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Abstract

Dataset Distillation (DD), a newly emerging field, aims
at generating much smaller but efficient synthetic training
datasets from large ones. Existing DD methods based on
gradient matching achieve leading performance; however,
they are extremely computationally intensive as they re-
quire continuously optimizing a dataset among thousands
of randomly initialized models. In this paper, we assume
that training the synthetic data with diverse models leads
to better generalization performance. Thus we propose
two model augmentation techniques, i.e. using early-stage
models and parameter perturbation to learn an informative
synthetic set with significantly reduced training cost. Exten-
sive experiments demonstrate that our method achieves up
to 20× speedup and comparable performance on par with
state-of-the-art methods.

1. Introduction
Dataset Distillation (DD) [3, 48] or Dataset Condensa-

tion [55, 56], aims to reduce the training cost by generat-
ing a small but informative synthetic set of training exam-
ples; such that the performance of a model trained on the
small synthetic set is similar to that trained on the origi-
nal, large-scale dataset. Recently, DD has become an in-
creasingly more popular research topic, and has been ex-
plored in a variety of contexts, including federated learn-
ing [17, 42], continual learning [33, 40], neural architecture
search [43, 57], medical computing [25, 26] and graph neu-
ral networks [21, 30].

DD has been typically cast as a meta-learning prob-
lem [16] involving bilevel optimization. For instance,
Wang et al. [48] formulate the network parameters as a
function of the learnable synthetic set in the inner-loop
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Figure 1. Performances of condensed datasets for training
ConvNet-3 v.s. GPU hours to learn the 10 images per class con-
densed CIFAR-10 datasets with a single RTX-2080 GPU. Ours5,
Ours10, and Ours20 accelerates the training speed of the state-of-
the-art method IDC [22] 5×, 10×, and 20× faster.

optimization; then optimize the synthetic set by minimiz-
ing classification loss on the real data in the outer-loop.
This recursive computation hinders its application to real-
world large-scale model training, which involves thousands
to millions of gradient descent steps. Several methods have
been proposed to improve the DD method by introducing
ridge regression loss [2, 36], trajectory matching loss [3],
etc. To avoid unrolling the recursive computation graph,
Zhao et al. [57] propose to learn synthetic set by matching
gradients generated by real and synthetic data when training
deep networks. Based on this surrogate goal, several meth-
ods have been proposed to improve the informativeness or
compatibility of synthetic datasets from other perspectives,
ranging from data augmentation [55], contrastive signal-
ing [24], resolution reduction [22], and bit encoding [41].

Although model training on a small synthetic set is fast,
the dataset distillation process is typically expensive. For
instance, the state-of-the-art method IDC [22] takes ap-
proximately 30 hours to condense 50,000 CIFAR-10 im-
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ages into 500 synthetic images with a single RTX-2080
GPU, which is equivalent to the time it takes to train 60
ConvNet-3 models on the original dataset. Furthermore,
the distillation time cost will rapidly increase for large-scale
datasets e.g. ImageNet-1K, which prevents its application
in computation-limited environments like end-user devices.
Prior work [56] on reducing the distillation cost results in
significant regression from the state-of-the-art performance.
In this paper, we aim to speed up the dataset distillation
process, while preserving even improving the testing per-
formance over state-of-the-art methods.

Prior works are computationally expensive as they fo-
cus on generalization ability such that the learned synthetic
set is useful to train many different networks as opposed
to a targeted network. This requires optimizing the syn-
thetic set over thousands of differently initialized networks.
For example, IDC [22] learns the synthetic set over 2000
randomly initialized models, while the trajectory matching
method (TM) [3] optimizes the synthetic set for 10000 dis-
tillation steps with 200 pre-trained expert models. Dataset
distillation, which learns the synthetic data that is generaliz-
able to unseen models, can be considered as an orthogonal
approach to model training which learns model parameters
that are generalizable to unseen data. Similarly, training the
synthetic data with diverse models leads to better general-
ization performance. This intuitive idea leads to the follow-
ing research questions:

Question 1. How to design the candidate pool of models
to learn synthetic data, for instance, consisting of randomly
initialized, early-stage or well-trained models?

Prior works [3, 22, 48, 57] use models from all training
stages. The underlying assumption is that models from all
training stages have similar importance. Zhao et al. [56]
show that synthetic sets with similar generalization perfor-
mance can be learned with different model parameter dis-
tributions, given an objective function in the form of feature
distribution matching between real and synthetic data. In
this paper, we take a closer look at this problem and show
that learning synthetic data on early-stage models is more
efficient for gradient/parameter matching based dataset dis-
tillation methods.

Question 2. Can we learn a good synthetic set using only
a few models?

Our goal is to learn a synthetic set with a small number
of (pre-trained) models to minimize the computational cost.
However, using fewer models leads to poor generalization
ability of the synthetic set. Therefore, we propose to apply
parameter perturbation on selected early-stage models to
incorporate model diversity and improve the generalization
ability of the learned synthetic set.

In a nutshell, we propose two model augmentation
techniques to accelerate the training speed of dataset dis-
tillation, namely using early-stage models and parameter

perturbation to learn an informative synthetic set with sig-
nificantly less training cost. As illustrated in Fig. 1., our
method achieves up to 20× speedup and comparable per-
formance on par with state-of-the-art DD methods.

2. Related Work

2.1. Dataset Distillation

Recent advances in deep learning [6, 7, 13, 14, 53, 54]
rely on massive amounts of training data that not only con-
sume a lot of computational resources, but it is also time-
consuming to train these models on large data. Dataset Dis-
tillation (DD) is introduced by Wang et al. [48], in which
network parameters are modeled as functions of synthetic
data, and learned by gradient-based hyperparameter opti-
mization [32]. Subsequently, various works significantly
improve the performance by learning on soft labels [2, 44],
optimizing via infinite-width kernel limit [36, 37], match-
ing on gradient-space [19, 57], model parameter-space [3],
and distribution space [47, 56], amplifying contrastive sig-
nals [24], adopting data augmentations [55], and exploring
regularity of dataset [22]. DD has been applied to vari-
ous scenarios including continual learning [33, 38, 40], pri-
vacy [8], federated learning [11, 17, 52], graph neural net-
work [20,21], neural architecture search [43] for images [4],
text [29], and medical imaging data [27]. In addition to
the efforts made to improve performance and expand appli-
cations, few studies have focused on the efficiency of DD.
This is a critical and practical problem closely related to the
real-world application of DD.

2.2. Efficient Dataset Distillation

In this work, we focus on the efficiency of dataset dis-
tillation algorithm, which is under-explored in previous
works. Zhao et al. [56] make improvements in efficiency
via distribution matching in random embedding spaces,
which replaces expensive bi-level optimization in common
methods [22, 57]. However, the speed-up of DD in their
work results in a significant drop in performance, which ex-
hibits a large gap between their method and other SOTA
DD methods [22]. Cazenavette et al. [4] improve efficiency
via parameter matching in pre-trained networks. However,
they need to pre-train 100 networks from scratch on real
data, which leads to massively increased computational re-
sources. In this work, we seek to significantly reduce train-
ing time and lower computational resources, while main-
taining comparable performance.

3. Preliminary

The goal of dataset distillation is to generate a syn-
thetic dataset S from the original training dataset T such
that an arbitrary model trained on S is similar to the
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one trained on T . Among various dataset distillation ap-
proaches [3, 22, 37, 56], gradient-matching methods have
achieved state-of-the-art performance. However, they re-
quire a large amount of training time and expensive compu-
tational resources. In this paper, we propose to use gradient
matching to reduce the computational requirement while
maintaining similar performance.
Gradient Matching. Gradient-matching dataset distillation
approach [57] matches the network gradients on synthetic
dataset S to the gradients on real dataset T . The overall
training object can be formulated as:

maximize
S

T∑
t=0

Cos (∇θℓ (θt;S) ,∇θℓ (θt; T ))

w.r.t. θt+1 = θt − η∇θℓ (θt;S)

(1)

where θt denotes the network weights at the tth training step
from the randomly initialized weights θ0 given S, ℓ(θ,S)
denotes the training loss for weight θ and the dataset S, ℓ de-
notes loss function, and Cos(·, ·) denotes the channel-wise
cosine similarity.

In addition, recent works have made various efforts to
enhance the performance of gradient-matching from the
perspective of data diversity. Zhao et al. [55] utilize differ-
entiable siamese augmentation to synthesize more informa-
tive images. Kim et al. [22] explore the regularity of dataset
to strengthen the representability of condensed datasets.
Discussion on Efficiency. Current works [22, 55, 57] use a
large number of randomly initialized networks (e.g., 2000)
to improve the generalization performance of condensed
dataset. The huge number of models makes the DD pro-
cess time-consuming and computation-expensive. For in-
stance, condensing 1 image per class in a synthetic dataset
of CIFAR-10 by using state-of-the-art method IDC [22]
consumes 200k epochs of updating network, in addition to
the 2,000k epochs of updating S, which requires over 22.2
hours on a single RTX-2080 GPU. While Zhao et al. [56]
make efforts to solve computation the challenge by using
distribution-matching instead of gradient-matching – reduc-
ing number of updates from 200k to 20k and training time
from 22.2 hours to 0.83 hours – the accuracy of condensed
data also degrades dramatically from 50.6% to 26.0%. This
potentially results from the redundant learning on randomly
initialized networks.

4. Method
4.1. Overview

We illustrate the framework of our proposed efficient
dataset distillation method in Fig. 2. Our method consists
of three stages: 1) Early-stage Pre-training, 2) Parameter
Perturbation, and 3) Distillation via gradient-matching. In
stage 1, we utilize pre-trained networks at the early stage

Training Dataset

Training for 
a few epochs

…

Parameter
Perturbation

Real Data

Matching loss

Condensed Data

…Model 1

Model N

Early-Stage Models

Selected Model

Classification loss

Gradients

Logits
Forward propagation

Back propagation

Figure 2. The illustration of our proposed fast dataset distillation
method. We perform early-stage pretraining and parameter pertur-
bation on models in dataset distillation.

as an informative parameter space for dataset distillation.
In stage 2, we conduct parameter perturbation on mod-
els selected from stage 1 to further augment the diver-
sity of model parameter distribution. In stage 3, the syn-
thetic dataset is optimized with gradient-matching strategy
on these augmented models from early stages.

4.2. Early-Stage Models: Initializing with Informa-
tive Parameter Space

Existing gradient-matching methods [22, 55, 57] train
synthetic data on a large number of randomly initialized net-
works for learning to generalize to unseen initializations.
Furthermore, the initialized networks will be updated for
many SGD steps in the inner-loop for learning better syn-
thetic data, which requires much computational resources.

Data augmentation is frequently used to prevent over-
fitting and improve generalization performance when opti-
mizing deep networks [49, 51]. Similarly, we propose to
use model augmentation to improve the generalization per-
formance when learning condensed datasets. Inspired by
ModelSoups [31, 50], a practical method to improve per-
formance of model ensembles, we pre-train a set of net-
works with different hyper-parameters, including learning
rate, random seed, and data augmentation, so that we con-
struct a parameter space with rich diversity. Instead of lever-
aging randomly initialized networks in each outer loop in
traditional methods, we sample those early-stage networks
as the initialization, which are more informative for imple-
menting gradient matching.

Comparing with well-trained networks, using early-
stage networks have two benefits. First, early-stage net-
works require less training cost. Second, the early-stage
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networks have rich diversity [1, 12, 39] and provide large
gradients [10], which leads to better gradient matching.
More discussion can be found in the supplementary.

4.3. Parameter Perturbation: Diversifying Param-
eter Space

Motivated by the data perturbation which is widely used
to diversify the training data for better knowledge distilla-
tion [34, 35], we propose to conduct the model perturbation
in dataset distillation for further diversifying the parameter
space. We implement perturbation after sampling the net-
work (parameters) from the early-stage parameter space in
each outer loop.

We formulate our fast dataset distillation as the gradient-
matching on parameter-perturbed early-stage models be-
tween real data and synthetic data:

min
S
D

(
∇θℓ

(
θ̂;S

)
,∇θℓ

(
θ̂; T

))
w.r.t. θ̂ ← θT + α · d,

(2)

where θT represents network weights trained on real data
T , D denotes a distance-based matching objective, and α
is the magnitude of parameter perturbation. d is sampled
from a Gaussian distributionN (0, I) with dimensions com-
patible with network parameter θ and filter normalized by

dl,j ←
dl,j

∥dl,j∥F + ϵ
∥θl,j∥F (3)

to eliminate the scaling invariance of neural networks [28],
where dl,j is the j-th filter at the l-th layer of d and ∥ · ∥F
denotes the Frobenius norm. ϵ is a small positive constant.

4.4. Training Algorithm

We depict our method in Algorithm 1. We build our
training algorithm on the state-of-the-art method IDC [22].
Before dataset distillation, we pre-trained N models on real
data for only a few epochs. This is significantly cheaper
than existing methods that well-train many networks till
convergence. We train the condensed dataset S for T outer
loops and M inner loops. At each outer loop, we ran-
domly select a model from N early-stage models as initial-
ization and employ parameter perturbation on it. At each
inner loop, we optimize the synthetic samples S by mini-
mizing the gradient matching loss with regard to the sam-
pled real batch Tc and real synthetic batch Sc of the same
class c, respectively. The network θm is then updated on
real data. Please refer to [22] for more details. The num-
bers of pre-train epochs P and outer loop K are relatively
small. In experiments, we set P = 2 compared with 300 for
a well-trained network and K = 400 compared with 2000
in SOTA DD method IDC [22]. Note that our method can
also be easily applied to other dataset distillation methods
for reducing training time, and we explore it in Sec. 5.3.

Algorithm 1: Efficient Dataset Distillation
Input: Training data T , loss function l, number of
classes C, number of model N , magnitude α,
augmentation function A, multi-information
function f , deep neural network ψθ parameterized
with θ
Output: Condensed dataset S
Definition: D (B,B′; θ) = ∥∇θℓ(θ;B)−∇θℓ (θ;B

′) ∥
/* Early-Stage Pre-train */

1 Randomly initialize N networks {τ1...τN};
2 for n← 1 to N do
3 Update network τn on real data T :
4 for p← 1 to P do
5 τn,p+1 ← τn,p − η∇τn,p

ℓ (τn,p;A(T ))
6 end
7 end
8 Initialize condensed dataset S
9 for t← 0 to T do

10 Randomly load one checkpoint from {τ1...τN}
to initialize ψθ ;
/* Parameter Perturbation */

11 Sample vector d from Gaussian distribution
12 Parameter perturbation on ψθ: θ ← θ + α · d
13 for m← 0 to M do
14 for c← 0 to C do
15 Sample an intra-class mini-batch

Tc ∼ T , Sc ∼ S
16 Update synthetic data Sc:
17 Sc ← Sc − λ∇Sc

D (A (f(Sc)) ,A (Tc))

18 end
19 Sample a mini-batch T ∼ T
20 Update network ψθ w.r.t classification loss:
21 θm+1 ← θm − η∇θℓ (θm;A(T ))
22 end
23 end

5. Experiments
In this section, we first evaluate our method on various

datasets against state-of-the-art baselines. Next, we exam-
ine the proposed method in depth with ablation analysis.

5.1. Experimental Setups

Datasets. We evaluate performance of neural networks
trained on condensed datasets generated by several methods
as baselines. Following previous works [4, 22, 57], we con-
duct experiments on both low- and high-resolution datasets
including CIFAR-10, CIFAR-100 [23], and ImageNet [5].
Network Architectures. Following previous works [22,
56], we use a depth-3 ConvNet [39] on CIFAR-10 and
CIFAR-100. For ImageNet subsets, we follow IDC [22]
and adopt ResNetAP-10 for dataset distillation, a modified
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Dataset Method Img/Cls Speed Up Acc. Gain
1 10 50

CIFAR-10

Full Dataset 88.1 88.1 88.1 - -
IDC [22] 50.6 (21.7h) 67.5 (22.2h) 74.5 (29.4h) 1.00× 1.00×
CAFE [47] 30.3 46.3 55.5 - 0.54×
DSA [55] 28.2 (0.09h) 52.1 (1.94h) 60.6 (11.1h) 85.0× 0.71×
DM [56] 26.0 (0.25h) 48.9 (0.26h) 63.0 (0.31h) 89.0× 0.69×
TM [3] 46.3 (6.35h) 65.3 (6.69h) 71.6 (7.39h) 3.57× 0.94×
Ours5 49.2 (4.44h) 67.1 (4.45h) 73.8 (6.11h) 4.90× 0.99×
Ours10 48.5 (2.22h) 66.5 (2.23h) 73.1 (3.05h) 9.77× 0.97×

CIFAR-100

Full Dataset 56.2 56.2 56.2 - -
IDC [22] 25.1 (125h) 45.1 (127h) - 1.00× 1.00×
CAFE [47] 12.9 27.8 37.9 - 0.56×
DSA [55] 13.9 (0.83h) 32.3 (17.5h) 42.8 (221.1h) 78.9× 0.63×
DM [56] 11.4 (1.67h) 29.7 (2.64h) 43.6 (2.78h) 61.4× 0.55×
TM [3] 24.3 (7.74h) 40.1 (9.47h) 47.7 (-) 14.7× 0.92×
Ours5 29.8 (25.1h) 45.6 (25.6h) 52.6 (42.00h) 4.97× 1.10×
Ours10 29.4 (12.5h) 45.2 (12.8h) 52.2 (21.00h) 9.96× 1.09×
Ours20 29.1 (6.27h) 44.1 (6.40h) 52.1 (10.50h) 19.9× 1.07×

Table 1. Comparing efficiency and performance of dataset distillation methods on CIFAR-10 and CIFAR-100. Speed up represents the
average acceleration amount of training time on a single RTX-2080 GPU with the same batch size 64. Acc. Gain represents the average
improvement in test accuracy of network trained on the condensed dataset over IDC [22]. Training time is not reported for CAFE [47] that
does not provide official implementation and IDC [22] that requires more than one GPU on CIFAR-100 for Img/Cls=50.

Dataset Method Img/Cls Speed Up Acc. Gain
10 20

ImageNet-10

Full Dataset 90.8 90.8 - -
IDC [22] 72.8 (70.14h) 76.6 (92.78h) 1.00× 1.00×
DSA [55] 52.7 (26.95h) 57.4 (51.39h) 2.20× 0.73×
DM [56] 52.3 (1.39h) 59.3 (3.61h) 38.1× 0.74×
Ours5 74.6 (15.52h) 76.3 (20.05h) 4.57× 1.01×

ImageNet-100

Full Dataset 82.0 82.0 - -
IDC [22] 46.7 (141h) 53.7 (185h) 1.00× 1.00×
DSA [55] 21.8 (9.72h) 30.7 (23.9h) 14.1× 0.51×
DM [56] 22.3 (2.78h) 30.4 (2.81h) 58.2× 0.52×
Ours5 48.4 (29.8h) 56.0 (38.6h) 4.76× 1.04×

Table 2. Comparing efficiency and performance of dataset distillation methods on ImageNet-10 and ImageNet-100. We measure the
training time on a single RTX-A6000 GPU with the same training hyperparameters. For ImageNet-100, we follow IDC [22] to split the
whole dataset into five tasks with 20 classes each for faster optimization. The training time reported in ImageNet-100 is for one task.

ResNet-10 [15] by replacing strided convolution as average
pooling for downsampling.

Evaluation Metrics. We study several methods in terms of
performance and efficiency. The performance is measured
by the testing accuracy of networks trained on condensed
datasets. The efficiency is measured by GPU hours required
by the dataset distillation process [9]. For a fair comparison,
all GPU hours are measured on a single GPU. The training

time of condensing CIFAR-10, CIFAR-100 and ImageNet
subsets is evaluated on RTX-2080 GPU and RTX-A6000
GPU, respectively. We adopt FLOPs as a metric of compu-
tational efficiency.

Baselines. We compare our method with several prominent
dataset condensation methods like (1) gradient-matching
method including DSA [55] and IDC [22] (2) distribution-
matching including DM [56] and CAFE [47] (3) parameter-
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Figure 3. Performance comparison across a varying number of training steps.
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Figure 4. Performance comparison across varying training time and FLOPs.

matching including TM [3]. We use the state-of-the-art
dataset distillation method IDC as the strongest baseline to
calculate the gap between other methods on performance
and efficiency.
Training Details. We adopt IDC as the backbone of
our method, which is the state-of-the-art gradient-matching
dataset distillation method. The outer loops and learning
rate of condensed data are 400/100 and 0.01/0.1 for CIFAR-
10/100 and ImageNet-Subsets. We employ 5/10 pre-trained
models for CIFAR-10/100 and ImageNet. The number of
pre-train epochs is 2/5/10 for CIFAR-10/100, ImageNet-10,
and ImageNet-100. The setting of other hyperparameters
follows IDC [22] including the number of inner loops, batch
size, and augmentation strategy.

5.2. Condensed Data Evaluation

CIFAR-10 & CIFAR-100. Our method achieves a better
trade-off in task performance vs. the amount of training
time and computation compared to other state-of-the-art
baselines on CIFAR-10 and CIFAR-100. For instance, as
shown in Tab. 1, our method is comparable to IDC while
achieving 5× and 10× speed ups on CIFAR-10. Our
method shows 10%, 9%, and 7% performance improve-
ments over IDC on CIFAR-100 while achieving 5×, 10×,
and 20× acceleration, respectively.

To further demonstrate the advantages of our method,
we report the evaluation results across a varying amount

of computational resources in the form of the number of
training steps in Fig. 3, training time, and FLOPs in Fig. 4.
We observe that our method consistently outperforms all the
baselines across different training steps, training times, and
FLOPs. This demonstrates the effectiveness of our distil-
lation method in capturing informative features from early-
stage training; and enhanced diversity of the models for bet-
ter generalizability. Interestingly, our method obtains better
performance and efficiency over state-of-the-art baselines
on CIFAR-100 as compared to CIFAR-10. This demon-
strates the effectiveness and scalability of our method on
large-scale datasets which makes it more appealing for all
practical purposes.
ImageNet. Apart from CIFAR-10/100, we further inves-
tigate the performance and efficiency of our method on
the high-resolution dataset ImageNet. Following previous
baselines [22, 46], we evaluate our method on ImageNet-
subset consisting of 10 and 100 classes.

We observe that the dataset distillation methods on Im-
ageNet suffer from severe efficiency challenges. As shown
in Tab. 2, dataset distillation method IDC [22] achieves high
performance while requiring almost 4 days on ImageNet-
10; while DSA [57] and DM [55] are more efficient in train-
ing time with significantly poor performance. The accu-
racy of networks trained on condensed data generated by
our method outperforms all existing state-of-the-art base-
lines with the least training time. For instance, our method
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requires less than 1 day to condense ImageNet-10, which
leads to 5× speedup over SOTA methods.

As shown in Fig. 3 and Fig. 4, we conduct extensive
experiments with various training budgets. The results
demonstrate that our method requires significantly fewer
training steps, time, and computation resources to reach the
same performance as the SOTA method IDC and achieves
higher performance with the same training budgets. This
indicates that utilizing early-stage models as initialization
guides dataset distillation to focus on distinguishing fea-
tures at the beginning of distillation. The exploration of di-
versity expands the parameter space and reduces the amount
of time on learning repeated and redundant features.

Dataset Method Evaluation model
ConvNet-3 ResNet-10 DenseNet-121

CIFAR-100 IDC [22] 45.1 38.9 39.5
Ours5 46.5 38.4 39.6

(a) The performance of condensed CIFAR-100 dataset (10 images per
class) trained on ConvNet-3 on different network architectures.

Dataset Method Evaluation model
ResNetAP-10 ResNet-18 EfficientNet-B0

ImageNet-10 IDC [22] 74.0 73.1 74.3
Ours5 74.6 74.5 75.4

(b) The performance of condensed ImageNet-10 dataset (10 images per
class) trained on ResNetAP-10 on different network architectures.

Table 3. Performance of synthetic data learned on CIFAR100 and
ImageNet-10 datasets with different architectures. The networks
are trained on condensed dataset and validated on test dataset.

Cross-Architecture Generalization. We also evaluate the
performance of our condensed data on architectures differ-
ent from the one used to distill it on the CIFAR-100 (1
and 10 images per class) and ImageNet-10 (10 images per
class). In Tab. 3, we show the performance of our baselines
ConvNet-3 and ResNetAP-10 evaluated on ResNet-18 [15],
DenseNet-121 [18], and EfficientNet-B0 [45].

For IDC [22], we use condensed data provided by the
official implementation for evaluation of their method. Our
method obtains the best performance on all the transfer
models except for ResNet-10 on CIFAR-100 (10 images per
class) where we lie within one standard deviation of IDC –
demonstrating the robustness of our method to changes in
network architecture.

5.3. Analysis

We perform ablation studies on our efficient dataset dis-
tillation method described in Sec. 4. Specifically, we mea-
sure the impact of (1) the number of epochs of pre-training
on real data, (2) the magnitude of parameter perturbation,
(3) the number of early-stage models, and (4) the accelera-
tion of training.
Epochs of Pre-training. We study the effect of pre-training

epochs on networks used in our method in terms of test ac-
curacy on CIFAR-10 (10 images per class) and demonstrate
results in Fig. 5a. We observe that early-stage networks pre-
trained with 2 epochs perform significantly better than ran-
domly initialized networks and well-trained networks with
300 epochs. The results demonstrate that early-stage net-
works contain a more informative parameter space than ran-
domly initialized networks, thereby helping the condensed
datasets to capture features more efficiently. While it is
generally known that well-trained networks perform better,
well-trained networks tend to get stuck in local optima and
lack diversity among parameter spaces. On the other hand,
early-stage models provide flexible and informative guid-
ance for dataset distillation.
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Figure 5. Condensation performance from networks pre-trained
for different epochs and varying magnitudes of parameter pertur-
bation. The networks are trained with same hyper-parameters ex-
cept for training epochs and perturbation magnitudes, respectively.
Evaluation is performed on CIFAR-10 (10 images per class).

Magnitude of Parameter Perturbation. We study the
effect of the magnitude α of parameter perturbation in
terms of test accuracy on CIFAR-10 (10 images per class)
and report results in Fig. 5b. We observe that condensed
dataset achieves better performance on both accuracy and
efficiency when magnitude α is carefully set as shown in
Fig. 5b. When the magnitude is large, e.g., 10, the per-
turbed networks diverge from the original space; the per-
turbed parameter space contains less relevant and inconsis-
tent information, thereby impacting performance and effi-
ciency. When the magnitude is small, such as not employ-
ing parameter perturbation, the parameter space lacks diver-
sity compared to well-designed perturbed parameter space.
Experimental results show that α = 1 is optimal for CIFAR
in our setting which works consistently better across all
training steps. Well-designed magnitude makes perturbed
networks concentrated around the original network, thereby
augmenting the parameter space with diversified and rele-
vant information.
Number of Early-Stage Models. We study the effect of
the number of early-stage models in our experiment and
show the results in Fig. 6. It is observed that the number of
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early-stage models N has less impact on the test accuracy
of the condensed dataset. We argue that parameter pertur-
bation in our method plays an important role in exploring
the diversity of early-stage models; such that the descrip-
tion of parameter space depends on the representation of
models rather than the number of models. In our method,
a few models, e.g. 5, can achieve comparable performance
to SOTA [22], with two significant advantages. The first is
to shorten training time as the number of outer loops in DD
is closely related to the number of models N . The second
is to reduce computation resources in network pre-training.
TM [4] also utilizes network pre-training in DD, however,
the number of models in their method is relatively large, e.g.
50, which is 10×more than ours. Parameter perturbation in
our method augments the diversity of models and improves
efficiency with only a small number of models.
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Figure 6. Condensation performance from a varying number of
early-stage models. Performances with a varying number of mod-
els are similar, which demonstrates that our method is not sensitive
to the number of models to achieve high performance.
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Figure 7. Performance of our method applied to different dataset
distillation methods on CIFAR-10 dataset (10 images per class).
Our results are reported with 5× training acceleration.

Acceleration of Training. We study the effect of acceler-
ation of training on existing DD methods [22, 55, 57] and
our method. We observe our method to retain similar per-
formance with minor regression to increased training ac-
celeration / speed-ups – while the performance of existing
methods drops dramatically in Tab. 4. Our method achieves

Speed up DC [57] DSA [55] IDC [22] Ours

1× 44.9 52.1 67.5 -
5× 41.6 (-3.3) 47.0 (-5.1) 66.2 (-1.3) 67.1
10× 39.2 (-5.7) 46.2 (-5.9) 65.0 (-2.5) 66.5 (-0.6)
20× 37.8 (-7.1) 44.8 (-7.3) 63.7 (-3.8) 65.2 (-1.9)

(a) CIFAR-10 (Img/Cls=10)

Speed up DC [57] DSA [55] IDC [22] Ours

1× 53.9 60.6 74.5 -
5× 50.3 (-3.6) 56.5 (-4.1) 73.3 (-1.2) 73.8
10× 47.3 (-6.6) 55.7 (-4.9) 72.0 (-2.5) 73.1 (-0.7)
20× 42.0 (-11.9) 54.1 (-6.5) 71.1 (-3.4) 71.7 (-2.1)

(b) CIFAR-10 (Img/Cls=50)

Speed up DC [57] DSA [55] IDC [22] Ours

1× 29.5 32.3 45.1 -
5× 23.1 (-6.4) 29.3 (-3.0) 43.4 (-1.9) 46.2
10× 21.1 (-8.4) 28.7 (-3.6) 41.6 (-3.5) 45.6 (-0.6)
20× 18.6 (-10.9) 27.9 (-4.4) 40.5 (-4.6) 45.0 (-1.2)

(c) CIFAR-100 (Img/Cls=10)

Table 4. Condensation performance with different acceleration /
speed ups over state-of-the-art dataset distillation approaches. We
show performance drop between increased speed up in brackets.
Our method achieves higher performance over baseline methods
at all levels of speed up. With increased speed up, our method
shows minor regression in performance.

better performance than baselines at all levels of speed-
up. This demonstrates the informativeness of our parameter
space in terms of diversity and reduced redundancy; such
that the condensed dataset does not learn similar informa-
tion repeatedly and captures sufficient features efficiently.
It is worth noting that our method performs better with less
regression at higher levels of speed up on the more com-
plex dataset, e.g., CIFAR-100. We also demonstrate our
method can be orthogonally applied to other dataset distil-
lation methods in Fig. 7. We apply parameter perturbation
on other DD methods to accelerate the training 5× faster.
This indicates better scalability and improved efficiency of
our method in condensing large-scale datasets.

6. Conclusion
In this work, we introduce a novel method for improving

the efficiency of gradient-matching based dataset distilla-
tion approaches. We leverage model augmentation strate-
gies with early-stage training and parameter perturbation
to increase the diversity of the parameter space as well
as massively reduce the computation resource for dataset
distillation. Our method is able to achieve 10× accelera-
tion on CIFAR and 5× acceleration on ImageNet. As the
first attempt to improve the efficiency of gradient-matching
based dataset distillation, the proposed method successfully
crafts a condensed dataset of ImageNet in 18 hours, making
dataset distillation more applicable in real-world settings.
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