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Abstract

Multimodal fusion can make semantic segmentation

more robust. However, fusing an arbitrary number of

modalities remains underexplored. To delve into this prob-

lem, we create the DELIVER arbitrary-modal segmenta-

tion benchmark, covering Depth, LiDAR, multiple Views,

Events, and RGB. Aside from this, we provide this dataset in

four severe weather conditions as well as five sensor failure

cases to exploit modal complementarity and resolve par-

tial outages. To make this possible, we present the arbi-

trary cross-modal segmentation model CMNEXT. It en-

compasses a Self-Query Hub (SQ-Hub) designed to extract

effective information from any modality for subsequent fu-

sion with the RGB representation and adds only negligible

amounts of parameters (∼0.01M ) per additional modal-

ity. On top, to efficiently and flexibly harvest discrimina-

tive cues from the auxiliary modalities, we introduce the

simple Parallel Pooling Mixer (PPX). With extensive experi-

ments on a total of six benchmarks, our CMNEXT achieves

state-of-the-art performance on the DELIVER, KITTI-360,

MFNet, NYU Depth V2, UrbanLF, and MCubeS datasets,

allowing to scale from 1 to 81 modalities. On the freshly

collected DELIVER, the quad-modal CMNEXT reaches

up to 66.30% in mIoU with a +9.10% gain as compared to

the mono-modal baseline.1

1. Introduction

With the explosion of modular sensors, multimodal fu-

sion for semantic segmentation has progressed rapidly re-

cently [5, 11, 48] and in turn has stirred growing inter-

est to assemble more and more sensors to reach higher

and higher segmentation accuracy aside from more robust

scene understanding. However, most works [34, 75, 103]

and multimodal benchmarks [29, 61, 91] focus on specific

sensor pairs, which lack behind the current trend of fusing

*Equal contribution.
†Corresponding author (e-mail: kailun.yang@hnu.edu.cn).
1The DELIVER dataset and our code will be made publicly available

at: https://jamycheung.github.io/DELIVER.html.
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(a) RGB-D-E-L fusion.
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(b) RGB-A-D-N fusion.
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(c) RGB-Light Field.

Figure 1. Arbitrary-modal segmentation results of CMNeXt using:

(a). {RGB, Depth, Event, LiDAR} on our DELIVER dataset;

(b). {RGB, Angle of Linear Polarization (AoLP), Degree of Lin-

ear Polarization (DoLP), Near-Infrared (NIR)} on MCubeS [44];

(c). {RGB, 8/33/80 sub-aperture Light Fields (LF8/LF33/LF80)

on UrbanLF-Syn [59], respectively.
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Figure 2. Comparing CMX [48], HRFuser [4], and our CMNeXt

in sensor failure (i.e., LiDAR Jitter) on the DELIVER dataset.

more and more modalities [4, 70], i.e., progressing towards

Arbitrary-Modal Semantic Segmentation (AMSS).

When looking into AMSS, two observations become ap-

parent. Firstly, an increasing amount of modalities should

provide more diverse complementary information, mono-

tonically increasing segmentation accuracy. This is di-

rectly supported by our results when incrementally adding

and fusing modalities as illustrated in Fig. 1a (RGB-

Depth-Event-LiDAR), Fig. 1b (RGB-AoLP-DoLP-NIR),

and Fig. 1c when adding up to 80 sub-aperture light-field

modalities (RGB-LF8/-LF33/-LF80). Unfortunately, this

great potential cannot be uncovered by previous cross-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 3. Comparison of multimodal fusion paradigms, such as

(a) merging with separate branches [4], (b) distributing with a joint

branch [70], and (c) our hub2fuse with asymmetric branches.

modal fusion methods [9, 77, 99], which follow designs for

pre-defined modality combinations. The second observa-

tion is that the cooperation of multiple sensors is expected

to effectively combat individual sensor failures. Most of

the existing works [67, 72, 76] are built on the assump-

tion that each modality is always accurate. Under par-

tial sensor faults, which are common in real-life robotic

systems, e.g. LiDAR Jitter, fusing misaligned sensing data

might even degrade the segmentation performance, as de-

picted with CMX [48] and HRFuser [4] in Fig. 2. These

two critical observations remain to a large extent neglected.

To address these challenges, we create a benchmark

based on the CARLA simulator [19], with Depth, LiDAR,

Views, Events, and RGB images: The DELIVER Multi-

modal dataset. It features severe weather conditions and five

sensor failure modes to exploit complementary modalities

and resolve partial sensor outages. To profit from all this,

we present the arbitrary cross-modal CMNeXt segmenta-

tion model. Without increasing the computation overhead

substantially when adding more modalities CMNeXt incor-

porates a novel Hub2Fuse paradigm (Fig. 3c). Unlike re-

lying on separate branches (Fig. 3a) which tend to be com-

putationally costly or using a single joint branch (Fig. 3b)

which often discards valuable information, CMNeXt is an

asymmetric architecture with two branches, one for RGB

and another for diverse supplementary modalities.

The key challenge lies in designing the two branches

to pick up multimodal cues. Specifically, at the hub step

of Hub2Fuse, to gather useful complementary informa-

tion from auxiliary modalities, we design a Self-Query

Hub (SQ-Hub), which dynamically selects informative fea-

tures from all modality-sources before fusion with the RGB

branch. Another great benefit of SQ-Hub is the ease of ex-

tending it to an arbitrary number of modalities, at negligible

parameters increase (∼0.01M per modality). At the fusion

step, fusing sparse modalities such as LiDAR or Event data

can be difficult to handle for joint branch architectures with-

out explicit fusion such as TokenFusion [70]. To circum-

vent this issue and make best use of both dense and sparse

modalities, we leverage cross-fusion modules [48] and cou-

ple them with our proposed Parallel Pooling Mixer (PPX)

which efficiently and flexibly harvests the most discrimina-

tive cues from any auxiliary modality. These design choices

come together in our CMNeXt architecture, which paves the

way for AMSS (Fig. 1). By carefully putting together alter-

native modalities, CMNeXt can overcome individual sensor

failures and enhances segmentation robustness (Fig. 2).

With comprehensive experiments on DELIVER and

five additional public datasets, we gather insight into the

strength of the CMNeXt model. On DELIVER, CMNeXt

obtains 66.30% in mIoU with a +9.10% gain compared

to the RGB-only baseline [78]. On UrbanLF-Real [59]

and MCubeS [44] datasets, CMNeXt surpasses the previ-

ous best methods by +3.90% and +8.68%, respectively.

Compared to previous state-of-the-art methods, our model

achieves comparable perfomance on bi-modal NYU Depth

V2 [61] as well as MFNet [29] and outperforms all previous

modality-specific methods on KITTI-360 [45].

On a glance, we deliver the following contributions:

• We create the new benchmark DELIVER for

Arbitrary-Modal Semantic Segmentation (AMSS)

with four modalities, four adverse weather conditions,

and five sensor failure modes.

• We revisit and compare different multimodal fusion

paradigms and present the Hub2Fuse paradigm with

an asymmetric architecture to attain AMSS.

• The universal arbitrary cross-modal fusion model CM-

NeXt is proposed, with a Self-Query Hub (SQ-Hub)

for selecting informative features and a Parallel Pool-

ing Mixer (PPX) for harvesting discriminative cues.

• We investigate AMSS by fusing up to a total of 80
modalities and notice that CMNeXt achieves state-of-

the-art performances on six datasets.

2. Related Work

Semantic segmentation has experienced striking progress

since fully convolutional networks [51] introducing the end-

to-end per-pixel classification paradigm, which was en-

hanced by capturing multi-scale features [7, 8, 32, 93], ap-

pending channel- and self-attention blocks [14, 21, 35, 87],

refining context priors [36, 46, 83, 90], and leveraging edge

cues [3, 17, 41, 65]. Recently, with the application of vision

transformers in recognition tasks, dense prediction trans-

formers [18, 39, 69, 86] and semantic segmentation trans-

formers [26, 63, 88, 94] emerge, along with the mask clas-

sification paradigm [12, 13] to jointly handle things and

stuff segmentation. Following the general architecture of

transformers, attention-based token mixing has been sub-

stituted with MLP-based [10, 31, 43], pooling [84], and

convolutional [27, 28] blocks. While these works achieve

great improvements on mainstream image segmentation

benchmarks, they still suffer under real-world conditions

where RGB images do not offer sufficient textures like low-

illumination and fast-moving scenarios.
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Figure 4. CMNeXt architecture in Hub2Fuse paradigm and asymmetric branches, having e.g. Multi-Head Self-Attention (MHSA) [78]

blocks in the RGB branch and our Parallel Pooling Mixer (PPX) blocks in the accompanying branch. At the hub step, the Self-Query Hub

selects informative features from the supplementary modalities. At the fusion step, the feature rectification module (FRM) and feature

fusion module (FFM) [48] are used for feature fusion. Between stages, features of each modality are restored via adding the fused feature.

The four-stage fused features are forwarded to the segmentation head for the final prediction.

Multimodal semantic segmentation has been considered

by harvesting complementary features from supplementary

modalities such as depth [5, 9, 82, 96], thermal [60, 73, 92],

polarization [38, 53, 77], events [1, 91], LiDAR [81, 103],

and optical flow [56]. To scale from modality-specific fu-

sion to unified fusion, CMX [48] tackles RGB-X segmen-

tation with multi-level cross-modal interactions, whereas

channel- and token exchanges are explored in [70–72]. Ad-

ditional multimodal fusion methods address object detec-

tion [42, 62], medical and material segmentation [44, 79],

as well as flow estimation [47]. Most of these works focus

on fusing complementary cues, but they do not fully con-

sider multimodal learning in scenarios where some modali-

ties fail. To this end, we propose CMNeXt, a universal mul-

timodal semantic segmentation framework with arbitrary-

modal complements. Unlike previous modality-specific fu-

sion methods [34, 53, 91], CMNeXt scales from bi-modal

scenarios like RGB-D parsing to arbitrary-modal fusion

like light field segmentation with virtually 81 modalities.

In addition, we provide a DELIVER benchmark to fos-

ter multimodal learning. While there are some existing

datasets [24, 58, 66] based on the CARLA simulator [19],

our dataset not only provides diverse sensing data but also

sensor-failure cases for robust semantic understanding.

3. CMNeXt: Proposed Framework

To achieve arbitrary-modal segmentation, the proposed

CMNeXt framework is constructed by using a dual-branch

structure in a Hub2Fuse paradigm. We will elaborate the

overall CMNeXt architecture in Sec. 3.1, the Self-Query

Hub in Sec. 3.2, and the Parallel Pooling Mixer in Sec. 3.3.

3.1. CMNeXt Architecture

In Fig. 4, our CMNeXt has an encoder-decoder architec-

ture. The encoder is a dual-branch and four-stage encoder.

Built on the assumption that the RGB representation is es-

sential for semantic segmentation, the two branches corre-

spond to the primary branch for RGB and the secondary

branch for other modalities, respectively. The four-stage

structure follows most of previous CNN/Transformer mod-

els [21, 69, 78, 93] to extract pyramidal features. Note that,

Fig. 4 details only the first of the four stages for brevity.

For the consistency of modal representations, we prepro-

cess LiDAR and Event data as image-like representations

following [91, 103]. The RGB image IRGB∈H×W×3 is

gradually processed by Multi-Head Self-Attention (MHSA)

blocks [78], whereas the images of the other M modali-

ties IM∈H×W×3×M by Parallel Pooling Mixer (PPX)

blocks. After four stages, there are M+1 sets of four-

stage feature maps fm
l ∈{fm

1
,fm

2
,fm

3
,fm

4
}, m∈[1,M+1].

In the lth stage, the block number of each branch is

bl∈{4, 8, 16, 32}, the stride is sl∈{4, 8, 16, 32}, and the

channel dimension is Cl∈{64,128,320,512}. Inside each

stage, M+1 features are processed in the Hub2Fuse

paradigm: At the hub step, M feature maps will be merged

into one feature f q via the proposed Self-Query Hub. At the

fusion step, the merged feature f q will be further fused with

RGB feature by the cross-modal Feature Rectification Mod-

ule (FRM) [48] and Feature Fusion Module (FFM) [48],

termed as f . These two modules enable better multimodal

feature fusion and interaction, and are crucial when fusing

RGB with sparse features, which will be shown in our ex-

periments. Between stages, M+1 feature maps will be re-

stored via adding the fused feature f , respectively. After the

encoder, the four-stage features fl∈{f1,f2,f3,f4} will be

forwarded to the decoder for the segmentation prediction.

We use the MLP decoder [78] as the segmentation head.

3.2. Self­Query Hub

To perform arbitrary-modal fusion, the Self-Query

Hub (SQ-Hub) is a crucial design to select the informative
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features of supplementary modalities before fusing with the

RGB feature. As shown in Fig. 4, given a set of M supple-

mentary features {fm|m∈[1,M ],fm∈H×W×C}, a Self-

Query module is applied to calculate the informative score

mask Qm∈H×W of each feature fm, as in Eq. (1) and (2).

f̂m = DW-Conv3×3(C,C)(fm), (1)

Qm = Sigmoid(Conv(C, 1)(f̂m)), (2)

where the DW-Conv3×3(Cin, Cout)(·) means a Depth-Wise

convolution layer with a kernel size of 3×3. After obtain-

ing M score masks through M respective self-query mod-

ules, a cross-modal comparison is conducted between M
features {fm|m∈[1,M ]}. That is, each patch pq of the

merged feature map f q will be filled by the patch pm of

{fm|m∈[1,M ]} with the highest score, i.e., the most effec-

tive patch among M modalities. It can be formalized as:

f q = {pq|pq∈H×W}

= φ({fm+Qm·f̂m|m∈[1,M ]})

= φ({pm|pm∈H×W,m∈[1,M ]}),

(3)

where φ(·) is an operation to select the maximum pm from

{fm+Qm·f̂m|m∈[1,M ]}. Then, the merged feature f q is

forwarded to the Parallel Pooling Mixer (PPX).

3.3. Parallel Pooling Mixer

Another crucial design in CMNeXt is the Parallel Pool-

ing Mixer (Fig. 4), which is proposed to efficiently and

flexibly harvest discriminative cues from arbitrary-modal

complements in the aforementioned SQ-Hub. Given the

merged feature map f q∈H×W×C from SQ-Hub, a 7×7
DW-Conv layer is applied to aggregate local information.

The three parallel pooling layers are for capturing multi-

scale modal features, which will be summed with the resid-

ual one and mixed by a 1×1 convolution. Then, a Sigmoid

function is used to calculate the attention for weighting. The

first part of PPX can be written as:

f̂ q = DW-Conv7×7(C,C)(f q), (4)

f̂ q :=
∑

k∈{3,7,11}

Poolk×k(f̂ q) + f̂ q,
(5)

w = Sigmoid(Conv1×1(C,C)(f̂ q)), (6)

fw = w·f q + f q. (7)

Previous cross-modal fusion methods show that channel

information is crucial [11, 34]. Inspired by this, we apply

a Squeeze-and-Excitation (SE) module [33] in the mixing

part of PPX. This structure is crucial since some channels of

certain modalities do capture more significant information

than others. It can further engage more spatially-holistic

knowledge in the channels of the cross-modal complements

in SQ-Hub. Thus, the weighted feature fw is passed to a

Feed-Forward Network (FFN) and a SE module [33] for

enhancing the channel information. The second part of PPX

can be written as:

f̂w = FFN(C,C)(fw) + SE(fw). (8)

After the PPX block, f̂w is fused with RGB feature to

form the final fused feature fl∈{f1,f2,f3,f4} by using

FRM&FFM modules [48], as shown in Fig. 4.

Compared with convolution-based MSCA [27], pooling-

based MetaFormer [84], fully-attentional FAN [95], our

PPX includes two advances: (1) parallel pooling layers for

efficient weighting in the attention part; (2) channel-wise

enhancement in the feature mixing part. Both characteris-

tics of the PPX block help in highlighting the cross-modal

fused feature spatial- and channel-wise, respectively. More

comparisons will be presented in Section 5.

4. The DELIVER Multimodal Dataset

Sensor settings and modalities. As presented in Fig. 5,

we spent the effort to create a large-scale multimodal seg-

mentation dataset DELIVER with Depth, LiDAR, Views,

Event, RGB data, based on the CARLA simulator [19].

DELIVER provides six mutually orthogonal views (i.e.,

front, rear, left, right, up, down) of the same spatial view-

point, i.e., a complete frame of data is encoded in the format

of a panoramic cubemap. The Field-of-View (FoV) of each

view is 91◦×91◦ and the image resolution is 1042×1042.

All Depth, Views, and Event sensors use the same camera

settings when the sensor is working properly. According to

the characteristics of recent LiDAR sensors [23], we further

customize a 64 vertical channels virtual semantic LiDAR

sensor to generate a point cloud of 1,728,000 points per sec-

ond with a FoV of 360◦×(−30◦∼10◦) and a range of 100
meters, so as to collect relatively dense LiDAR data.

Adverse conditions and corner cases. In addition to the

multimodal setup, DELIVER provides cases in two-fold,

including four environmental conditions and five partial

sensor failure cases (Fig. 5a). For environmental condi-

tions, we consider cloudy, foggy, night, and rainy weather

conditions other than only sunny days. The environmental

conditions will cause variations in the position and illumi-

nation of the sun, atmospheric diffuse reflections, precip-

itation, and shading of the scene, introducing challenges

for robust perception. For sensor failure cases, we con-

sider Motion Blur (MB), Over-Exposure (OE), and Under-

Exposure (UE) common for RGB cameras. LiDAR fail-

ures usually manifest as along-axis LiDAR-Jitter (LJ) due

to fixation issues or rotational axis eccentricity, thus we add

random angular jitters in the range of [−1◦, 1◦] and position
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(a) Structure and samples of four adverse conditions and five failure cases.

(b) Statistic of different data splits and views.

Split Cloudy Foggy Night Rainy Sunny Normal Corner Total

Train 794 795 797 799 798 2585 1398 3983

Val 398 400 410 398 399 1298 707 2005

Test 379 379 379 380 380 1198 699 1897

Front-view 1571 1574 1586 1577 1577 5081 2804 7885

All six views 9426 9444 9516 9462 9462 30486 16824 47310

1E+5

1E+6

1E+7

1E+8

1E+9

1E+10

(c) Distribution of 25 semantic classes in logarithmic scaling.

Figure 5. DELIVER multimodal dataset including (a) four adverse conditions out of five conditions(i.e., cloudy, foggy, night-time, rainy

and sunny). Apart from normal cases, each condition has five corner cases (i.e., MB: Motion Blur; OE: Over-Exposure; UE: Under-

Exposure; LJ: LiDAR-Jitter; and EL: Event Low-resolution). Each sample has six views. Each view has four modalities and two labels

(i.e., semantic and instance). (b) is the data statistics. (c) is the data distribution of 25 semantic classes.

jitters of [−1cm, 1cm] to the three axial directions of the Li-

DAR sensor. Due to the circuit design, the resolution of the

currently-used event sensors is limited [22]. Thus, we cus-

tomize an Event Low-resolution (EL) scenario with 0.25×
resolution for the event camera to simulate actual devices.

Statistics and annotations. Including six views, DE-

LIVER has totally 47,310 frames (Fig. 5b) with the size

of 1042×1042. The 7,885 front-view samples are divided

into 3,983/2,005/1,897 for training/validation/testing, re-

spectively, each of which contains two types of annotations

(i.e., semantic and instance segmentation labels). Note that,

we mainly discuss the front view and the semantic segmen-

tation task in this work, while other views and instance seg-

mentation will be future works. To improve the class diver-

sity of annotations (25 classes as in Fig. 5c), we modify and

remap the semantic labels in the source code. Specifically,

the Vehicles class is subdivided into four fine-grained cat-

egories: Cars, TwoWheeler, Bus, and Truck for both the

semantic camera and the semantic LiDAR, making DE-

LIVER compatible with popular segmentation datasets.

5. Experiments

5.1. Datasets and Implementation Details

KITTI-360 [45] is a suburban driving dataset, having

49,004/12,276 images at the size of 1408×376 for train-

ing/validation with 19 classes. To study RGB-Depth-Event-

LiDAR fusion consistent with the DELIVER dataset, we

generate depth images and event data by using popular off-

the-shelf models, i.e., AANet [80] and EventGAN [101].

MFNet [29] is an urban street dataset with 1,569 RGB-

Thermal pairs at the size of 640×480 with 8 classes. 820
pairs are collected during the day and the other 749 are

captured at night. The training set consists of 50% of the

daytime- and 50% of the nighttime images, whereas the

validation- and test set respectively contains 25% of the

daytime- and 25% of the nighttime images.

NYU Depth V2 [61] is an indoor understanding dataset

with 1,449 RGB-Depth pairs at the size of 640×480, split-

ting into 795/654 for training/testing with 40 classes.

UrbanLF [59] is a light field semantic segmentation

dataset with both real-world and synthetic sets annotated

in 14 classes, respectively splitting into 580/80/164 and

172/28/50 samples for training/validation/testing. The real

images have a size of 623×432, whereas the synthetic ones

are of 640×480. Each sample is composed of 81 sub-

aperture images, leading to 81 modalities.

MCubeS [44] is a dataset with pairs of RGB, Near-Infrared

(NIR), Degree of Linear Polarization (DoLP), and Angle

of Linear Polarization (AoLP), to study semantic material

segmentation of 20 classes. It has 302/96/102 image pairs

for training/validation/testing at the size of 1224×1024.

Implementation details. We train our models on four

A100 GPUs with an initial learning rate (LR) of 6e−5,

which is scheduled by the poly strategy with power 0.9
over 200 epochs. The first 10 epochs are to warm-up mod-

els with 0.1× the original LR. We use cross-entropy loss

function. The optimizer is AdamW [52] with epsilon 1e−8,

weight decay 1e−2, and the batch size is 2 on each GPU.

The images are augmented by random resize with ratio 0.5–

2.0, random horizontal flipping, random color jitter, ran-

dom gaussian blur, and random cropping to 1024×1024 on

DELIVER, while to their proposed sizes on other datasets.

To conduct comparisons, the ImageNet-1K [16] pre-trained

weight for the accompanying branch is not used on DE-

LIVER and KITTI-360, while the pre-trained weight for

the RGB branch is applied on all datasets.
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Table 1. Results on six multimodal semantic segmentation datasets. The KITTI-360 [45] and our DeLiVER datasets have up to four

modalities. The MFNet [29] and NYU Depth V2 [61] datasets are dual-modal with respective RGB-Thermal and RGB-Depth modalities.

The UrbanLF [59] has up to 81 sub-aperture light-filed images. The quad-modal MCubeS dataset [44] is for material segmentation.

(a) Results on KITTI-360 and DELIVER datasets.

Method Modal Backbone KITTI-360 DeLiVER

HRFuser [4] RGB HRFormer-T 53.20 47.95

SegFormer [78] RGB MiT-B2 67.04 57.20

HRFuser [4] RGB-Depth HRFormer-T 49.32 51.88

TokenFusion [70] RGB-Depth MiT-B2 57.44 60.25

CMX [48] RGB-Depth MiT-B2 64.43 62.67

CMNeXt RGB-Depth MiT-B2 65.09 63.58

HRFuser [4] RGB-Event HRFormer-T 44.85 42.22

TokenFusion [70] RGB-Event MiT-B2 55.97 45.63

CMX [48] RGB-Event MiT-B2 64.03 56.52

CMNeXt RGB-Event MiT-B2 66.13 57.48

HRFuser [4] RGB-LiDAR HRFormer-T 48.74 43.13

TokenFusion [70] RGB-LiDAR MiT-B2 54.55 53.01

CMX [48] RGB-LiDAR MiT-B2 64.31 56.37

CMNeXt RGB-LiDAR MiT-B2 65.26 58.04

HRFuser [4] RGB-D-Event HRFormer-T 50.21 51.83

CMNeXt RGB-D-Event MiT-B2 67.73 64.44

HRFuser [4] RGB-D-LiDAR HRFormer-T 52.61 52.72

CMNeXt RGB-D-LiDAR MiT-B2 66.55 65.50

HRFuser [4] RGB-D-E-Li HRFormer-T 52.76 52.97

CMNeXt RGB-D-E-Li MiT-B2 67.84 66.30

(b) Results on MFNet.

Method Modal mIoU

SwinT [49] RGB 49.0

SegFormer [78] RGB 52.0

ACNet [34] RGB-T 46.3

FuseSeg [64] RGB-T 54.5

ABMDRNet [92] RGB-T 54.8

LASNet [40] RGB-T 54.9

FEANet [15] RGB-T 55.3

MFTNet [97] RGB-T 57.3

GMNet [99] RGB-T 57.3

DooDLeNet [20] RGB-T 57.3

CMX (MiT-B2) [48] RGB-T 58.2

CMX (MiT-B4) [48] RGB-T 59.7

CMNeXt (MiT-B4) RGB-T 59.9

(c) Results on NYU Depth V2.

Method mIoU

ACNet [34] 48.3

SGNet [9] 51.1

ShapeConv [5] 51.3

NANet [89] 52.3

SA-Gate [11] 52.4

PGDENet [100] 53.7

TokenFusion [70] 54.2

TransD-Fusion [76] 55.5

MultiMAE [2] 56.0

Omnivore [25] 56.8

CMX (MiT-B4) [48] 56.3

CMX (MiT-B5) [48] 56.9

CMNeXt (MiT-B4) 56.9

(d) Results on UrbanLF-Real and -Syn.

Method Modal Real Syn

PSPNet [93] RGB 76.34 75.78

OCR [85] RGB 78.60 79.36

SegFormer [78] (B4) RGB 82.20 78.53

DAVSS [102] Video 75.91 74.27

TMANet [68] Video 77.14 76.41

ESANet [57] RGB-D n.a. 79.43

SA-Gate [11] RGB-D n.a. 79.53

PSPNet-LF [59] RGB-LF33 78.10 77.88

OCR-LF [59] RGB-LF33 79.32 80.43

CMNeXt (MiT-B4) RGB-LF8 83.22 80.74

CMNeXt (MiT-B4) RGB-LF33 82.62 80.98

CMNeXt (MiT-B4) RGB-LF80 83.11 81.02

(e) Results on MCubeS.

Method Modal mIoU

DRConv [6] RGB-A-D-N 34.63

DDF [98] RGB-A-D-N 36.16

TransFuser [54] RGB-A-D-N 37.66

MMTM [37] RGB-A-D-N 39.71

FuseNet [30] RGB-A-D-N 40.58

MCubeSNet [44] RGB 33.70

CMNeXt (MiT-B2) RGB 48.16

MCubeSNet [44] RGB-A 39.10

CMNeXt (MiT-B2) RGB-A 48.42

MCubeSNet [44] RGB-A-D 42.00

CMNeXt (MiT-B2) RGB-A-D 49.48

MCubeSNet [44] RGB-A-D-N 42.86

CMNeXt (MiT-B2) RGB-A-D-N 51.54

5.2. Comparison against the State of the Art

To verify the efficacy of our proposed CMNeXt frame-

work, we conduct extensive experiments on six multimodal

segmentation datasets. The results and comparisons against

the state-of-the-art are shown in Table 1.

Results on DELIVER. Table 1a summarizes the exten-

sive comparisons between our CMNeXt and other recent

methods on DELIVER dataset. Overall, CMNeXt sets the

state of the art on the fusion of two to four modalities.

While fusing RGB with Depth, Event, and LiDAR, the bi-

modal CMNeXt yields sufficient improvements, compared

to HRFuser [4] and TokenFusion [70]. This demonstrates

the superiority of our Hub2Fuse paradigm over the seperate

and joint branch paradigm (Fig. 3a and Fig. 3b), especially

when fusing sparse modalities, i.e., Event and LiDAR.

From RGB-only to gradually fusing Depth, Events, and Li-

DAR, the mIoU scores of CMNeXt are gradually increased

(57.20%→63.58%→64.44%→66.30%), showing the ad-

vance of arbitrary-modal fusion for segmentation. Thanks

to the complementary features from other modalities, our

quad-modal CMNeXt outperforms the RGB-only baseline

SegFormer [78] by a significant margin of +9.10%.

Results on KITTI-360. In Table 1a, apart from the DE-

LIVER dataset with adverse cases, we further conduct

equivalent experiments on KITTI-360 [45] which only con-

tains normal scenes. We found that most of the multimodal

fusion methods on KITTI-360 did not bring the expected

high improvement. There are two conjectures: The sam-

ples are collected in suburbs and are composed of video se-

quences, resulting in insufficient scene diversity; The depth-

and event data are generated from RGB sequences, result-

ing in limited modal differences. Thus, the segmentation

output relies on the RGB segmentation, and adding modali-

ties might be redundant. Nonetheless, our quad-modal CM-

NeXt achieves a +0.80% gain compared to the RGB-only

baseline [78]. Besides, our bi-modal CMNeXt performs su-

perior to CMX [48] by +1.56% to +2.85%. When fusing

three to four modalities, CMNeXt has respective +17.52%,

+13.94%, and +15.08% gains compared to HRFuser [4].

RGB-T and RGB-D segmentation. As shown in Ta-

ble 1b and 1c, we further conduct experiments on bi-modal

datasets, MFNet [29] and NYU Depth V2 [61], which com-

prise dense thermal and depth data as supplementary infor-

mation. Our CMNeXt achieves the state of the art on both

datasets. Using MiT-B4 [78], CMNeXt outperforms CMX

with +0.2% on MFNet. Besides, on the NYU Depth V2

dataset, it is comparable to CMX with MiT-B5. It proves

the benefits of our PPX block in CMNeXt over the Multi-

Head Self-Attention (MHSA) block used by CMX.
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Table 2. Results on adverse conditions of DELIVER. Sensor failure cases are MB: Motion Blur; OE: Over-Exposure; UE: Under-

Exposure; LJ: LiDAR-Jitter; and EL: Event Low-resolution. The number of parameters (#Params) and GFLOPs are counted in 512×512.

Model-modality #Params(M) GFLOPs Cloudy Foggy Night Rainy Sunny MB OE UE LJ EL Mean

HRFuser-RGB 29.89 217.5 49.26 48.64 42.57 50.61 50.47 48.33 35.13 26.86 49.06 49.88 47.95

SegFormer-RGB 25.79 38.93 59.99 57.30 50.45 58.69 60.21 57.28 56.64 37.44 57.17 59.12 57.20

TokenFusion-RGB-D 26.01 54.96 50.92 52.02 43.37 50.70 52.21 49.22 46.22 36.39 49.58 49.17 49.86

CMX-RGB-D 66.57 65.68 63.70 62.77 60.74 62.37 63.14 59.50 60.14 55.84 62.65 63.26 62.66

HRFuser-RGB-D 30.46 223.0 54.80 51.48 49.51 51.55 52.12 50.92 41.51 44.00 54.10 52.52 51.88

HRFuser-RGB-D-E 31.04 (+0.57) 229.0 (+6.00) 54.04 50.83 50.88 51.13 52.61 49.32 41.75 47.89 54.65 52.33 51.83

HRFuser-RGB-D-E-L 31.61 (+0.57) 235.0 (+6.00) 56.20 52.39 49.85 52.53 54.02 49.44 46.31 46.92 53.94 52.72 52.97

CMNeXt-RGB-D 58.69 62.94 67.21 62.79 61.64 62.95 65.26 61.00 64.64 58.71 64.32 63.35 63.58

CMNeXt-RGB-D-E 58.72 (+0.03) 64.19 (+1.25) 68.28 63.28 62.64 63.01 66.06 62.58 64.44 58.73 65.37 65.80 64.44

CMNeXt-RGB-D-E-L 58.73 (+0.01) 65.42 (+1.23) 68.70 65.67 62.46 67.50 66.57 62.91 64.59 60.00 65.92 65.48 66.30

w.r.t. SegFormer-RGB (+8.71) (+8.37) (+12.01) (+8.81) (+6.36) (+5.63) (+7.95) (+22.56) (+8.75) (+6.36) (+9.10)

Light field semantic segmentation. Towards arbitrary-

modal fusion for semantic segmentation, we apply CM-

NeXt on the UrbanLF dataset [59], in which each sample

is composed of 81 sub-aperture light field modalities. As

shown in Table 1d, CMNeXt surpasses the previous state

of the art, OCR-LF [59], in both real-world and synthetic

scenes, even with fewer modalities (33→8). Due to the sim-

ilarity between modalities in this dataset, it is challenging

to extract diverse complementary features. Nonetheless, by

fusing up to 80 light field images, CMNeXt reaches respec-

tive 83.11% and 81.02% in mIoU on real and synthetic sets.

Multimodal material segmentation. To verify multimodal

fusion in material recognition, we conduct experiments on

the MCubeS dataset [44] which also contains four modali-

ties. As shown in Table 1e, our quad-modal CMNeXt ex-

ceeds other quad-modal models and attains the top perfor-

mance of 51.54%, with a significant increase 8.68% over

MCubeSNet [44]. In addition, CMNeXt has incremen-

tal improvements when gradually adding AoLP, DoLP, and

NIR modalities. The results on multimodal material seg-

mentation are consistent with the ones of arbitrary-modal

segmentation on our DELIVER dataset.

5.3. Ablation Studies

Analysis in adverse weather conditions. In Table 2,

we compare CMNeXt against mainstream multimodal fu-

sion paradigms in different conditions including adverse

weather- and partial sensor failure scenarios. It can be

seen that despite being efficient, TokenFusion [70] suf-

fers in these conditions as effective information is dis-

carded in their token replacement. Due to the proposed

SQ-Hub for selecting effective features, CMNeXt signif-

icantly improves the performance compared to the pre-

vious CMX [48] and HRFuser [4]. When fusing more

modalities, HRFuser tends to induce much more overhead

(+6.00 GFLOPs when adding a branch), whereas CMNeXt

brings great mIoU gains at only slight computation increase

(<1.30 GFLOPs). Compared with the RGB baseline, the

Table 3. Ablation study of the CMNeXt architecture.

Structure #Params(M) GFLOPs mIoU(%)

CMNeXt 58.73 65.42 66.30

– without Addition 58.73 65.42 64.56 (-1.74)

– without SQ-Hub 58.70 65.36 64.41 (-1.89)

– with MSCA instead PPX 61.95 68.42 63.94 (-2.36)

– without SE in PPX 58.73 65.41 63.27 (-3.03)

– without FRM 48.71 64.79 62.71 (-3.59)

– without FRM&FFM 42.14 59.00 56.54 (-9.76)

full RGB-D-E-L CMNeXt overall improves the accuracy by

9.10% on average for different conditions, in particular for

the nighttime (+12.01%) and the rainy (+8.81%) scenarios.

Analysis in sensor failure cases. In the Event Low-

resolution (EL) case of Table 2, from the fusion of

RGB-D to RGB-D-E, the accuracy of HRFuser [4] is

degraded, however, the one of CMNeXt is improved

(63.35%→66.11%). This is also observed in the case of Li-

DAR Jitter (LJ), where the performance of CMNeXt is in-

creased (65.37%→65.92%) by fusing from D-E to D-E-L.

These results demonstrate the ability of CMNeXt to combat

sensor failures, thanks to SQ-Hub for selecting informative

features. Compared to the RGB baseline, CMNeXt obtains

a +22.56% gain in the Under-Exposure (UE) case.

Ablation of the CMNeXt architecture. As shown in Ta-

ble 3, we ablate our CMNeXt architecture. When removing

the addition operation of supplementary modalities, the per-

formance slightly decreases. Without the SQ-Hub for dy-

namically harvesting complementary cues, the supplemen-

tary modalities are directly added and the mIoU declines by

1.89%. When using the MSCA from SegNeXt [27] instead

of our PPX, the accuracy clearly drops. Ablating the SE

block in PPX for channel processing incurs a mIoU down-

grade of 3.03%, which indicates that the spatially-holistic

knowledge in channels contribute a lot to the multimodal

fusion. The FRM&FFM modules also play important roles

in facilitating comprehensive cross-modal interactions be-
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Table 4. Comparison of convolution-, pooling- and self-attention

blocks in the RGB- and accompanying branch, respectively.

RGB Accompanying
#Params(M) GFLOPs mIoU(%)

Branch Branch

MHSA [78]+

MHSA [78] 66.87 68.39 62.92

ConvNeXt [50] 56.42 59.85 63.73

FAN [95] 68.10 69.49 63.73

PoolFormer [84] 56.22 59.52 63.83

gnConv [55] 62.04 64.83 64.06

MSCA [27] 61.95 68.42 64.71

P2T [74] 63.01 71.13 65.13

PPX (ours) 58.73 65.42 66.30

PPX

+PPX (ours)

50.88 62.95 62.21

MSCA [27] 62.42 61.10 62.88

MHSA [78] 58.73 65.42 66.30

57

59

61

63

65

67

mIoU (%)

pooling size (1,3,5) -- 65.25%

pooling size (3,5,7) -- 65.41%

pooling size (3,7,11) -- 66.30%

pooling size (5,7,11) -- 64.79%

pooling size (7,11,21) -- 65.08%

Figure 6. Training curves of different pooling sizes in PPX.

tween the RGB representation and the supplementary rep-

resentation extracted via SQ-Hub. The results verify that the

hub and fusion steps in our proposed Hub2Fuse paradigm

are fundamental to arbitrary multimodal segmentation.

Comparison of token mixing blocks. As shown in Table 4,

we first compare PPX against convolutional-, attentional,

and pooling-based blocks when ported on our CMNeXt ar-

chitecture as the accompanying branch for supplementary-

modal features. PPX achieves the best mIoU score, while

remaining highly efficient with few parameters. While the

PoolFormer [84] has less parameters and GLFOPs, it is

also less effective for harvesting cross-modal cues. PPX

surpasses the MHSA in SegFormer [78], ConvNeXt [50],

the fully attentional block in FAN [95], the gnConv in Hor-

Net [55], the MSCA in SegNeXt [27]. Compared with the

P2T block [74] adapting pyramid pooling in self-attention,

our PPX is both more efficient and accurate, making it ide-

ally suitable for learning complementary features towards

arbitrary multimodal fusion.

After confirming that PPX block in the accompanying

branch, for the RGB branch, we follow CMX [48] and

use MHSA blocks from SegFormer. In spite of moder-

ate complexity, MSHA [78]+PPX achieves higher accuracy

than PPX+PPX and MSCA [27]+PPX, indicating that self-

attention excels at learning from the dense RGB representa-

tion in multimodal semantic segmentation.

Parameter study on the pooling sizes. In Fig. 6, we inves-

Acc=67.3% Acc=92.2% Acc=94.9% Acc=95.3%

Acc=94.5% Acc=85.2% Acc=93.9% Acc=95.2%
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Figure 7. Visualization of segmentation results.

tigate a variety of pooling sizes in PPX on our DELIVER

dataset, confirming the set of {3,7,11} yields the best mIoU.

Visualization of arbitrary-modal segmentation. In

Fig. 7, we show semantic segmentation results of our

CMNeXt against the RGB-only SegFormer [78] and the

RGB-X CMX [48]. It can be seen that in the dark night

with under-exposure, the RGB-only SegFormer hardly seg-

ments the close vehicle, while the RGB-D CMNeXt clearly

outperforms CMX. Our RGB-D-E-L CMNeXt further en-

hances the performance and yields more complete segmen-

tation. In the partial sensor failure scenario with LiDAR

jitter, CMX produces unsatisfactory rainy scene parsing re-

sults. Our RGB-LiDAR model is barely affected by the

sensing data mis-alignment and the quad-modal CMNeXt

further robustifies the full scene segmentation.

6. Conclusion

In this work, we tackle arbitrary-modal semantic seg-

mentation. We put forward the DELIVER multimodal

dataset with four modalities and partial sensor failures un-

der various weather conditions. We propose the Hub2Fuse

paradigm with asymmetric branches and design a univer-

sal model CMNeXt for arbitrary-modal fusion with Self-

Query Hub (SQ-Hub) to dynamically select complemen-

tary representations and Parallel Pooling Mixer (PPX) to

efficiently and flexibly harvest discriminative cross-modal

features. Our CMNeXt sets the new state of the art on six

datasets, which can scale from 1 to 81 modalities.

Limitations. Our asymmetric architecture leverages the as-

sumption that the RGB representation is essential for se-

mantic segmentation, which is partially due to the fact that

most pretrained weights are learned on RGB image datasets.

Thus, multi-modal pretraining could be beneficial to further

improve the flexibility in arbitrary-modal segmentation. Be-

sides, while the DELIVER dataset provides multi-view data

and instance labels, only the front-view and semantics are

exploited in this work. Aside from these, the fusion of

3D representations of LiDAR and Event data could be ad-

dressed in our future work based on the DELIVER dataset.
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