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Abstract

Pseudo-labeling approaches have been proven beneficial
for semi-supervised learning (SSL) schemes in computer vi-
sion and medical imaging. Most works are dedicated to
finding samples with high-confidence pseudo-labels from
the perspective of model predicted probability. Whereas
this way may lead to the inclusion of incorrectly pseudo-
labeled data if the threshold is not carefully adjusted. In
addition, low-confidence probability samples are frequently
disregarded and not employed to their full potential. In
this paper, we propose a novel Pseudo-loss Estimation
and Feature Adversarial Training semi-supervised frame-
work, termed as PEFAT, to boost the performance of multi-
class and multi-label medical image classification from the
point of loss distribution modeling and adversarial train-
ing. Specifically, we develop a trustworthy data selec-
tion scheme to split a high-quality pseudo-labeled set, in-
spired by the dividable pseudo-loss assumption that clean
data tend to show lower loss while noise data is the oppo-
site. Instead of directly discarding these samples with low-
quality pseudo-labels, we present a novel regularization
approach to learn discriminate information from them via
injecting adversarial noises at the feature-level to smooth
the decision boundary. Experimental results on three med-
ical and two natural image benchmarks validate that our
PEFAT can achieve a promising performance and surpass
other state-of-the-art methods. The code is available at
https://github.com/maxwell0027/PEFAT.

1. Introduction
Deep learning has achieved remarkable success in vari-

ous computer vision tasks [4–6,13,15,19]. This success has
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(a) Illustration of traditional SSL methods (top) and our method (bottom).

(b) Probability distribution of labeled data (left) and validation data (right),
when using the warm-upped model on ISIC2018 dataset.

Figure 1. (a) shows the main difference between our method
and other SSL methods, our method selects high-quality pseudo-
labeled data by pseudo-loss estimation, and also injects feature-
level adversarial noises for better unlabeled data mining; (b) in-
dicates the phenomenon that clean pseudo-labeled set is hard to
collect when using probability-based threshold, which is mainly
attributed to the over-confident prediction.

also made practical applications more accessible, including
medical image analysis (MIA) [10,21,30,31,35,39]. How-
ever, unlike computer vision, annotating a large-scale med-
ical image dataset requires expert knowledge and is time-
consuming and costly. Alternatively, unlabeled data can be
collected from clinical sites in a more available way, thereby
mitigating the cost of data annotation by leveraging these
unlabeled data.

Semi-supervised Learning (SSL) has drawn a lot of at-
tention due to its superior performance, by only leveraging
limited labeled data and a vast number of unlabeled data.
Under the SSL setting, it is critical to mine adequate infor-
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mation from unlabeled data. In the existing SSL methods,
pseudo-labeling [14,22,29,37,38] and consistency regular-
ization [12, 24, 25] are the mainstream. The former focuses
on finding confident pseudo-labels for re-training, and the
latter aims to improve the robustness of the model by keep-
ing one logical distribution similar to the other.

However, most SSL methods encounter two issues. First,
unreliable pseudo-labels are a problem with the threshold-
selecting data method based on predicted probability as it
often introduces numerous incorrect pseudo-labels due to
confirmation bias. As illustrated in Figure 1b, unlabeled
data with both correct and incorrect pseudo-labels follow
similar probability distributions. Second, informative unla-
beled samples are underutilized as unselected data with low
probabilities typically cluster around the decision boundary.
Recent studies [1, 17] have found that neural networks tend
to fit clean data first and then memorize noise data during
training, resulting in lower loss for clean data and higher
loss for noise data in early stages of training. Furthermore,
some works [9, 25] have investigated the effects of adver-
sarial training under semi-supervised settings, which show
potential for learning from low-quality pseudo-labeled data.
All these findings pave the way towards solving the afore-
mentioned problems.

In this paper, we propose a novel SSL method called
Pseudo-loss Estimation and Feature Adversarial Training
(PEFAT) for multi-class and multi-label medical image
classification. First, we introduce a new estimation scheme
for reliable pseudo-labeled data selection from the perspec-
tive of pseudo-loss distribution. It is motivated by our argu-
ment that there is a dividable loss distribution between cor-
rect and incorrect pseudo-labeled data. Specifically, we first
warm up the model on training data with contrastive learn-
ing, in order to learn unbiased representation. Then we set
up a two-component Gaussian Mixture Model (GMM) [28]
to learn prior loss distribution on labeled data. In the
procedure of pseudo-labeled data selection, we feed cross
pseudo-loss to the fitted GMM and obtain the trustworthy
pseudo-labeled data with posterior probability. Second, we
propose a feature adversarial training (FAT) strategy that in-
jects adversarial noises in the feature-level to smooth the de-
cision boundary, aiming at for further utilizing the rest uns-
elected but informative data. Although FAT is originally de-
signed for the rest data, it can also be applied to the selected
pseudo-labeled data. Based on the technics above, our PE-
FAT successfully boosts the classification performance in
MIA from the point of trustworthy pseudo-labeled data se-
lection and adversarial consistency regularization.

To summarize, our main contributions are three-fold. (1)
Different from previous works that select pseudo-labeled
data with a probability threshold, we present a new se-
lection approach from the perspective of the loss distribu-
tion, which exhibits superior ability in high-quality pseudo-

labeled data collection. (2) We propose a new adversarial
regularization strategy to fully leverage the rest unlabeled
but informative data, which benefits the model in decision
boundary smoothing and better representation learning. (3)
Extensive experimental results on three public medical im-
age datasets and two natural image datasets demonstrate the
superiority of the proposed PEFAT, which significantly sur-
passes other advanced SSL methods.

2. Related Work
Semi-supervised Learning. The paradigm of Semi-
supervised Learning (SSL) can be concluded as learning
from both labeled and unlabeled data, in the scenario of
unlabeled data are the majority. Recently, various meth-
ods have been proposed, which can be roughly divided into
three categories: pseudo-labeling [14,22,29,37,38], consis-
tency regularization [12, 24, 25] and the combination of the
above two [20, 32, 33, 41].
Pseudo-labeling. Pseudo-labeling-based methods follow
the procedure of assigning pseudo-labels to unlabeled data
vis a fixed or dynamic threshold, and then combine the
manually annotated data for further re-training. For in-
stance, ACPL [22] improves the accuracy of pseudo-labels
by ensembling classifiers, and trains the model in an anti-
curriculum manner. BoostMIS [40] takes the learning abil-
ity of model in different training stages into consideration,
and proposes adaptive pseudo-labeling strategy for unla-
beled data selection. Noise Student [38] tries to learn from
training data iteratively, which generates pseudo-labels by
the updated teacher network and redirects student network
to learn from the whole data.

Unlike the aforementioned methods, we find it difficult
to consider the probability threshold as a reliable standard
for selecting clean pseudo-labeled data, since unlabeled
data with both correct and incorrect pseudo-labels have sim-
ilar probability distributions. However, noisy data typically
result in high loss during training while clean data has the
opposite effect. With this understanding, we suggest us-
ing pseudo-loss estimation to select pseudo-labeled data in-
stead.
Consistency regularization. The core idea of consistency
regularization is to minimize the output discrepancy for dif-
ferent views of unlabeled data, when adding different kinds
of perturbations, i.e., data augmentation and adversarial
noises. SRC-MT [24] provides a data-relation consistency-
based paradigm via self-ensembling learning. VAT [25]
introduces virtual adversarial perturbations, which aims to
regularize the predicted outputs by injecting the most adver-
sarial noises in the image-level. AlphaMatch [8] proposes
to use alpha-divergence and optimizes the model training in
an EM-like fashion.

Compared to VAT [25], a method based on adversarial
training, our proposed Feature Adversarial Training (FAT)
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Figure 2. Illustration of our proposed PEFAT. We first warm up the model with contrastive learning on training data to learn unbiased
representation. Then we set up a two-component GMM to construct the loss distribution calculated on labeled data. As for the unlabeled
data utilization, we use the cross pseudo-loss estimation (CPLE) for trustworthy pseudo-labeled data exploration. Beyond that, adversarial
noises are injected in the feature-level for better unlabeled data mining.

has two advantages: (1) globally, we inject the feature-level
adversarial noises, which is more effective in discriminate
informative mining, thereby can further improve the classi-
fication performance; and (2) detailly, the generation of ad-
versarial noises is based on the output distribution between
two different augmented views, which incorporates comple-
mentary information and produces less confirmation-biased
adversarial noises.

3. Method
3.1. Preliminaries

In the task of SSL classification, a labeled set Dl =
{(xi, yi)}Nl

i=1 and an unlabeled set Du = {(ui)}Nu

i=1 are
commonly given, where Nl and Nu are number of samples
with Nl ≪ Nu. xi is the input and yi = [y1i , y

2
i , ..., y

C
i ] ⊆

{0, 1}C is the corresponding ground-truth with C class cat-
egories (note that more than one element in yi can be non-
zero in multi-label setting). Generally, we assume that the
labeled and unlabeled data share the same distribution. The
goal of this task is to establish an algorithm using both Dl

and Du tactfully. Normally, different methods differ in the
usage of Du.

Figure 2 shows the workflow of PEFAT. We first warm
up the classifier on the whole training data, and then model
the loss distribution calculated on labeled images by GMM.
As for the utilization of unlabeled data, we first find reliable
pseudo-labeled data by feeding cross pseudo-loss to the fit-
ted GMM. Beyond that, we establish an adversarial consis-

tency regularization strategy by injecting feature-level ad-
versarial noises to leverage the rest unselected but informa-
tive data. Although this strategy is initially proposed for the
rest data, it also applies to the selected pseudo-labeled data.
Below, Section 3.2 describes the details of loss distribution
modeling, Section 3.3 shows the procedure of high-quality
pseudo-labeled data selection, Section 3.4 provides the in-
formation of feature adversarial training for better unlabeled
data learning and Section 3.5 summarizes the overall algo-
rithm of PEFAT.

3.2. Loss Distribution Modeling

In pseudo-labeling-based SSL, three steps are commonly
contained: (1) warm up a model hθ parameterised by θ us-
ing Dl; (2) generate pseudo-labels on Du and collect high-
confidence pseudo-labeled set D̃u = {(ui, hθ(ui))}Ñu

i=1;
(3) re-train hθ on the union of Dl ∪ D̃u. However, this
paradigm has some limitations, as it highly relies on the
model initialization on Dl and pseudo-labeled data in D̃u.
And in most cases, the warm-upped hθ will show confirma-
tion bias [2] due to the unbalanced/partial distribution on
Dl, along with a large number of wrongly pseudo-labeled
data for re-training.
Warm Up with Contrastive Learning. Inspired from
previous works in self-supervised learning [4, 5], the con-
trastive loss is a useful technic to learn category-agnostic
representation via maximizing the feature discrepancy
among different views of a certain sample and the other
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(a) (b) (c) (d)

Figure 3. Empirical probability density function (PDF) of the fitted GMM for loss distribution. (a) Training with FixMatch and loss distri-
bution on labeled data; (b) Training with FixMatch and loss distribution on validation data; (c) Training with PEFAT and loss distribution
on labeled data; (d) Training with PEFAT and loss distribution on validation data; (a) and (b) show zero-biased loss distribution, which
is mainly attributed to over-confident prediction, while (c) and (d) present dividable distribution for pseudo-labeled data with correct and
incorrect pseudo-labels, validating the effectiveness of cross pseudo-loss estimation.

samples. And in this work, we adopt the InfoNCE loss [26]
to help hθ learn more universal representation on Dl ∪ Du,
instead of only focusing on the Dl. The warm-upped loss is
the following sum of InfoNCE loss Lct on the whole train-
ing data and cross-entropy loss Lce on the labeled data, de-
fined as:

Lct = −
1

2|B|

2|B|∑
i=1

log
exp(zi · z+i /τ)∑2|B|

j=1 1(j ̸=i) exp(zi · zj/τ)
(1)

Lce = −
1

|Bl|

|Bl|∑
i=1

Dce(yi, hθ(ŷi|Aw(xi))) (2)

where |B| = |Bl|+ |Bu|, |Bl| and |Bu| denote the number
of labeled and unlabeled samples in a mini-batch. zi(j) are
the normalized feature embeddings and z+i is the positive
representation corresponding to zi. τ is a temperature pa-
rameter. Dce(·, ·) stands for the cross-entropy calculation.
ŷi and Aw represent predicted label and weak augmenta-
tion, respectively.
Loss Distribution Modeling on Dl. As indicated in Fig-
ure 1b, it is hard to regard the predicted probability as
threshold to collect a clean pseudo-labeled set D̃u, due
to the similar probability distribution for unlabeled sam-
ples with correct and incorrect pseudo-labels. Alternatively,
wrongly pseudo-labeled samples tend to have a higher loss
during the early training, which makes it possible to distin-
guish correct and incorrect samples by loss distribution (see
Figure 3c). Based on the above observation, we assume
that the overall loss distribution is composed of two nor-
mal distributions and further utilize the Gaussian Mixture
Model (GMM) to fit the loss distribution on Dl. Formally,
the instance-wise loss and probability density function (pdf)
of GMM on loss ℓi can be formulated as:

L(Dl|hθ) = {−yi log(hθ(ŷi|xi)), xi ∈ Dl} (3)

I(ℓi) =
K−1∑
k=0

πkIk(ℓi|µk,Σk), ℓi ∈ L(Dl|hθ) (4)

where L(Dl|hθ) is the set of loss on Dl. πk ≥ 0 is the
weight of the k-th gaussian component and

∑K−1
k=0 πk = 1.

For a certain loss ℓi, πkIk indicates the probability of ℓi
belonging to the k-th gaussian componet. After that, we
use the Expectation Maximization (EM) algorithm to fit the
GMM with the loss observation onDl, and the optimization
procedure is maximizing the log-likelihood, which can be
written as:

θ̂GMM = argmax
θGMM

[log

Nl∏
i=1

I(ℓi|θGMM )] (5)

where θGMM = {πk, µk,Σk}, 0 ≤ k ≤ K − 1. Based on
the above process, GMM perceives the prior loss distribu-
tion on Dl, and is able to distinguish trustworthy pseudo-
labeled samples by pseudo-loss distribution.

3.3. Trustworthy Pseudo-labeled Data Selection

Cross Pseudo-loss Estimation on Du. Considering neu-
ral networks are generally over-confident to their predic-
tions, we regard the prediction of one augmented view as
the pseudo-label for the other augmented view, in order to
avoid the zero-biased pseudo-loss distribution when treat-
ing unlabeled samples (see Figure 3b). In general, the cross
prediction can be expressed as:

ŷ1→2
i = argmax(hθ(As1(ui))) (6)

ŷ2→1
i = argmax(hθ(As2(ui))) (7)

where As1 and As2 are two different strong augmentations,
As1 contains affine transformation, rotation and cutout,
while As2 contains grayscale, colorjitter and blur. ŷ1→2

i
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and ŷ2→1
i are pseudo labels for views augmented from As2

and As1, respectively. Finally, the cross pseudo-loss can be
calculated as:

ℓ1→2
i = −ŷ1→2

i log(hθ(As2(ui))) (8)

ℓ2→1
i = −ŷ2→1

i log(hθ(As1(ui))) (9)

where ℓ1→2
i and ℓ2→1

i are the cross pseudo-loss.
Pseudo-labeled Sample Selection. Based on ℓ1→2

i , ℓ2→1
i

and the fitted GMM, we can select trustworthy pseudo-
labeled sample ui by the posterior probability, which can
be formulated as:

pgmm = I(Ik|(ηℓ1→2
i + (1− η)ℓ2→1

i )) (10)

where k = 0(1) stands for correct (incorrect) pseudo-loss
component, η is a hyper-parameter to balance the weight be-
tween two pseudo-losses, pgmm means the posterior proba-
bility of GMM.

In summary, to select unlabeled samples with correct
pseudo-labels, we first calculate the instance-wise loss on
Dl, and simulate the loss distribution by a two-component
GMM. Finally, we select high-quality pseudo-labeled sam-
ples by the posterior probability of GMM, along with the
cross pseudo-loss estimation scheme.

3.4. Feature Adversarial Training

Although we can effectively collect an almost clean
pseudo-labeled set D̃u by the Cross Pseudo-loss Estimation
(CPLE), the rest of unselected data in Du = Du/D̃u are
also informative for SSL training. Inspired by adversarial
training [9, 25], adding adversarial perturbation is benefi-
cial for smoothing decision boundaries, which is a practical
strategy, especially in tackling edge-distributed samples. In
this work, we propose Feature Adversarial Training (FAT),
which injects targeted adversarial noises at the feature-level,
aiming to explore information from unlabeled samples ef-
fectively. Specifically, given a sample ui in D̃u ∪ Du, the
generation of targeted adversarial noises (radvi1 , radvi2 ) for
two augmentation take the following format:

radvi1 , radvi2 = argmax
∆r1,∆r2

[J(hθ(pi|zi +∆r1),

hθ(p
+
i |z

+
i +∆r2))]

(11)

where J is the Kullback-Leibler Divergence when ui is
from Du. Otherwise, J is the cross-entropy loss since
we can use the corresponding pseudo-label to replace
hθ(pi|zi + ∆r1). ||∆r1|| ≤ ε and ||∆r2|| ≤ ε are two
random noises, ε is a hyper-parameter to regularize the ap-
plied noises. pi and p+i are the model predicted probabil-
ity. However, we cannot acquire radvi1 , radvi2 according to

Algorithm 1: PEFAT Algorithm
Input: Labeled dataset Dl; unlabeled dataset Du;

initialized model hθ.
1 Initialize a two-componet GMM;
2 Warm up hθ with Eq. (1) and Eq. (2);
3 for (xi, yi)∈ Dl do
4 Calculate loss lxi

according to Eq. (3);
5 end
6 Fit GMM with {lxi}

Nl

i=1 with Eq. (4) and Eq. (5);
7 for ui ∈ Du do
8 Make cross prediction by Eq. (6) and Eq. (7);
9 Get cross pseudo-loss by Eq. (8) and Eq. (9);

10 Obtain pgmm according to Eq. (10);
11 if pk=0

gmm > pk=1
gmm then

12 Calculate LFAT and Lce with pseudo-label;
13 else
14 Calculate LFAT with Eq. (13);
15 end
16 end
17 Return hθ;

Eq. (11) directly. To this end, [25] utilized the finite differ-
ence and power iteration to solve the problem, which can be
simply performed using the following equation:

radvi1 , radvi2 ← ∇∆r1,∆r2J(hθ, zi, z
+
i ,∆r1,∆r2) (12)

Once radvi1 and radvi2 are attained, we utilize the feature ad-
versarial training loss LFAT for model optimization:

LFAT = J(hθ(pi|zi + radvi1 ), hθ(p
+
i |z

+
i + radvi2 )) (13)

In summary, FAT seeks the direction of perturbation
which can effectively alter the distribution at the feature-
level, and thus benefits the model in robust learning and
discriminative information mining.

3.5. Overall Algorithm

We present the summary of PEFAT in Algorithm 1,
which can be concluded as (1) finding out high-quality
pseudo-labeled data from the perspective of the loss dis-
tribution, aiming at effectively mitigating the difficulty of
dividing correct and incorrect pseudo-labeled data. Details
include loss distribution modeling and cross pseudo-loss es-
timation; (2) adequately utilize the low confident unlabeled
data. Here we try to make the two augmented views con-
sistent by injecting feature-level adversarial noises, which
can assist the model in having a better realization of these
unlabeled data when the corresponding pseudo-label is un-
reliable. By incorporating the above two ideas, PEFAT suc-
cessfully boosts the performance of medical image classifi-
cation under the SSL setting.
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Table 1. Performance comparison with other state-of-the-art SSL methods on NCT-CRC-HE dataset. ”SENS”, ”PREC” and ”ACC” are
Sensitivity, Precision and Accuracy, respectively. We list the evaluation metrics when 100 and 200 labeled data are given. Best and second
best results are shown in bold and underline, respectively.

Method NCT-CRC-HE (200 labeled data) NCT-CRC-HE (100 labeled data)

AUC SENS PREC ACC F1 AUC SENS PREC ACC F1

Baseline 97.86 78.12 83.06 80.63 76.31 96.48 73.85 76.25 73.29 73.48
MT [33] 98.07 81.89 83.91 81.55 81.19 97.15 77.51 78.81 77.97 77.07

FixMatch [32] 98.43 85.03 84.75 84.81 84.66 97.91 80.59 81.78 80.47 80.28
SimPLE [14] 98.57 85.80 85.56 85.59 85.48 98.01 83.37 83.46 82.72 82.91
CoMatch [20] 98.83 87.94 88.70 86.48 86.24 98.00 84.72 84.58 83.93 84.11
SimMatch [41] 99.02 88.19 88.36 88.31 87.98 98.03 85.07 84.50 84.24 84.43

Ours 99.08 89.68 91.18 90.29 90.12 98.25 86.82 86.78 86.01 86.33

Table 2. Performance comparison on ISIC2018 dataset. ”SENS”, ”SPCE” and ”ACC” stand for Sensitivity, Specificity and Accuracy,
respectively. Evaluation metrics are reported with the percentage of 5% and 20% labeled data. Best and second best results are shown in
bold and underline, respectively.

Method ISIC2018 (20% labeled data) ISIC2018 (5% labeled data)

AUC SENS SPEC ACC F1 AUC SENS SPEC ACC F1

Baseline 90.90 69.37 91.77 91.42 51.89 84.28 56.32 87.53 85.36 40.96
SRC-MT [24] 93.58 71.47 92.72 92.54 60.68 87.61 62.04 89.36 88.77 46.26

DS3L [11] 93.85 70.33 92.29 92.53 61.08 85.08 58.82 89.52 89.27 44.19
ACPL [22] 94.36 72.14 - - 62.23 - - - - -

RAC-MT [12] 94.42 73.41 92.68 93.27 63.95 87.92 59.34 90.51 91.11 48.54

Ours 94.87 76.72 93.45 93.68 66.15 88.64 64.10 91.25 91.81 50.96

4. Experiments

4.1. Setup

Datasets. We evaluate our method on three public med-
ical image classification datasets, including NCT-CRC-
HE [16], ISIC2018 [7] and Chest X-Ray14 [36]. Specif-
ically, NCT-CRC-HE contains 100,000 colorectal cancer
histology slides with nine categories, forming a multi-class
classification task. We split the dataset into 70%/10%/20%
for training/validation/test. And five evaluation metrics are
reported: area under the ROC curve (AUC), Sensitivity, Ac-
curacy, F1 score and Precision. For ISIC2018, it contains
10,015 skin lesion dermoscopy images with seven labels,
which is also a multi-class dataset. We follow the same split
as [12, 22, 24] for a fair comparison, which divides the en-
tire dataset into 70%/10%/20% for training/validation/test.
Evaluation metrics are the same as NCT-CRC-HE, except
for replacing Precision with Specificity. Chest X-Ray14 is
a multi-label dataset with 112,120 chest x-rays from 30805
patients. It contains fourteen categories and each image
may share multiple labels. To make a fair comparison with
previous works, we adopt the same data split as [22–24],

following 70%/10%/20% for training/validation/test. The
evaluation metric of AUC is reported. Beyond that, we also
conduct experiments on CIFAR-10 and CIFAR-100, which
are presented in Supplementary Material.
Implementation Details. For all datasets, we use
DenseNet-121 [15] as backbone with 224×224 input size.
For model training, we use Adam optimizer [18] with a
learning rate of 0.001. For a mini-batch, 16 labeled and
48 unlabeled images are contained. We train the model for
80 epochs, where 30 epochs and 50 epochs are respectively
used to warm up and re-train the model. Hyper-parameter τ ,
ε and η are empirically set to 0.05, 1 and 0.5, respectively.
All experiments are implemented in Pytorch [27] with two
NVIDIA Gefore RTX 3080Ti GPUs.

4.2. Comparison with Existing Methods

Results on NCT-CRC-HE Dataset. In this part, we com-
pare our method with five recently proposed SSL meth-
ods, including MT [33], FixMatch [32], SimPLE [14], Co-
Match [20] and SimMatch [41]. All results are obtained
using the same network architecture with the same in-
put image size. As indicated by results in Table 1, we
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can obtain the following findings: (1) our method con-
tinuously surpasses other SSL methods with the differ-
ent number of annotated image data, i.e., the performance
gain of 1.49%∼7.79%, 2.48%∼7.27%, 1.98%∼8.74% and
2.14%∼8.93% in terms of sensitivity, precision, accuracy
and f1 score, when given 200 labeled data; (2) compared
to SimMatch, the most advanced SSL method that incor-
porates contrastive learning and consistency regularization,
our method still achieves a slightly higher result (approxi-
mately 1.5% improvement) on the overall evaluation met-
rics, mainly owing to the CPLE for clean sample collection
and FAT for fully leveraging the unlabeled samples; and
(3) our method outperforms FixMatch by a large margin
(roughly 5%∼6% performance gain in accuracy), further
indicating the superiority of our proposed CPLE.
Results on ISIC2018 Dataset. Table 2 presents the re-
sults on ISIC2018 dataset, where competitive methods of
SRC-MT [24], DS3L [11], ACPL [22] and RAC-MT [12]
are listed to compare. Our method again achieves the
best results on all evaluation metrics with different label
percentages (i.e, AUC:94.87%, sensitivity:76.72%, speci-
ficity:93.45%, accuracy:93.68%, f1 score:66.15%, in the
setting of sharing 20% labeled data). This demonstrates that
the intuition of filtering out wrongly predicted data by loss
estimation is applicable in different datasets, as well as the
benefits of FAT for learning discriminate information from
unlabeled data.
Results on Chest X-Ray14 Dataset. Table 3 shows the
results on Chest X-Ray14 dataset, where SOTA methods,
i.e., SRC-MT [24], S2MTS2 [23] and ACPL [22] are
compared. Note that SRC-MT employees DenseNet-169
as the backbone with 384×384 input image size, while
S2MTS2 and ACPL use DenseNet-121 as the backbone
with 512×512 input size. Our PEFAT takes DenseNet-
121 as the backbone with a smaller input size of 224×224.
Again, PEFAT surpasses other competitive methods under

Table 3. Performance of mean AUC on Chest X-Ray14 dataset
under the label percentage of 2%, 5%, 10%, 15% and 20%. Note
that * denotes the methods employee DenseNet-169 as backbone
with 384×384 input size, † means the methods use DenseNet-121
as backbone with 512×512 input size.

Method Label Percentage

2% 5% 10% 15% 20%

Graph XNet* [3] 53.00 58.00 63.00 68.00 78.00
SRC-MT* [24] 66.95 72.29 75.28 77.76 79.23

UPS [29] 65.51 73.18 76.84 78.90 79.92
NoTeacher [34] 72.60 77.04 77.61 - 79.49
S2MTS2† [23] 74.69 78.96 79.90 80.31 81.06
ACPL† [22] 74.82 79.20 80.40 81.06 81.77

Ours 75.06 79.54 80.93 81.56 82.58

Table 4. Ablation study of each module in PEFAT on NCT-CRC-
HE dataset. Results are reported in the case of 100 labeled data. ∗
and † denote singly employing FAT on the selected and unselected
pseudo-labeled data, respectively.

Method AUC SENS PREC ACC F1

Baseline 96.48 73.85 76.25 73.29 73.48
CPLE 98.09 84.57 83.89 84.16 84.65

CPLE+VAT 98.13 85.00 84.14 84.34 84.79
CPLE+FAT∗ 98.15 85.10 84.66 84.42 84.70
CPLE+FAT† 98.18 85.91 85.76 85.65 85.73
CPLE+FAT 98.25 86.82 86.78 86.01 86.33

various label percentage settings. Compared to pseudo-
labeling methods UPS and ACPL, PEFAT outperforms
them by 0.81%∼9.55%. Moreover, compared to the dual-
path method NoTeacher, our approach consistently has ap-
proximately 3% performance gain, further vadilating the ca-
pability of PEFAT.

4.3. In-Depth Analysis

Ablation study. Results of the ablation study are shown in
Table 4. As we can see, the evaluation metrics increase sig-
nificantly by simply utilizing CPLE (10.87% improvement
in accuracy compared to baseline), indicating the superior
of our proposed pseudo-labeled sample selection scheme.
Beyond that, it is worth noting that CPLE surpasses other
advanced pseudo-labeling-based methods, i.e., FixMatch
and SimPLE, further demonstrating the capability of CPLE.
Row3 and Row6 show the availability of VAT and FAT, re-
spectively. We can find that there is little performance gain
(0.18% improvement in accuracy) when using VAT, mainly
due to insufficient and biased adversarial noises. Neverthe-
less, FAT boosts the accuracy by 1.85%. Moreover, Row4
and Row5 present the effects of singly applying FAT on the
selected and unselected pseudo-labeled data, respectively.

(a) (b)

Figure 4. The t-SNE visualization on NCT-CRC-HE validation
set. (a) is the result when using VAT; (b) shows the feature embed-
ding when using FAT.
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Q1: What benefits can FAT bring? To further explore
the effects of FAT, we respectively exhibit the t-SNE visu-
alization results when employing VAT and FAT. As depicted
in Figure 4a, although VAT shows the ability to smooth
the decision boundary, feature embedding of several cate-
gories still mixes. This phenomenon indicates the limita-
tion of VAT. In contrast, Figure 4b presents better clusters
and more distinguishable decision boundary when applying
FAT, demonstrating its effectiveness in handling boundary-
distributed samples and learning dividable representation.

Q2: What is the relation between the model predicted
probability and posterior probability of GMM for the
pseudo-labeled data? Since we select pseudo-labeled data
based on the posterior probability of the fitted GMM, it
is interesting to discover its relation with the model pre-
dicted probability. As illustrated in Figure 5, we can ob-
serve that wrongly pseudo-labeled samples with high model
predicted probability might also show low posterior proba-
bility, mainly caused by cross prediction, i.e., disagreement
for the prediction. Since we fit a two-component GMM ac-
cording to the loss distribution, pseudo-labeled data with
a posterior probability higher than 0.50 are selected by
us. We can find that correct pseudo-labeled data generally
have model predicted probability ranging from 0.70 to 0.95.
Our proposed CPLE can effectively maintain the unlabeled
data with correct pseudo-labels, while traditional pseudo-
labeling-based methods will fall into a dilemma. That is,
increasing the threshold will greatly reduce the number of
correct samples, conversely decreasing the threshold will
introduce more incorrect samples. Besides, here we list
some quantitative results, 1466 correct and 132 incorrect
pseudo-labeled data lie on the right of the dotted line, while
the other side contains 129 correct and 495 incorrect data.
These results validate the convenience of CPLE, which can
collect a high-quality pseudo-labeled set without the trade-
off between threshold and accuracy.

Q3: To what extent can we trust the selected pseudo-
labeled data? To answer this question, we conduct
an experiment to compare with probability-based pseudo-
labeling strategy (including thresholds of 0.80, 0.85, 0.90,
0.95). From results in Table 5, we can draw the follow-
ing conclusions: (1) the higher the probability threshold,
the higher the proportion of correctly predicted samples;
(2) although the ratio of correct pseudo-labeled samples is
high with a higher threshold, numerous unlabeled labeled
are abandoned; and (3) compared to traditional pseudo-
labeling strategy, the superior of CPLE lies in maintain-
ing a considerable number of correctly predicted samples as
well as minimizing the error rate. For instance, compared to
δ = 0.80, CPLE has almost two times correctly predicted
samples. And compared to δ = 0.95, although CPLE se-
lects more incorrect pseudo-labeled samples, the error rate
is still lower. Beyond that, it should be noted that clean

samples discovered by CPLE are approximately six times
than δ = 0.95. To summarize, we can select the largest
pseudo-labeled set with the lowest error rate by leveraging
CPLE.

Figure 5. The relation between model predicted probability and
posterior probability of GMM. Red × and Turquoise • denote un-
labeled data with incorrect and correct pseudo-labels.

Table 5. Experiments conducted on NCT-CRC-HE validation set.
δ = K means using probability threshold K to select pseudo-
labeled samples. Ratio = Correct / Selected.

Method Selected Unselected ↓ Ratio ↑
Correct ↑ Incorrect ↓

δ=0.80 3821 531 5648 87.80
δ=0.85 3172 394 6434 88.95
δ=0.90 2387 257 7356 90.28
δ=0.95 1184 112 8704 91.36
CPLE 6490 592 2918 91.64

5. Conclusion

In this paper, we propose a new method, PEFAT, for
semi-supervised medical image classification, stemming
from the point of pseudo-loss estimation and adversarial
training. PEFAT can effectively judge the quality of pseudo-
labels, and thus directly benefit the model by learning from
reliable pseudo-labeled data. Moreover, we also introduce
an adversarial-based consistency regularization strategy for
sufficiently leveraging the unselected but informative data.
Extensive experiments on three medical and two natural im-
age datasets demonstrate the superior of PEFAT as well as
its versatility in various settings.
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