25] -
PointCLIP [43]

Clip2Point [13] | 23.3 - - - - -
CrossPoint [ 1] - - - - 58.7+1.8 64.6+1.2
CLIP? ‘ 39.1 ‘ 51.3 59.6 625 ‘ 60.6+2.5 66.3+3.2
Table 6. Zero-shot and Few-shot classification results on

ScanObjectNN. ZS: zero-shot. K-way N-shot: few-shot settings.

than RGB-D but leads to sparse distribution. Thus the pro-
jected depth representation of baselines results in severer in-
formation lost, as illustrated in the second row in Figure 3.
As shown in Table 5, our CLIP? considerably outperforms
the baseline recognition results by more than 20%, and our
triplet proxies respectively boost two baselines by 9.5% and
4.8%. Additionally, we evaluate the localization ability
on the outdoor scenario nuScenes in Table 4. Due to the
lack of works that tackle outdoor open-vocabulary localiza-
tion problems, we follow classic detection accuracy metrics
Precision(P.) and Recall(R.) as evaluation metrics. Specifi-
cally, we calculate the center distance between groundtruth
bounding boxes and our 3D proxies that are predicted to be-
long to the same category as the groundtruth, and set the dis-
tance threshold as A = 2m. For those matched pairs that are
closer than A\, we count the proxies as TPs. Otherwise, for
those unmatched proxies and groundtruth, we count them

1 —__TPs ___ TPs
as FPs and FNs respectively, thus P.=55 50, Ro=15 -

As shown in Table 4, our CLIP? pipeline can provide high
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recall for outdoor objects. Since CLIP? is highly sensitive
to open-world objects and can perceive categories beyond
groundtruth list, it tends to create overmuch predictions thus
the precision is comparably low. The perception ability of
open-world objects can be viewed in Figure 5(b).

Quality results. We show off two outdoor scenes of
nuScenes [2] in Figure 5(b-1) and Figure 5(b-ii). In addition
to perceiving those common categories, our CLIP? surpris-
ingly localizes and recognizes those uncommon 3D objects
in 3D scenes such as the tires of vehicles, the plastic bag in
the hand of pedestrian as well as the plastic bag on the road.
We believe it contributes to auto-driving safety by provid-
ing the localization and recognition of universal obstacles
to facilitate follow-up driving decisions.

4.2. Few-shot Classification

Setting.  Lightweight few-shot learning is practical for
application by finetuning the pretraining model with given
limited data annotations, which can also validate the gen-
eralization capability of our learned representation. To
make a fair comparison, we follow the existing methods [1,
43] to conduct experiments under “K-way N-shot” setting
on the challenging realistic object-level dataset ScanOb-
jectNN [34], where we randomly sample N point cloud ob-
jects from each of the randomly selected K classes.

Quantity results. As illustrated in Table 6, we compare
with representative 3D networks PointNet++ [20], the re-
cent zero-shot approach PointClip [43] as well as a state-
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Rep. Ob;. | Avg. IN  Avg. OUT Avg._OBJ

PC. Image Depth | Avg. IN Avg. OUT Avg._OBIJ

(a) Depth Lang.-Depth 38.0 9.3 31.8
(b) Depth Image-Depth 56.4 21.7 39.0
(c) PC. Lang.-Point 52.6 26.8 37.7
(d) PC. Image-Point 56.5 24.4 37.8
(e) PC. Lang.-Image-Point ‘ 61.3 28.8 39.4

Table 7. Ablations on representation learning. Rep.: the recog-
nition representations. Obj.: the learning objectives. PC.: point
cloud. Lang.: language space.

of-the-art representation learning method CrossPoint [1],
which conducts contrastive pretraining between point cloud
and rendered images on CAD dataset ShapeNet [3]. As we
can see, with a slight number of samples, our CLIP? can
boost the classification results by a large margin, exceeding
PointClip by 5.3%, 9.6% and 6.9% with 4, 8 and 16 shots.
Besides, we outperform CrossPoint with considerable gain,
illustrating our pretraining strategy on collected proxies can
learn sufficient knowledge from realistic open world to gen-
erate transferable 3D representation, which is superior to
the pretraining on a small-scale synthetic dataset.

4.3. Ablations and Analysis

Ablations on representation learning. To observe the
transferability of different representations and the effect of
different learning objectives, we conduct ablations and re-
port the mean average Topl accuracy across all classes of
zero-shot recognition in indoor scenarios [32] (Avg._IN),
outdoor scenarios [2] (Avg._OUT) and object-level bench-
mark [34] (Avg._OBJ), which is shown in Table 7. Firstly,
for fair comparisons, we follow [13, 43] to project input
point cloud into depth maps in Ny, different views as al-
ternative representation. Secondly, we adopt various ob-
jectives to learn different correlation alignments across lan-
guage, image and point cloud feature space or depth space.
Specifically, comparing (a) and (b), aligning depth space
to image space yields better transfer performance due to
the similar data structure of image and depth map. In (c)
and (d), point cloud representation is better when aligning
to image space in indoor scenes, while better to align with
language space in outdoor scenes due to the data discrep-
ancy between image-like RGB-D points and sparse LIDAR
points. Generally, 3D point cloud representation outper-
forms depth representation in all benchmarks due to pre-
serving the complete 3D structure and sufficient 3D-specific
information. Comparing (e) and (d), the joint alignment be-
tween three feature spaces contributes to the best 3D point
cloud representation transferability on all benchmarks.

Analysis of representation ensembling. Intuitively,
different representations contain different perspectives of
knowledge, which can be potentially merged to achieve the
optimum results during inference. To validate the ensem-
bling application, we adopt three optional representation
modals, i.e. point clouds, projected depth maps and cor-

o v 61.3 28.8 39.4
(i) v 64.2 41.1 -
(iii) v 56.9 23.9 39.0
6" Vv v 68.7 43.9 -
(e Vv v 64.8 30.4 432

th) v v v 69.6 423 -

Table 8. Analysis on the representation ensembling schemes.

responding image patches, where depth representation is
trained on our proxies and image representation is generated
from pretrained image branch of CLIP. We ensemble their
predicted logits by simple summation as the final output,
and illustrate the separate recognition results and ensem-
bling performance in Table 8. Benefiting from the sufficient
knowledge learned from massive CLIP training data, image
representation presents best performance in separate appli-
cations. By merging the complementary knowledge, our 3D
representation leads to gains of 4.6% indoors [32] and 2.8%
outdoors. Though further improving the indoor recognition
performance with 0.9% when merged, depth representation
yeilds 1.6% drop for outdoor objects, illustrating the infor-
mation lost especially for outdoor scenarios. Since image
representation is sometimes missing, such as in [34], our
3D representation is more robust for 3D applications.

5. Limitation

As a pilot work for the language-3D pretraining problem,
though CLIP? enables zero-shot localization and recogni-
tion with proposed triplet proxy generation and learned
transferable 3D representation, it can not provide the ac-
curate tight bounding box for open-world 3D objects as a
common detector does. We believe CLIP? can facilitate the
development of open-world 3D detectors by introducing the
recognition ability to general 3D detectors or providing pre-
sented 3D proxies to enable further training of 3D detectors.

6. Conclusion

In this paper, we present a novel contrastive language-
image-point cloud pretraining framework, CLIP?, which
consists of a triplet proxy collection scheme and a cross-
modal contrastive learning mechanism. Based on the ob-
servation that realistic scenarios contain a massive amount
of open-world objects, we innovatively propose to collect
triplet proxies from realistic scenes as pretraining data. We
then conduct cross-modal contrastive alignment across lan-
guage, image and point cloud feature space to learn trans-
ferable 3D representation. The zero-shot transfer results on
various indoor and outdoor benchmarks validate the ability
of CLIP? for 3D open-world understanding.
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