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Abstract

This work focuses on a practical knowledge transfer task
defined as Source-Free Unsupervised Domain Adaptation
(SFUDA), where only a well-trained source model and un-
labeled target data are available. To fully utilize source
knowledge, we propose to transfer the class relationship,
which is domain-invariant but still under-explored in previ-
ous works. To this end, we first regard the classifier weights
of the source model as class prototypes to compute class re-
lationship, and then propose a novel probability-based sim-
ilarity between target-domain samples by embedding the
source-domain class relationship, resulting in Class Rela-
tionship embedded Similarity (CRS). Here the inter-class
term is particularly considered in order to more accurately
represent the similarity between two samples, in which the
source prior of class relationship is utilized by weighting.
Finally, we propose to embed CRS into contrastive learn-
ing in a unified form. Here both class-aware and instance
discrimination contrastive losses are employed, which are
complementary to each other. We combine the proposed
method with existing representative methods to evaluate its
efficacy in multiple SFUDA settings. Extensive experimen-
tal results reveal that our method can achieve state-of-the-
art performance due to the transfer of domain-invariant
class relationship. 1

1. Introduction
Benefiting from the large amount of labeled training

data, deep neural networks have achieved promising results
in many computer vision tasks [7, 15, 19, 95]. To reduce the
annotation cost, Unsupervised Domain Adaptation (UDA)
has been devised by transferring knowledge from a label-
rich source domain to a label-scarce target domain. Cur-
rently, many UDA methods have been proposed that jointly
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1Code is available at https://github.com/zhyx12/CRCo
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Figure 1. Illustration of our proposed method. The upper left rep-
resents the target-domain featrue distribution by source pre-trained
model. The upper right is the feature distribution obtained by our
method. The bottom is the process of class relationship embedded
contrastive learning. Best viewed in color.

learn on the source and target data. But they would be
unapplicable for some real-world scenarios involving pri-
vacy (e.g., medical images, surveillance videos) because the
source-domain data cannot be accessed. Thus, more recent
methods [36, 42, 71, 79, 87, 88] focus on Source-Free Un-
supervised Domain Adaptation (SFUDA). Under this set-
ting, the labeled source data are not accessible any more
when training the target model, but the pre-trained model
in the source domain is provided. Then a natural question
arises, i.e., what knowledge should we transfer to facilitate
the learning of unlabeled target-domain data?

Some methods [21, 36, 42] assume that the source hy-
pothesis (i.e., classifier [42] or whole model [21, 36]) con-
tains sufficient knowledge for target domain. Then they
transfer source knowledge by directly aligning features with
the fixed source classifier [42], resorting to historical mod-
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els [21], or weight regularization [36]. Another line of
works [87, 89, 90] assume the source model already forms
some semantic structure, and then utilize the local infor-
mation (i.e., neighborhood) of feature space to enforce the
similarity in the output space. Despite these progress, what
knowledge to be transferred remains an open question.

In this work, we propose to transfer the class relation-
ship represented by the similarity of classifier weights. Ac-
tually, the class relationship is domain-invariant [14], since
the same class in the source and target domains essentially
represents the same semantic in spite of domain discrep-
ancy. For example, the computers are always more simi-
lar with the TV than the scissors. Thus, it is reasonable
to guide the target domain learning using class relationship
prior. Unlike previous methods that learn class distribu-
tion by pseudo labeling [21, 42] and local aggregation of
neighborhood predictions [79, 87, 89, 90], here we explic-
itly model the source-domain class relationship. To be spe-
cific, we regard each weight of classifier as the class proto-
type [90], and then compute a class relationship matrix As

by cosine similarity, as shown in Figure 1.
Before explaining how to use this matrix, we illustrate

the purpose of representation learning in the target domain
using Figure 1, where three classes are adopted for clarity.
The top left shows the target-domain feature distribution to-
gether with the class weights learned from the source do-
main. It can be seen that such a situation makes it difficult
to perform correct classification. In fact, it is expected that
the learned features are discriminative and compact around
the corresponding class weight, as shown on the top right.
To this end, an intuitive way is to make the relationship
of learned class prototypes in the target domain consistent
with that in the source domain. However, it has a very lim-
ited effect on training the target-domain model as such a
prototype-level constraint is too weak for optimization.

In this work, we propose to embed the source-domain
class relationship in contrastive learning, which has been
shown to be outstanding in representation learning [9, 18].
Here we design a novel sample similarity by taking into ac-
count As. Specifically, we compute the similarity between
two target domain samples in the output space, represented
by the prediction probabilities (i.e., p and p′), as shown in
Figure 1. In particular, we consider the inter-class term (i.e.∑

i ̸=j pip
′
j) in addition to the traditional intra-class term

(i.e.
∑

i pip
′
i). Note that the sum of these two terms equals

one, in which the intra-class term measures the similarity
that two samples come from the same class, while the inter-
class term measures that from different classes. Consider-
ing the relationship between classes, we weight the inter-
class term by the non-diagonal elements in As. In partic-
ular, if the class i is closer to j than k (i.e., As

ij > As
ik),

pip
′
j would be more important in calculating the similarity

of p and p′. By the above design, our proposed similarity

can more accurately express the relationship of two samples
based on output space. For example, among three classes
1, 2, 3 in Figure 1, the classes 1 and 2 are closer. Given three
samples x1, x2, x3 belonging to them with the probabilities
[0.9, 0.05, 0.05], [0.05, 0.9, 0.05], and [0.05, 0.05, 0.9]. If
we only use the intra-class term, all three samples have the
same similarity. But for our designed similarity, x1 is closer
to x2 than x3, which is more reasonable.

On the basis of the proposed similarity, we further pro-
pose to perform contrastive learning in a unified form. In-
spired by recent success in semi-supervised learning [67,
85, 91] and unsupervised learning [9, 18], we propose
two types of contrastive losses. As shown in Figure 1,
the first one is Class Relationship embedded Class-Aware
Contrastive (CR-CACo) loss where the high-confident sam-
ples are enforced to be close to the corresponding proto-
type and away from other prototypes. Due to embedding
the prior class relationship, our CR-CACo loss is more ro-
bust to label noise caused by domain shift. The second one
is Class Relationship embedded Instance Discrimination
Contrastive (CR-IDCo) loss where two views of the same
sample are encouraged to be close and away from all other
samples. Benefited from our designed accurate similarity,
the CR-IDCo loss would more effectively learn discrimina-
tive features [9, 18, 75]. Actually, these two losses are com-
plementary to each other, and their combination can achieve
better performance.

Our contributions are summarized as follows:

• We propose to explicitly transfer class relationship for
SFUDA which is more domain-invariant. And we pro-
pose to embed the class relationship into contrastive
learning in order to effectively perform representation
learning in the target domain.

• We propose a novel class relationship embedded sim-
ilarity which can more accurately express the sample
relationship in the output space. Furthermore, we pro-
pose two contrastive losses (i.e., CR-CACo and CR-
IDCo) exploiting our designed similarity.

• We conduct extensive experiments to evaluate the pro-
posed method, and the results validate the effective-
ness of our method, which achieves the state-of-the-art
performance on multiple SFUDA benchmarks.

2. Related Work
2.1. Unsupervised Domain Adaptation

The conventional approaches in UDA [2, 3] are to learn
domain-invariant representations, and can be classified into
two coarse types. The first one decreases some distribution
discrepancy metrics [49, 57, 68, 72, 84]. Another common
line is adversarial training [11, 12, 45, 48, 64, 77, 96]. To in-
crease discriminability, more recent DA methods attempt
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to investigate the target domain structure. Self-training
as a typical approach generates target domain pseudo la-
bels [16, 17, 27, 28, 40, 46, 51, 54, 94, 101]. Another cate-
gory is to construct prototypes [8, 34, 55, 80, 81, 93, 97, 99]
or cluster centers [13, 26, 47, 70] across domains and then
perform class-wise alignment. Among these methods, most
of them rely on source-labeled data during target training,
while pseudo label based methods can be directly applied
in SFUDA. In our CR-CACo loss, pseudo label is also used
and our method can alleviate the negative impact of label
noise due to the usage of source class relationship.

2.2. Source-free Domain Adaptation

Early SFUDA methods [31, 32, 36] resort to synthe-
size extra training samples to get compact decision bound-
aries. Some recent methods [10, 21, 33, 42, 61] use pseudo-
label based self-training. SHOT [42] proposes to freeze
the source classifier and it clusters target features by
IM loss [20] along with clustering based pseudo label-
ing. HCL [21] adopts feature space Instance Discrimi-
nation [78] from current and historical models, together
with pseudo label learning conditioned on historical consis-
tency. D-MCD [10] proposes denoised MCD [64] to mit-
igate the impact of sample selection bias and label noise.
CoWA-JMD [33] uses the joint model-data structure score
as sample-wise weights, along with weight mixup to ex-
ploit more target knowledge. BMD [61] proposes a class-
balanced multicentric dynamic prototype strategy to obtain
more accurate pseudo labels. Another line of methods (i.e.
NRC [87], G-SFDA [89] and AaD [90]) propose neighbor-
hood clustering which enforces prediction consistency be-
tween local neighbors.

In addition to the above methods, others solve SFUDA
from different aspects. A2Net [79] proposes to learn an
additional target classifier and uses a contrastive category-
wise matching module to learn compact features. DIPE [74]
and VMP [25] explore transferability of source model pa-
rameters. Sub-sup [29] proposes novel subsidiary pre-
text tasks to assist domain adaptation. U-SFAN [62] uses
the uncertainty quantified by the predictions to guide the
target adaptation. Feat-mix [30] proposes image-level
and feature-level mixup to enhances the discriminability-
transferability tradeoff. Among these methods, few of them
explicitly consider the usage of class relationship.

3. Method
3.1. Preliminaries

For source-free unsupervised domain adaptation
(SFUDA), we are given source pre-trained model and an
unlabeled target domain with Nt samples as Dt = {xt

i}
Nt
i=1.

Target domain have same C classes as source domain (for
closed-set setting). The goal of SFUDA is to adapt the

model to target domain without source data. We divide
the model into two parts: the feature extractor f , and
the classifier g. The output of classifier is denoted as
p = δ(g(f(x))) ∈ RC where δ is the softmax function.

We adopt a teacher-student framework following [18] as
shown in Figure 2. The teacher feature extractor (i.e. f̃ )
is continuously updated by exponential moving average of
the student feature extractor (i.e. f ), and the classifiers (i.e.
g, g̃) are shared and frozen as in SHOT [42]. We use sample
probabilities as input for contrastive loss, the query proba-
bility is obtained from the student model, and the positive
and negative probabilities are obtained through the teacher
model. During inference, we directly use the student model.
In the following, we first introduce class relationship em-
bedded similarity, and then elaborate on how it is used in
the proposed contrastive learning process.

3.2. Class Relationship Embedded Similarity

The inherent semantic and visual relationships among
different classes are consistent across domains, regardless
of distribution discrepancy. Inspired by this, we propose
to explicitly transfer class similarities. Here we regard the
normalized classifier weights W s = [ws

1,w
s
2, ...w

s
C ]

T ∈
RC×D as class prototypes where D is the dimension of the
last feature. Thus, the class similarity matrix As can be
obtained by As = W s(W s)

T ∈ RC×C .
An natural way to utilize As is to obtain target class sim-

ilarity matrix At by target prototypes and then enforce con-
sistency between As and At. However, such a prototype-
level constraint is coarse-grained and not strong enough to
benefit the training. Instead of prototype-level, we pro-
pose a probability based sample-level similarity that con-
siders not only the traditional intra-class term, but also the
inter-class term. The latter contains probability products of
all different classes, thus we can embed the class relation-
ship matrix As into it as coefficients. Specifically, given
the probabilities p,p′ ∈ RC×1 of two samples, our Class
Relationship embedded Similarity (CRS) can be presented
as follows:

sintra(p,p
′) =

C∑
i=1

pi × p′i

sinter(p,p
′) =

C∑
i=1

C∑
j=1,j ̸=i

As
i,j × pi × p′j

scr(p,p
′) = sintra(p,p

′) + λintersinter(p,p
′)

(1)

where sintra is the traditional intra-class similarity, and
sinter is the inter-class similarity, λinter is a trade-off pa-
rameter between these two terms.

Given λinter = 1, our similarity can be presented in a
simpler version as follows:
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Figure 2. The framework of our proposed method. We use a teacher-student architecture to conduct contrastive learning. Class relationship
matrix is extracted from fixed classifier and embedded in two types of contrastive loss. Best viewed in color.

scr(p,p
′) =

C∑
i=1

C∑
j=1

Ai,j × pi × p′j

=

C∑
i=1

C∑
j=1

(piw
s
i )

T (p′jw
s
j ) = (pTW s)(p′TW s)T

(2)
where pTW s ∈ R1×D can be viewed as a new fea-
ture which is probability weighted sum of different class
weights.

3.3. Class Relationship Embedded Contrastive Loss

Inspired by the success of contrastive learning in differ-
ent tasks [9, 18, 21, 26, 85], we propose to use our CRS for
contrastive loss. Following previous work [9, 18], the con-
trastive loss can be presented as follows:

h(p,p′) = exp(scr(p,p
′)/Tco),

ℓco = − log
h(p,p+)

h(p,p+) +
∑

p−∈M

h(p,p−)
, (3)

where Tco is a temperature parameter, and h denotes the
exponent of scaled similarity. M is the memory bank [18]
storing probabilities of negative samples. Since our CRS
is built on probability, here we use probabilities as inputs
instead of original features [18] or projected features [9].

With this unified form, we further instantiate it to two
losses: class-aware contrastive loss and instance discrim-
ination contrastive loss. The framework of our proposed
method is shown in Figure 2.

Class-Aware Contrastive Loss To achieve class-aware
learning, it is important to select proper samples and obtain
more accurate pseudo labels for them. Inspired by previ-
ous efforts in SSL [67, 85] and UDA [41, 93], we consider

constructing positive pairs from strongly and weakly aug-
mented views of the same image. Specifically, given prob-
abilities ps and p̃w (tilde superscript denotes output by the
teacher model) of strongly and weakly augmented views,
we first compare Max(p̃w) with a predefined threshold τ to
select high-confident samples. Due to domain shift, instead
of directly using argmax(pw) as pseudo label, we adopt
the clustering-based pseudo-labeling method in SHOT [42].
Based on pseudo label, we can get the positive samples p∗

with the one-hot form. For the negative samples p−, we
use one-hot probabilities of all classes except the pseudo
label class. Therefore, both positive and negative sam-
ples (i.e. p∗ and p−) are generated from the pseudo la-
bel of weak target sample through teacher model. Finally,
the Class Relationship embedded Class-Aware Contrastive
(CR-CACo) loss is presented as

ℓcr caco = − log
h(ps,p

∗)

h(ps,p∗) +
∑

p−∈Mcaco

h(ps,p−)
, (4)

where h follows the definition in Equation (3), Mcaco stores
negative samples and is different for each sample according
to its pseudo label.

Regardless of pseudo label generation, using only sintra
and replacing ps with features and p∗,p− with classifier
weights, the above Equation (4) is actually the FixMatch
loss [67]. Although FixMatch can improve the perfor-
mance, our CR-CACo loss can greatly outperform it.

Our CR-CACo loss is more robust to label noise due to
the class relationship embedded inter-class similarity. We
compare our CRS with the traditional semi-supervised Fix-
Match loss. The results are shown in Figure 3. It can be
seen that the simple IM loss [42] has lower entropy since it
has an entropy minimization term. When FixMatch loss is
used, the entropy will increase since the class relationship is
learned through high-confidence target samples. Our CRS
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Figure 3. Entropy density plots under SUDA setting Office-Home
Rw→Cl. Our class relationship embedded similarity scr has
higher entropy but better accuracy. Best viewed in color.

has larger entropy since we explicitly consider the class
relationship and can alleviate the negative impact of label
noise.

Instance Discrimination Contrastive Loss The instance
discrimination contrastive (IDCo) loss has shown remark-
able success in self-supervised learning [9, 18]. It can learn
discriminative features by regrading the two views of the
same sample as positive pairs and all other samples as neg-
ative samples. The traditional IDCo loss uses features as
input, but it only makes the feature discriminative and can-
not guarantee that the learned feature will be close to cor-
responding prototypes (i.e. classifier weights). Conducting
IDCo loss in the output space (i.e. computing similarity us-
ing sintra) can alleviate this problem [35], but the more in-
formative relationship between samples in the original fea-
ture space can not be fully expressed. This can be addressed
by our CRS since we embed the source prior class similarity
and can reflect more accurate relationship of samples.

Here we use the probabilities ps1 and p̃′
s2 of two strong

augmented views from the same image as positive pairs,
and probabilities of all other samples in the same batch as
negative samples. Finally, the Class Relationship embed-
ded Instance Discrimination Contrastive (CR-IDCo) loss is
presented as follows:

ℓcr idco = − log
h(ps1, p̃

′
s2)

h(ps1, p̃′
s2) +

∑
p̃−∈Midco

h(ps1, p̃−)
,

(5)
where h follows the definition in Equation (3), Midco con-
tains the probabilities of other samples within the same
batch.

3.4. Overall Training Objective

The proposed two losses are complementary to each
other and can be trained end-to-end. Since our CR-CACo

uses a high prob-threshold (i.e. 0.95) to select confident
samples, it should be combined with other methods that can
generate confident predictions. Otherwise, it will be domi-
nated by noise labels in the early training stage. Although it
performs normally when combined with our CR-IDCo loss,
both of them focus on transferring source class relationship,
and other methods that encourage confident predictions are
still needed and complementary to ours. As a result, we
combine our method with existing representative methods
(i.e. SHOT-IM [42], AaD [90]) to validate the effectiveness.
As a result, the overall loss is presented as:

ℓours = ℓbaseline + λcacoℓcr caco + λidcoℓcr idco (6)

where λcaco, λidco are the trade-off hyperparameters.
lbaseline is the loss of baseline (i.e., IM or AaD). It con-
tains two terms: discriminability and diversity. The former
produces high-confident outputs, and the latter avoids col-
lapse of predictions. IM uses entropy of single sample and
average of all samples, and AaD uses neighbor information.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate the effectiveness of our approach
on four standard DA benchmarks. Office-31 [63] bench-
mark consists of three domains in office environments:
Amazon (A), DSLR (D), and Webcam (W), each with 31
categories. Office-Home [73] is a more challenging dataset.
It comprises of images of commonplace objects divided
into four domains: Artistic (Ar), Clipart (Cl), Product (Pr),
and Real-World (Rw), each with 65 classes. VisDA [58]
is a large-scale dataset for synthetic-to-real domain adap-
tation. The source domain has 152,397 synthetic images,
while the target domain has 55,388 real-world images. Do-
mainNet [57] is the most challenging dataset involving 6
domains: Clipart (C), Real (R), Infograph (I), Painting (P),
Sketch (S) and Quickdraw (Q) with 345 classes each.

Implementation details. To ensure fair comparison with
related methods, we adopt the backbone of a ResNet-
50 [19] for Office-31, Office-Home, and DomainNet, and
a ResNet-101 for VisDA. We use the same network archi-
tecture as SHOT [42] where the final part of the network is
changed to suit the SFUDA task. For the classifier, we find
that fixing it or not have little impact on the final perfor-
mance, and we choose to fix it in all experiments. We adopt
SGD with momentum 0.9 and batch size 64 for all datasets
where each image has three views (i.e. one weak and two
strong augmentations).

For the hyperparameters, we empirically set the prob-
ability threshold τ to 0.95 following FixMatch [67]. We
find that τ = 0.95 works well across all settings and
tasks. For the temperature Tco in both contrastive losses,
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Table 1. Single-Source Unsupervised DA (SUDA) on Office-Home.

Method SF Office-Home

Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg

SENTRY (ICCV’21) [59] ✗ 61.8 77.4 80.1 66.3 71.6 74.7 66.8 63.0 80.9 74.0 66.3 84.1 72.2
FixBi (CVPR’21) [52] ✗ 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
SCDA (ICCV’21) [38] ✗ 60.7 76.4 82.8 69.8 77.5 78.4 68.9 59.0 82.7 74.9 61.8 84.5 73.1

A2Net (ICCV’21) [79] ✓ 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
NRC (NeurIPS’21) [87] ✓ 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
D-MCD (AAAI’22) [10] ✓ 59.4 78.9 80.2 67.2 79.3 78.6 65.3 55.6 82.2 73.3 62.8 83.9 72.2
DIPE (CVPR’22) [74] ✓ 56.5 79.2 80.7 70.1 79.8 78.8 67.9 55.1 83.5 74.1 59.3 84.8 72.5
Sub-Sup (ECCV’22) [29] ✓ 61.0 80.4 82.5 69.1 79.9 79.5 69.1 57.8 82.7 74.5 65.1 86.4 74.0
BMD (ECCV’22) [61] ✓ 58.1 79.7 82.6 69.3 81.0 80.7 70.8 57.6 83.6 74.0 60.0 85.9 73.6
U-SFAN (ECCV’22) [62] ✓ 57.8 77.8 81.6 67.9 77.3 79.2 67.2 54.7 81.2 73.3 60.3 83.9 71.9
CoWA-JMDS (ICML’22) [33] ✓ 56.9 78.4 81.0 69.1 80.0 79.9 67.7 57.2 82.4 72.8 60.5 84.5 72.5
Feat-Mixup (ICML’22) [30] ✓ 61.8 81.2 83.0 68.5 80.6 79.4 67.8 61.5 85.1 73.7 64.1 86.5 74.5
VMP (NeurIPS’22) [25] ✓ 57.9 77.6 82.5 68.6 79.4 80.6 68.4 55.6 83.1 75.2 59.6 84.7 72.8
DaC (NeurIPS’22) [98] ✓ 59.1 79.5 81.2 69.3 78.9 79.2 67.4 56.4 82.4 74.0 61.4 84.4 72.8
SHOT-IM (ICML’20) [42] ✓ 55.4 76.6 80.4 66.9 74.3 75.4 65.6 54.8 80.7 73.7 58.4 83.4 70.5
Ours+ SHOT-IM ✓ 62.8 82.0 84.3 70.9 80.8 82.6 70.0 61.1 83.6 76.2 65.1 87.0 75.5 (+5.0)
AaD (NeurIPS’22) [90] ✓ 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
Ours+ AaD ✓ 63.5 82.1 85.0 73.0 82.7 82.4 69.5 62.9 82.6 74.2 65.7 87.3 75.9 (+3.2)

Table 2. Single-Source Unsupervised Domain Adaptation
(SUDA) on Office-31 and VisDA benchmarks.

Method SF Office-31 VisDA

A→DA→WD→WW→DD→AW→AAvg S → R

BCDM (AAAI’20) [37] ✗ 93.8 95.4 98.6 100.0 73.1 73.0 89.0 83.4
MCC (ECCV’20) [24] ✗ 94.4 95.5 98.6 100.0 72.9 74.9 89.4 78.8
FixBi (CVPR’21) [52] ✗ 95.0 96.1 99.3 100.0 78.7 79.4 91.4 87.2
RADA (ICCV’21) [23] ✗ 96.1 96.2 99.3 100.0 77.5 77.4 91.1 76.3
FAA (ICCV’21) [22] ✗ 94.4 92.3 99.2 99.7 80.5 78.7 90.8 82.7
SCDA (ICCV’21) [38] ✗ 95.4 95.3 99.0 100.0 77.2 75.9 90.5 -

SHOT (ICML’20) [42] ✓ 94.0 90.1 98.4 99.9 74.7 74.3 88.6 82.9
CPGA (IJCAI’21) [60] ✓ 94.4 94.1 98.4 99.8 76.0 76.6 89.9 84.1
VDM-DA (TCSVT’21) [71] ✓ 93.2 94.1 98.0 100.0 75.8 77.1 89.7 85.1
A2Net (ICCV’21) [79] ✓ 94.5 94.0 99.2 100.0 76.7 76.1 90.1 84.3
HCL (NeurIPS’21) [21] ✓ 90.8 91.3 98.2 100.0 72.7 72.7 87.6 83.5
NRC (NeurIPS’21) [87] ✓ 96.0 90.8 99.0 100.0 75.3 75.0 89.4 85.9
SHOT++ (TPAMI’21) [43] ✓ 94.3 90.4 98.7 99.9 76.2 75.8 89.2 87.3
D-MCD (AAAI’22) [10] ✓ 94.1 93.5 98.8 100.0 76.4 76.4 89.9 87.5
DIPE (CVPR’22) [74] ✓ 96.6 93.1 98.4 99.6 75.5 77.2 90.1 83.1
Sub-Sup (ECCV’22) [29] ✓ 95.6 94.6 99.2 99.8 77.0 77.7 90.7 88.2
BMD (ECCV’22) [61] ✓ 96.2 94.2 98.0 100.0 76.0 76.0 90.1 88.7
CoWA-JMDS (ICML’22) [33] ✓ 94.4 95.2 98.5 100.0 76.2 77.6 90.3 86.9
Feat-Mixup (ICML’22) [30] ✓ 94.6 93.2 98.9 100.0 78.3 78.9 90.7 87.8
VMP (NeurIPS’22) [25] ✓ 93.3 96.2 98.6 100.0 75.4 76.9 90.0 -
SHOT-IM (ICML’20) [42] ✓ 90.6 91.2 98.3 99.9 72.5 71.4 87.3 80.4
Ours + SHOT-IM ✓ 95.8 95.1 99.0 100.0 76.6 78.3 90.8(+3.5)89.1(+8.7)
AaD (NeurIPS’22) [90] ✓ 96.4 92.1 99.1 100.0 75.0 76.5 89.9 88.0
Ours+ AaD ✓ 96.6 95.5 99.1 100.0 76.9 78.3 91.1(+1.2)89.6(+1.6)

we set it to 0.07 following previous contrastive learning
methods [18, 21, 85]. For the λinter in our similarity, we
use 1.0 for simplicity. For the trade-off hyperparameters
λcaco, λidco, we directly set them to 1.0. More training de-
tails can be found in the supplementary material.

4.2. Results

The results are shown in Table 1, Table 2, Table 3 and Ta-
ble 4. In each table, SF indicates source-free, * indicates
results we reproduced from the released code. (+x.x) indi-
cates gains over SHOT-IM [42] and AaD [90] respectively.
Ours means combination of our proposed two losses.

Single Source Domain Adaptation Table 1 and Table 2
show the classification accuracy for single-source DA on
each dataset: Office-Home, Office-31, and VisDA. Based
on the simple SHOT-IM and stronger AaD, our method
can achieve state-of-the-art performance. UDA methods
BCDM [37] and MCC [24] also explore the inter-class rela-
tionship by directly suppressing the inter-class term to ob-
tain determined outputs. Our method surpasses these meth-
ods even without source domain supervision.

The two proposed contrastive losses exploit different
views of the same image. Thus our method is com-
plementary to those not utilizing information of different
views. Both baselines only consider weak views, and so our
method can boost them. AaD surpasses IM by regarding lo-
cal neighbors as positive pairs. In our CR-IDCo loss, the
strong views of the same image can be regarded as neigh-
bors since they are very close in feature space, which has
overlapped effect with AaD. When our method is combined
with AaD, therefore, the improvement is relatively smaller.

Multi Source Domain Adaptation Table 3 shows the
results for multi-source DA on Office-Home and the large-
scale DomainNet benchmark. We adopt two baselines
without using domain labels, that is, all data from differ-
ent source domains is treated as belonging to a single do-
main and only one source model is trained and transferred.
We observe improvements of 4.1% and 3.4% in Domain-
Net, 4.5% and 3.0% in Office-Home. CAiDA [14] consid-
ers class relationship by enforcing consistency of different
source model outputs. It achieves 76.2% on Office-Home
by combining IM loss, a novel confident-anchor-induced
pseudo label method and the class-relationship-aware con-
sistency loss. Based on the same IM loss, ours achieves
78.1% and exceeds it by 1.9%.
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Table 3. Multi-Source Unsupervised Domain Adaptation (MUDA) on DomainNet and Office-Home.

Method SF w/o Domain
Labels

DomainNet Office-Home

�C �I �P �Q �R �S Avg �Ar �Cl �Pr �Rw Avg

MCC (ECCV’20) [24] ✗ ✗ 65.5 26.0 56.6 16.5 68.0 52.7 47.6 - - - - -
CMSDA (BMVC’21) [66] ✗ ✗ 70.9 26.5 57.5 21.3 68.1 59.4 50.4 71.5 67.7 84.1 82.9 76.6
DRT (CVPR’21) [39] ✗ ✗ 71.0 31.6 61.0 12.3 71.4 60.7 51.3 - - - - -
STEM (ICCV’21) [53] ✗ ✗ 72.0 28.2 61.5 25.7 72.6 60.2 53.4 - - - - -

Source-combine ✗ ✓ 57.0 23.4 54.1 14.6 67.2 50.3 44.4 58.0 57.3 74.2 77.9 66.9
DECISION (CVPR’21) [1] ✓ ✗ 61.5 21.6 54.6 18.9 67.5 51.0 45.9 74.5 59.4 84.4 83.6 75.5
CAiDA (NeurIPS’21) [14] ✓ ✗ - - - - - - - 75.2 60.5 84.7 84.2 76.2
Sub-Sup (ECCV’22) [29] ✓ ✓ 70.3 25.7 57.3 17.1 69.9 57.1 49.6 75.1 64.1 86.6 84.4 77.6
Feat-Mixup (ICML’22) [30] ✓ ✓ 75.4 24.6 57.8 23.6 65.8 58.5 51.0 72.6 67.4 85.9 83.6 77.4
SHOT-IM* (ICML’20) [42] ✓ ✓ 64.5 24.2 55.2 15.5 67.0 53.2 46.6 71.5 58.6 81.9 82.3 73.6
Ours + SHOT-IM ✓ ✓ 69.8 27.0 59.0 21.2 70.2 57.5 50.7(+4.1) 74.9 66.4 85.1 85.8 78.1 (+4.5)
AaD* (NeurIPS’22) [90] ✓ ✓ 65.7 25.5 56.4 17.0 68.1 54.6 47.9 72.1 60.6 85.3 84.4 75.6
Ours +AaD ✓ ✓ 71.2 27.8 59.3 22.5 69.3 57.8 51.3(+3.4) 75.4 66.9 86.4 85.9 78.6 (+3.0)

Table 4. Partial-set and open-set Domain Adaptation (PDA and
ODA) on Office-Home.

Partial-set DA SF Avg. Open-set DA SF Avg.

ResNet-50 [19] ✗ 61.3 ResNet [19] ✗ 65.3
IWAN (CVPR’18) [92] ✗ 63.6 OpenMax (CVPR’16) [4] ✗ 66.7
SAN (CVPR’18) [5] ✗ 65.3 ATI-λ (ICCV’17) [56] ✗ 66.1
ETN (CVPR’19) [6] ✗ 70.5 OSBP (ECCV’18) [65] ✗ 65.7
SAFN (ICCV’19) [82] ✗ 71.8 STA (CVPR’19) [44] ✗ 69.5

Source model only ✓ 62.8 Source model only ✓ 46.6
SHOT (ICML’20) [42] ✓ 79.3 SHOT (ICML’20) [42] ✓ 72.8
SHOT+HCL (NeurIPS’21) [21] ✓ 80.1 SHOT+HCL (NeurIPS’21) [21] ✓ 73.2
CoWA-JMDS (ICML’22) [33] ✓ 83.2 CoWA-JMDS (ICML’22) [33] ✓ 73.2
SHOT-IM (ICML’20) [42] ✓ 76.8 SHOT-IM (ICML’20) [42] ✓ 71.5
Ours +SHOT-IM ✓ 80.6 (+3.8) Ours +SHOT-IM ✓ 73.2(+1.7)
AaD* (NeurIPS’22) [90] ✓ 79.7 AaD* (NeurIPS’22) [90] ✓ 71.8
Ours +AaD ✓ 82.4 (+2.7) Ours +AaD ✓ 73.3(+1.5)

Domain Adaptation Beyond Vanilla Closed-set We
provide additional results under source-free partial-set and
open-set DA (PDA and ODA) setting on Office-Home. For
open-set detection in ODA , we follow the same protocol to
detect unseen categories as SHOT [42]. Results are shown
in Table 4. It can be seen that our method can achieve per-
formance comparable to that of the state-of-the-arts.

4.3. Analysis

Component-wise ablations Here we validate the ef-
fectiveness of different proposed losses. As described
in Sec. 3.4, we do not use CR-CACo loss alone. The re-
sults are shown in Table 5. It can be seen that when using
our method alone (line #2) can achieve comparable perfor-
mance. When combined with SHOT-IM, our both losses are
complementary, and the best performance can be achieved
by combining baseline and our losses. Note that although
CR-IDCo (line #1) outperforms IM (line #0), it is worse
than IM when combined with CR-CACo (i.e. line #2 < line
#3). This is caused by the fact that CR-IDCo cannot pro-
duce enough confident samples as IM for the learning of
CR-CACo loss.

Effect of pseudo labels in CR-CACo In our pro-
posed CR-CACo loss, the pseudo label is generated from
clustering-based method in SHOT [42] instead of predic-
tions of weakly augmented images. The results of the com-
parison are shown in Table 6. It can be seen that our

Table 5. Component-wise ablation studies of the proposed meth-
ods under the SUDA setting.

# IM CR-CACo CR-IDCo Office-31 Office-Home VisDA
0 ✓ 87.3 70.5 80.4
1 ✓ 89.2 72.5 83.0
2 ✓ ✓ 89.6 74.0 85.3
3 ✓ ✓ 89.8 74.8 87.0
4 ✓ ✓ 90.2 74.3 85.8
5 ✓ ✓ ✓ 90.8 75.5 89.1

CR-CACo can bring significant improvement when using
pseudo label from model prediction. The clustering based
pseudo-label can bring slight but consistent improvements.

Table 6. Comparison of different pseudo label methods.

# Baseline
Pseudo-label in CR-CACo

Office-31 Office-Home VisDA
Prediction Clutering

0
IM

87.3 70.5 80.4
1 ✓ 89.6(+2.3) 74.5(+4.0) 86.6(+6.2)
2 ✓ 89.8(+2.5) 74.8(+4.3) 87.0(+6.6)
3

AaD
89.9 72.7 88.0

4 ✓ 90.6(+0.7) 75.0(+2.3) 88.9(+0.9)
5 ✓ 90.7(+0.8) 75.2(+2.5) 89.1(+1.1)

Different similarities and disentangled improvements.
To validate the superiority of our class relationship embed-
ded similarity in contrastive loss, we compare it with other
two choices. The first one uses only sintra based on fea-
tures, and the second one uses only sintra based on proba-
bilities which equals λinter = 0 in our case. The results are
shown in Table 7. Using features (i.e. i.e. sintra w/ feature)
rather than probabilities is a more natural way. Indeed, us-
ing features in CACo Loss would result in FixMatch loss,
and using features in IDCo loss would fall in the traditional
self-supervised way (e.g., MoCo). Only using the probabil-
ity based intra-class term (i.e. sintra w/ probability) is still
special for similarity in contrastive losses. And it can bring
consistent improvements. In both CACo and IDCo losses,
our scr can achieve the best result, thus validating the effec-
tiveness of adopting source prior class similarities.
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Table 7. Comparison with different similarities.

# Loss Similarity Office-31 Office-Home VisDA
0 IM — 87.3 70.5 80.4
1

IM+CACo
sintra w/ feature 88.9 72.5 83.5

2 sintra w/ probability 89.1 72.9 84.0
3 scr w/ probability 89.8 74.8 87.0
4

IM+IDCo
sintra w/ feature 87.5 70.9 80.8

5 sintra w/ probability 88.2 71.4 81.5
6 scr w/ probability 90.2 74.3 85.8

Comparison with fixed coefficient within sinter In the
definition of inter-class term in Equation (1), we use the
source class similarity matrix As as coefficient. Instead of
this prior knowledge, we can also set the coefficient to a
small fixed value. Considering the positive pairs in con-
trastive loss, the negative coefficient (i.e. −0.1) works to
suppress the inter-class term, thus obtaining more deter-
mined predictions as in [24, 37] while the positive value
(i.e. 0.1) is more like a smooth regularization as KLD loss
in [100]. The results are shown in Figure 4. It can be seen
that both positive and negative values can bring some im-
provements. However, our CR-CACo loss can achieve bet-
ter performance, which validates the importance of source
prior class relationship.
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Figure 4. Using fixed coefficients in sinter in both CACo and
IDCo losses under SUDA setting Office-Home Rw→Cl. Black
dotted line shows the performance of baseline IM. Red dotted line
shows the performance of our losses.

Parameter sensitivity Here we analyze the hyperparame-
ter sensitivity under the setting of SUDA Office-Home with
SHOT-IM baseline. We consider four hyperparameters, as
shown in Figure 5. It is evident that they are stable within
specific ranges.

Probability threshold 𝜏𝜏 𝜆𝜆inter of our 𝑠𝑠𝑐𝑐𝑐𝑐 𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in IM+CR-CACo 𝜆𝜆𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐 in IM+CR-IDCo

Figure 5. Sensitivity analysis of different hyperparameters. The
first two use our two losses. The last two use corresponding loss.

Visualization of features We visualize the target features
and classifier weights in Figure 6. It can be seen that our
method has less misclassified samples for classes 0, 1, 7
compared with IM. Thus our method can learn more dis-
criminative features.

IM IM+OursSource Pre-trained Model

Figure 6. The t-SNE visualization of classifier weights (i.e. star)
and target domain features (i.e. dot) of different methods under the
setting of SUDA Office-Home Rw→Cl. We directly use the first
10 classes (i.e. different colors), and the coordinates of classifier
weights are the same across different methods since source classi-
fier is frozen. Best viewed in color.

Transformer backbone We further apply our method
with Transformer-based backbone under the SFUDA set-
ting, as shown in Table 8. We choose the same network
(i.e. ViT-B [15]) following SSRT [69]. For the training
of the source model, we follow SHOT [42] which obtains
better performance than original ViT-B (78.2% vs. 75.5%).
Adding IM loss achieves 84.0%. Based on IM loss, ours
achieves 88.3% which significantly outperforms SSRT.

Table 8. Single-Source Unsupervised DA (SUDA) on Office-
Home with ViT-B backbone.

Method SF Avg. Method SF Avg.

ViT-B ✗ 75.5 CDTrans (ICLR’22) [83] ✗ 80.5
TVT (WACV’23) [86] ✗ 83.6 DOT-B (ACMMM’22) [50] ✗ 84.3
SSRT (CVPR’22) [69] ✗ 85.4 BCAT-DTF (Arxiv’22) [76] ✗ 86.6

Source model ✓ 78.2 SHOT-IM ✓ 84.0
SHOT-IM+CR-CACo ✓ 87.0(+3.0) SHOT-IM+Ours ✓ 88.3(+4.3)

5. Conclusion
In this paper, we propose to explicitly transfer the class

relationship for SFUDA which is more domain-invariant.
We propose a novel class relationship embedded similar-
ity that can more accurately express the sample relation-
ship in the output space. Furthermore, we propose two con-
trastive losses (i.e., CR-CACo and CR-IDCo) that exploit
our designed similarity. These two losses are complemen-
tary, and their combination can better explore the target dis-
tribution. We combine our method with existing represen-
tative baselines in multiple SFUDA settings. Extensive ex-
periments show the effectiveness of the proposed method,
which achieves state-of-the-art performance.
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