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Figure 1. Pros and Cons of different queries and their corresponding learning paradigms.

Abstract

One-to-one label assignment in object detection has suc-
cessfully obviated the need for non-maximum suppression
(NMS) as postprocessing and makes the pipeline end-to-
end. However, it triggers a new dilemma as the widely
used sparse queries cannot guarantee a high recall, while
dense queries inevitably bring more similar queries and en-
counter optimization difficulties. As both sparse and dense
queries are problematic, then what are the expected queries
in end-to-end object detection? This paper shows that the
solution should be Dense Distinct Queries (DDQ). Con-
cretely, we first lay dense queries like traditional detectors
and then select distinct ones for one-to-one assignments.
DDQ blends the advantages of traditional and recent end-
to-end detectors and significantly improves the performance
of various detectors including FCN, R-CNN, and DETRs.
Most impressively, DDQ-DETR achieves 52.1 AP on MS-
COCO dataset within 12 epochs using a ResNet-50 back-
bone, outperforming all existing detectors in the same set-
ting. DDQ also shares the benefit of end-to-end detec-
tors in crowded scenes and achieves 93.8 AP on Crowd-
Human. We hope DDQ can inspire researchers to con-
sider the complementarity between traditional methods and
end-to-end detectors. The source code can be found at
https://github.com/jshilong/DDQ.

* Equal contribution.

1. Introduction

Object detection is one of the most fundamental tasks in
computer vision, which aims at answering what objects are
in an image and where they are. To achieve the objective,
the detector is expected to detect all objects and mark each
object with only one bounding box.

Due to the complex spatial distribution and the vast
shape variance of objects, detecting all objects is quite chal-
lenging. To solve the problem, traditional detectors [17,21,
27] first lay predefined dense grid queries1 to achieve a high
recall. Convolutions with shared weights are then applied to
quickly process dense queries in a sliding-window manner.
At last, one ground truth bounding box is assigned to multi-
ple similar candidate queries for optimization. However,
the one-to-many assignment results in redundant predic-
tions and thus requires extra duplicate-removal operations
(e.g., non-maximum suppression) during inference, which
causes misaligned inference with training and hinders the
pipeline from being end-to-end (as shown in Fig. 1.(a)).

This paradigm is broken by DETR [2], which assigns
only one positive query to each ground truth bounding
box (one-to-one assignment) to achieve end-to-end. This
scheme requires heavy computation to refine queries and
adopts self-attention to model interactions between queries

1 Anchors [17, 21] or anchor points [27] in conventional detectors
play the same role as sparse object queries in [2]. Hence, we collec-
tively refer to densely distributed anchor boxes and anchor points as dense
queries.
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to facilitate the optimization of one-to-one assignment,
which unfortunately limits the number of queries. For ex-
ample, DETR only initializes hundreds of learnable object
queries. Therefore, compared to the densely distributed
queries in conventional detectors, the sparse queries fall
short in recall rate, as shown in Fig. 1.(b).

Some recent works have also tried to integrate dense
queries into one-to-one assignment [24, 28, 32]. How-
ever, dense queries in end-to-end detectors face unique
challenges. For example, our analysis shows that this
paradigm would inevitably introduce many similar queries
(potentially representing the same instance) and that it
suffers difficult and inefficient optimization as similar
queries are assigned opposite labels under one-to-one as-
signment.(Fig. 1.(c)).

Now that both sparse queries (low recall) and dense
queries (optimization difficulty) under one-to-one assign-
ment are sub-optimal, what are the expected queries in end-
to-end object detection?

In this study, we demonstrate that the solution should be
dense distinct queries (DDQ), meaning that the queries for
object detection should be both densely distributed to de-
tect all objects and also distinct from each other to facilitate
the optimization of one-to-one label assignment. Guided
by such a principle, we consistently improve the perfor-
mance of various detector architectures, including FCN,
R-CNN, and DETRs. For one-stage detectors composed
of fully convolutional networks (FCN), we first propose a
pyramid shuffle operation to replace heavy self-attentions to
model the interaction between dense queries. Then, a dis-
tinct queries selection scheme ensures that the one-to-one
assignment is only imposed on the selected distinct queries,
preventing contradictory labels from being assigned to simi-
lar queries. Such an end-to-end one-stage detector is named
DDQ FCN and achieves state-of-the-art performance in
one-stage detectors. DDQ also naturally extends to DETR
and R-CNN structures [7, 19, 26, 38] by first laying dense
queries as in [38] and then selecting distinct queries for
later refining stages, which are respectively dubbed DDQ
R-CNN and DDQ DETR.

We have conducted experiments on two datasets—MS-
COCO [18] and CrowdHuman [23]. DDQ FCN and DDQ
R-CNN obtain 41.5/44.6 AP, respectively, on the MS-
COCO detection dataset [18] with the standard 1x sched-
ule [17, 21]. Compared to recent DETRs, DDQ DETR
achieved 52.1 AP in just 12 epochs with the DETR-style
augmentation [2]. The strong performance demonstrates
that DDQ overcomes the optimization difficulty in end-to-
end detectors and converges as fast as traditional detectors
with higher performance.

Object detection in crowded scenes such as CrowdHu-
man [23] is another arena to testify to the effectiveness
of DDQ. It is extremely cumbersome to tune the post-

processing NMS in traditional detectors, as a low IoU
threshold leads to missing overlapping objects, while a high
threshold brings too many false positives. Recent end-to-
end structures also struggle to distinguish between dupli-
cated predictions and overlapping objects due to their diffi-
cult optimization. In this study, DDQ FCN/R-CNN/DETR
achieve 92.7/93.5/93.8 AP and 98.2/98.6/98.7 recall on
CrowdHuman [23], surpassing both traditional and end-to-
end detectors by a large margin.
2. Related Work

Dense Queries with One-To-Many Assignment. One-
stage detectors such as RetinaNet [17] and FCOS [27] use
densely distributed queries for regression and classifica-
tion.The same manner is also applied to the region pro-
posal network (RPN) of multi-stage models [1, 21]. And
one-to-many assignments are a common practice for these
traditional detectors. Despite the fast development of one-
to-many assignments from static label assignments (such
as IOU-based [1, 17, 21] and center-based ones [13, 27]) to
prediction-aware dynamic label assignments [5, 8, 9, 15, 35,
37], these strategies are also long criticized for they pair
each ground truth with multiple queries and thus require
additional postprocessing to remove duplicate predictions
at inference, which prevents the pipeline from being end-
to-end.
Sparse Queries with One-To-One Assignment. DETR
[2] designs a small set of learned positional embeddings
that represent the position in an image to focus on. These
queries are then optimized with one-to-one assignments,
making an end-to-end pipeline. Sparse R-CNN [26] refor-
mulates queries in the traditional R-CNN framework as a
bounding box and its corresponding embedding. Anchor
DETR [31] provides the correspondence between anchor
points and query position. DAB-DETR [19] explicitly
learns a set of 4-D anchor boxes as queries. Though the
formulation of queries varies, they share the same core idea
of sparse queries and one-to-one assignments. Therefore, a
low recall rate is an expected issue for these detectors.
Dense Queries with One-To-One Assignment. Both De-
FCN [28] and OneNet [25] try to integrate one-to-one
assignment with dense queries. Despite their competi-
tive performance compared to FCOS [27], there is still a
clear performance gap with recent detectors with dynamic
one-to-many assignment strategies [8, 9, 12, 15, 37]. It is
the optimization difficulty of similar queries under one-to-
one assignments that accounts for the performance gap.
Efficient DETR [32], and Two-Stage Deformable DETR
[38] can also be regarded as a multi-stage version of this
paradigm. Although DINO [33], Group DETR [4], and H-
DeformableDETR [11] have introduced more positive sam-
ples to speed up convergence, the hindrance effect between
similar queries and one-to-one assignments still remains un-
revealed.
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3. Analysis of Sparse and Dense Queries
Current end-to-end detectors use either dense or sparse

queries, both of which are however problematic during
training. Specifically, sparse queries suffer a low recall rate,
and dense queries have issues in optimization. To illustrate
this, we increase the number of queries from 10 to 7000 in
Sparse R-CNN, and the performance is shown as the black
line in Fig. 2. The performance first keeps rising as the
number of queries increases to around 2000, implying that
the sparse queries (∼ 300) in Sparse R-CNN are far from
enough due to the low recall rate. On the other hand, the
performance finally plateaus and even decreases as queries
number further increases. This phenomenon can be ex-
plained by the difficulty in distinguishing similar queries
in end-to-end detectors with one-to-one assignment, espe-
cially when queries become denser.

Figure 2. The performance comparison of Sparse R-CNN with and
without Distinct Queries Selection (a class-agnostic NMS with a
threshold 0.7 before each refining head). All models are trained
using the standard 1x setting. The green dotted line represents the
default number(300) of queries adopted in Sparse R-CNN. The
subplot denotes the memory consumption per GPU as the number
of queries increases in Sparse R-CNN.

To understand how similar queries would hinder opti-
mization, we provide a simplified example where we as-
sume there exist two identical queries. In this case, the
one-to-one assignment assigns a foreground label to one of
them but a background label to another. Without loss of
generality, we adopt binary cross-entropy loss for classifi-
cation. Therefore, the loss from these two queries becomes
L1 = − log(p1) − log(1 − p2), where p1 and p2 are the
probability scores of the positive and negative query, re-
spectively, and satisfy p1 = p2 = p as they are identical
queries. In contrast, the loss value when only one of the du-
plicated queries exists is L0 = − log(p). The ratio α of the
gradient between the duplicate and non-duplicate query is.

α =
∂L1

∂p
/
∂L0

∂p
= 1− p

1− p
(1)

It is obvious that the gradient is scaled down (i.e., α < 1)

at 0 < p < 0.5 and may even cause negative training (i.e.,
α < 0) at p > 0.5.

As shown in the toy example, duplicated queries reduce
gradients and even cause negative training, which dramati-
cally suppresses convergence. To avoid this issue, we im-
pose a distinct queries selection operation before the one-
to-one assignment process. The distinct queries selection
strategy is realized by a simple class-agnostic NMS. The
filtered distinct queries are thus easier to optimize, and such
an operation improves the performance by a clear margin,
as seen from the red curve in Fig. 2. More surprisingly, the
performance margin consistently increases along with more
queries. A similar trend is also observed for Deformable
DETR, which can be found in the supplementary material.

In other words, once we make sure the selected queries
are distinct, the performance of Sparse R-CNN can be
improved consistently with the increasing number of dis-
tinct queries. However, using a large number of distinct
queries causes a significant memory footprint. For exam-
ple, Sparse R-CNN requires around 45G memory per GPU
with 7000 queries. To leverage the advantage of dense dis-
tinct queries(DDQ) with a reasonable computation cost, we
give practical designs for all popular detector architectures
(FCN, R-CNN, and DETRs).

4. Method
Dense distinct queries (DDQ) is our principle for design-

ing an object detector and can be integrated into different
architectures. We first briefly describe the design of DDQ
followed by detailed descriptions for the three architectures:
FCN, R-CNN, and DETRs. The overall pipeline is sketched
in Fig. 3.

4.1. Paradigm of DDQ

Dense Queries. As shown in Fig. 2, the memory cost soars
for dense queries. The main reason for this is the heavy
calculation for each query. Instead of adopting learnable
positional embedding in DETR, DDQ directly takes the
feature point on each feature map as densely distributed
initial queries. The number of queries in the feature
pyramid can easily surpass 10000 given an input resolution
of 800x800. To discriminate dense queries with reasonable
computation cost, a light-weighted convolutional/linear
network serves as the first stage and processes all queries in
a sliding window manner.

Distinct Queries Now that the importance of query
distinctness for optimization has been revealed in Sec. 3,
we would discuss in this section why a class-agnostic
non-maximum suppression (NMS) can be used to select
distinct queries and how it differs from the traditional NMS
as post-processing in traditional detectors. Since each
query represents a potential instance in an image, and an
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Figure 3. The pipeline of DDQ. (a) shows the application of DDQ to an FCOS-like structure, which is a fully-convolutional network
(FCN). It is thus dubbed DDQ FCN. The pyramid shuffle is applied to the last two and last convolution layers in the classification and
regression branches, respectively. The class-agnostic NMS act as the distinct queries selection operation. At last, only distinct queries will
be assigned labels before calculating loss. (b) shows the design of DDQ for R-CNN structures (DDQ R-CNN). The last feature maps of
the classification and regression branches of DDQ FCN are concatenated and filtered as distinct queries. The distinct queries are then sent
to the refining heads with their corresponding bounding boxes. (c) shows the design of DDQ for DETRs (DDQ DETR). After distinct
queries selection, the remaining feature embedding in the encoder is projected with a linear to the content part of distinct queries. Their
corresponding bounding boxes will be mapped to the position embedding part. Both parts will be sent to 6 refine stages. In such a long
refine architecture, DQS will be applied before each refine stage to ensure distinctness.

instance can be uniquely represented by its location in an
image [29], it comes naturally to detect similar queries
using the class-agnostic overlapping ratio between the
bounding boxes predicted by queries. More specifically,
we apply a class-agnostic NMS to select distinct queries
for the following one-to-one assignment. The loss is
thus only computed on the selected distinct queries. It
should be noted that such an operation is adopted in both
training and inference, instead of only in inference as an
extra post-processing in traditional detectors. Therefore,
such a pipeline still abides by the definition of end-to-end
detectors. Compared to the training-unaware NMS in
traditional detectors, it is designed to relieve the burden of
one-to-one assignment during training, and can thus be set
with an aggressive IoU threshold (0.7 in DDQ FCN and
DDQ R-CNN, 0.8 in DDQ DETR), which is robust even on
CrowdHuman dataset [23]. Such crowd scenes can not be
properly handled by NMS as post-processing in traditional
detectors. We validate this in Table. 4.

Loss Components
(1). Main Loss for Dense Distinct Queries. We simply
apply the bipartite matching algorithm in DETR [2] with
the same cost weight in the one-to-one assignment. No ex-
tra prior (such as center priors in [28]) is adopted for a
fair comparison with DETRs. After discriminating positive
and negative samples, DDQ FCN adopts GIoU loss [22]
and QFocal loss [16] with weights 2 and 1. For DDQ R-
CNN and DDQ DETR, we just follow the implementation
of Sparse R-CNN [26] and DINO [33].

(2). Auxiliary Loss for Dense Queries. Despite the more

efficient optimization in DDQ due to the removal of similar
queries, it also results in numerous ”leaf” queries through
which no gradients are back-propagated. Therefore, we de-
sign an auxiliary head and an auxiliary loss to further har-
ness the potential of the filtered queries following the design
in DeFCN [28]. The auxiliary head is mostly identical to
the main head, except that it adopts a soft one-to-many as-
signment for dense queries to allow for dense gradients and
more positive samples to speed up training. More details
can be found in our supplementary material.

4.2. DDQ FCN

As shown in Fig. 3. (a), the DDQ principle is first applied
to FCOS as an example of the FCN structure for object de-
tection. It is found that dense queries are already available
on the dense feature pyramid. However, as the dense queries
are processed level by level with convolutional layers. The
missing interaction across different levels poses a challenge
for the optimization of one-to-one assignments.

Inspired by channel shuffle operation in ShuffleNet [36],
we propose a pyramid shuffle to compensate for the inter-
action between queries in different levels where S channels
across adjacent levels are shuffled to form a new feature
pyramid. Specifically, features at level i exchange S chan-
nels with those at level i− 1 and level i+1 simultaneously.
To account for the different spatial dimensions on the fea-
ture pyramid, a bilinear interpolation is adopted when ex-
changing features. We apply the pyramid shuffle operation
on the last two and one convolution layer in the classifica-
tion and regression branches, respectively. This approach
stabilizes training and improves performance with negli-
gible additional computation costs. In this work, we set
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Figure 4. An illustration of pyramid shuffle. For queries in a
specific scale level, it can do the interaction with queries in an
adjacent level by shuffling S channels. Before concatenating to
the feature of the target level, the feature from other levels should
be interplate to the same size as the target level.

S to 64 which means each feature level exchanges infor-
mation from 128 channels with other levels. (Comparison
with other approaches to model the interaction among dense
queries, ablation, and the analysis of pyramid shuffle can be
found in our supplementary material.)

As for the distinct queries selection module in DDQ
FCN, we first select the top 1000 predictions according to
the classification score from each feature level and then
apply a class-agnostic non-maximum suppression with a
threshold of 0.7 to ensure both distinctness and generality
across different datasets.

4.3. DDQ R-CNN

We combine DDQ FCN with two refine stages in Sparse
R-CNN to construct the DDQ R-CNN. As shown in Fig. 3.
(b), thanks to the fast processing of dense distinct queries
in DDQ FCN, we select 300 most representative queries ac-
cording to the classification score from the remaining dis-
tinct queries. Then we concatenate the feature in the dis-
tinct position of the last feature map of the classification
branch and regression branch to construct the query embed-
ding. The query embedding and the corresponding bound-
ing box prediction will be passed to the refinement head
of Sparse R-CNN. Different from Sparse R-CNN which re-
quires 6 stages of iterative query refinement, DDQ R-CNN
needs as few as 2 refinement stages. Actually, the long it-
eration stages in Sparse R-CNN mainly compensate for the
drawbacks caused by the sparse and sometimes similar in-
put queries. For one thing, sparse queries could not cover
all instances at initialization and thus need long cascading
stages to refine. For another, similar queries also require
long refinements to distinguish from each other to output a
one-hot prediction for each instance [2]. In contrast, the
dense distinct queries from DDQ R-CNN have addressed
the above issues, and hence the number of iterative refine-
ments can be significantly reduced. We also report the re-
sults when we change the number of queries and refinement
heads of DDQ R-CNN in the supplementary material.

4.4. DDQ DETR

We construct DDQ DETR based on Deformable
DETR* . As shown in Fig. 3. (c), We follow Two-Stage
Deformable DETR [38] to process dense queries. Instead
of initializing the content part with transformed coordinates,
we fuse the feature map embedding of distinct positions as
the content part, which makes the initial queries more dis-
tinct. A class-agnostic NMS with a threshold of 0.8 is set to
select distinct queries before each refining stage. To com-
pare with recent DETRs, we keep the original 6 refining
stages and select K distinct queries for the refining stages.
We also select the top 1.5K queries directly according to
classification scores as dense queries for the auxiliary head
in the decoder. The parallel forward of dense queries and
distinct queries follows the H-DeformableDETR [11] and
Group DETR [4]. We set K to 900, following DINO [33].

5. Experiments

In this section, we first introduce two standard bench-
marks MS COCO [18] and CrowdHuman [23]. Then we
introduce the setting of training and inference on both
datasets. We also present three examples to show how end-
to-end detectors with different architectures evolve to our
DDQ step by step. At last, we compare DDQ with state-
of-the-art conventional detectors and recent end-to-end de-
tectors on MS COCO and CrowdHuman, which show that
DDQ blends the advantages of two design paradigms. The
latency of current popular models and DDQ is compared in
our supplementary material.

5.1. Datasets

MS COCO 2017 [18] detection dataset is mainly used for
comparison and ablation studies. It contains 118k training,
5k validation images, and 20k test images without annota-
tions. There are on average 7 instances per image in this
dataset. We report bounding box mean average precision
(AP) as the performance metric, which is the mean average
precision over multiple thresholds. If not specified, AP on
the validation set is set as default.

Besides, we also report the performance on the Crowd-
Human dataset [23], which has 15k training images and
4.4k validation images with around 23 heavily occluded in-
stances per image. For evaluation, we use AP, mMR, and
Recall as the metrics. mMR means the average log miss
rate over false positives per image ranging in

[
10−2, 100

]
following the official report [23]. A lower value of mMR
means a better quality of high-scoring bounding boxes. All
evaluation results are reported on the CrowdHuman valida-
tion subset.

* indicates it is an improved version based on techniques in
DINO [33]. Details can be found in our supplementary material
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5.2. Setting

COCO ResNet-50 [10] is the default backbone in this study
if not specified. Most models adopt the 1x(12 epochs) train-
ing protocol in MMDetection [3]. AdamW [20] optimizer
is used. For DDQ FCN, we set the initial learning rate to
5 × 10−5 and weight decay to 0.1. For DDQ R-CNN, we
used a learning rate of 10−4 and weight decay of 0.05. The
learning rate for both two CNN-based detectors decayed
with a ratio of 0.1 at epoch 9 and epoch 12. For DDQ
DETR, we utilized a learning rate of 2× 10−4 and a weight
decay of 0.05, and the learning rate decayed with a ratio
of 0.1 at epoch 12 only. To ensure a fair comparison with
other studies, we classified our data augmentation into three
types : Normal, Multi-Scale, and DETR. Normal augmen-
tation rescaled images to a short side of 800 pixels, with
only random flips applied. For Multi-Scale augmentation,
we used the classic multi-scale training range (480–800).
Finally, the DETR augmentation followed that of the study
by Carion et al. [2].
CrowdHuman ResNet-50 [10] is the default backbone.
All conventional detectors and DDQ adopt the 3x (36
epochs) schedule with multi-scale training (480-800). All
optimizer-related parameters are consistent with the setting
on COCO. For end-to-end detectors with sparse queries, we
follow the schedule(50 epochs) in Sparse R-CNN due to
their slow convergence. The max detected instance number
is changed to 500 for all conventional detectors following
the [28]. For a fair comparison, We increase the number of
queries to 500 for DDQ FCN/R-CNN, Sparse R-CNN, and
Deform DETR. For DDQ DETR, we just keep the same 900
queries as COCO.

5.3. Evolving to DDQ

In this section, we show how detectors of different archi-
tectures evolve to DDQ. We can validate the importance of
both density and distinctness from such a progressive devel-
opment.
From FCOS* to DDQ FCN In Table. 1, We start from
an FCOS equipped with the bipartite matching algorithm
in DETR [2] and our main loss components mentioned in
Sec. 4.1, which is denoted as FCOS*. We adopt the normal
augmentation that is mentioned in 5.2 and train the model
for 12 epochs. Due to the lack of cross-level interaction, its
performance is quite unstable and fluctuates between 24.5
AP and 36.5 AP in a few successful experiments. We select
the best result 36.5 as our baseline. After adding pyramid
shuffle operations to interact with cross-level queries, the
training becomes stable and gets 1.1 AP improvement with
only 0.2 G flops and 0.2 ms latency increase. Adding a
distinct queries selection operation boosts the performance
from 37.6 AP to 40.6 AP with only 0.3 ms latency. Such
a 3 AP improvement demonstrates that the distinctness of
queries is vital for the one-to-one assignment. After adding

an auxiliary loss for dense queries following DeFCN [28],
we get DDQ FCN with a state-of-the-art performance of
41.5 AP. DQS on the strong baseline (equipped with pyra-
mid shuffle and auxiliary loss) can be found in Table. 7.
DQS still improves 2 AP (from 39.5 to 41.5).

Table 1. From FCOS* to DDQ FCN. PS stands for pyramid shuf-
fle, and DQS means distinct queries selection operation. We also
report the latency(L) and the flops(F).

Method AP AP50 AP75 L(ms) F(G)
FCOS* 36.5 54.4 40.3 21.9 200.5
+ PS 37.6 56.3 41.3 22.1 200.7
+DQS 40.6 60.3 44.5 22.4 200.7
DDQ FCN 41.5 60.9 45.4 22.4 200.7

From Sparse R-CNN to DDQ R-CNN Table. 2 shows a
progressive development from Sparse R-CNN to DDQ R-
CNN. Sparse R-CNN with 300 queries achieves 39.4 AP
within 12 epochs using the normal augmentation that is
mentioned in Sec.5.2. Increasing the number of queries to
7000 improves the performance to 40.6 AP, at the cost of a
quite heavy detector. Applying a distinct queries selection
at the beginning of each stage boosts the performance by
2.5 AP to 43.1 AP. At last, by replacing the first four refin-
ing stages with our DDQ FCN, which not only makes the
structure more light-weighted but also allows even denser
input queries, the performance further increases to 44.6 AP.

Table 2. From Sparse R-CNN to DDQ R-CNN. Q means the
query, and DQS stands for the distinct queries selection

Method AP AP50 AP75 L(ms) F(G)
Sparse R-CNN 39.4 57.7 42.5 31.0 160.2
+7000Q 40.6 58.7 44.0 135.0 781.0
+DQS 43.1 62.6 47.1 135.0 781.0
DDQ R-CNN 44.6 63.0 48.8 31.3 248.5

From Deformable DETR* to DDQ DETR Table 3 il-
lustrates the progressive development from Deformable
DETR* to DDQ DETR. Deformable DETR* achieves 45.4
AP with 900 queries within 12 epochs using the DETR aug-
mentation mentioned in Sec.5.2. By employing a linear
layer to process the dense queries on the feature pyramid
and constructing content parts with feature embeddings, the
performance increases to 48.5 AP. However, initializing the
content part as Two-Stage Deformable DETR(TS D-DETR)
with mapped coordinates only achieves 46.7 AP, which is
due to the lack of distinctness in the coordinates compared
to the feature embedding. Adding an auxiliary loss for the
decoder improves performance to 50.0 AP. Furthermore, by
adding DQS before each refining stage, the performance
further increases to 50.7 AP. Finally, by adding the P2 fea-
ture and 100 CDN queries as in DINO [33], we achieve an
impressive 52.1 AP, surpassing all detectors in the same set-
ting. We show distinctness can be complementary to CDN
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in Table. 7 and analyze the reason in our supplementary ma-
terial.

Table 3. From Deformable DETR*(D-DETR) to DDQ DETR.
TS D-DETR stands for the naive two-stage version. Dense means
initializing the content part with feature embedding. DQS stands
for distinct queries selection. AUX-Decoder means the auxiliary
loss for dense queries in the decoder. The flops only has compara-
tive meaning and does not contain custom cuda operators

Method AP AP50 AP75 L(ms) F(G)
D-DETR* 45.4 63.0 49.1 45 264
TS D-DETR 46.7 64.5 50.8 46 269
+Dense 48.5 66.2 52.7 47 270
+AUX-Decoder 50.0 67.4 54.8 47 270
+DQS 50.7 68.1 55.7 58 270
DDQ DETR5scale 52.1 68.9 57.3 114 860

5.4. Comparison with Other Detectors

Results on CrowdHuman We select some recent represen-
tative studies for comparison with DDQ on crowded scenes.
It is seen that traditional detectors struggle between a low
recall rate and a high false positive rate. Although DW [15]
assignment is the recent state-of-the-art one-to-many as-
signment strategy and shows a clear increase in Recall com-
pared to ATSS, it suffers from more serious false predictions
and thus leads to a high mMR. The performance of such
traditional detectors is limited by the post-processing NMS.
In the supplementary material, we also show it can not be
properly handled by adjusting the IoU threshold because it
is training unaware.

End-to-end detectors can achieve a higher theoretical re-
call rate due to the removal of NMS as a post-process.
However, a high recall is not guaranteed in Sparse R-CNN
and Deformable DETR due to their sparse query design.
Although DeFCN [28] achieves a better performance than
other end-to-end methods by adopting dense queries, it is
still difficult for DeFCN to distinguish between crowded
objects and duplicated predictions(optimization difficulty)
which affects the mMR.

Table 4. Performance on CrowdHuman

Method Epochs AP50 mMR Recall
ATSS 36 89.6 44.4 95.9
DW 36 89.0 57.6 97.4
Cascade R-CNN 36 86.0 44.1 89.2
Sparse R-CNN 50 89.2 48.3 95.9
Deform DETR 50 89.1 50.0 95.3
DeFCN 36 91.0 46.5 97.9
DDQ FCN 36 92.7 41.0 98.2
DDQ R-CNN 36 93.5 40.4 98.6
DDQ DETR 36 93.8 39.7 98.7

In contrast, DDQ surpasses these detectors on all metrics
by a clear margin. For one thing, DDQ leads in Recall due

to the dense queries that could cover most objects. For the
other, DDQ also achieves the lowest mMR, as a merit of the
distinctness among queries so that the detector can better
differentiate false predictions.
Results on COCO We adopt heavier backbones and longer
schedules to fairly compare with other detectors on COCO.
As shown in Table. 5, we get all the results from the orig-
inal study except those marked with *. We divide the re-
sults into two parts according to the augmentation. The
first part adopts the augmentations in DETR [2] and reports
the results on COCO validation dataset. DDQ remains its
advantage among end-to-end object detectors using differ-
ent backbone structures. It is worth emphasizing that DDQ
FCN without any refinement architecture can already sur-
pass most end-to-end detectors. DDQ R-CNN surpasses
these methods by a large margin with only two refining
heads and without encoder architecture. The performance
of DDQ R-CNN (R-50) can be further improved by adopt-
ing an encoder structure as in SEPC [30] or DyHead [6].
For example, It achieves an impressive 51.0 AP by adopt-
ing 6 blocks in DyHead as encoder structure, which is de-
noted as DDQ R-CNNwith encoder(details about this model
can be found in supplementary material). DDQ DETR out-
performs recent DETR with a clear margin using R-50 as
its backbone. When adopting a Swin-L backbone, it also
surpasses the SOTA method DINO [33] by 0.7 AP.

The second part adopts a multi-scale training (480-800)
strategy for 24 epochs and reports the results on the COCO
test-dev using ResNet-101, which is widely used by con-
ventional detectors.

6. Ablation study
6.1. The Recall Improvement of Dense Queries

We analyze the recall of IoU threshold 0.5. As shown in
Table. 6, we report the recall of the 5th stage input queries
of Sparse R-CNN to make a fair comparison with the input
queries of the refinement head in DDQ R-CNN. It can be
seen that the Sparse R-CNN with 300 queries has a signifi-
cantly lower recall(10.2 AR100) than that with 7000 queries.
In DDQ R-CNN, the queries from the DDQ FCN achieve a
comparable recall to 7000 queries but with much less la-
tency.
6.2. DQS with Different IoU Threshold

In this section, we show the robustness of distinct queries
selection(DQS) with different IoU thresholds. As shown
in Table. 7, the performance of DDQ FCN/R-CNN is quite
robust when the IoU threshold ranges from 0.6 to 0.8. The
performance drops slightly when the threshold is lower than
0.6, which is due to the lower recall rate for overlapping
objects. The performance also starts to degrade when the
IoU threshold is larger than 0.8 due to its incapability to
suppress similar queries that slow the optimization. DDQ
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Table 5. Results on COCO Dataset. For DW, the * means we have retrained it with the same augmentation(480-800) as other methods
using official implementation.

Method Backbone Val/Test Epochs AP AP50 AP75 APs APm APl

Aug:DETR
Cascade R-CNN [1] ResNet-50 val 36 44.3 62.4 48 26.6 47.7 57.7
DAB DETR [19] ResNet-50 val 50 42.6 63.2 45.6 21.8 46.2 61.1
DN-DETR [14] ResNet-50 val 50 44.1 64.4 46.7 22.9 48.0 63.4
Deformable DETR [38] ResNet-50 val 50 46.2 65.2 50.0 28.8 49.2 61.7
Efficient DETR [32] ResNet-50 val 36 44.2 62.2 48.0 28.4 47.5 56.6
Sparse R-CNN [26] ResNet-50 val 36 45.0 63.4 48.2 26.9 47.2 59.5
DINO4scales [33] ResNet-50 val 36 50.9 69.0 55.3 34.6 54.1 64.6
DINO5scales [33] ResNet-50 val 36 51.2 69.0 55.8 35.0 54.3 65.3
DDQ FCN ResNet-50 val 36 44.8 64.1 49.4 29.9 47.8 56.0
DDQ R-CNN ResNet-50 val 36 48.1 66.6 53.0 32.3 51.2 60.7
DDQ R-CNNwith encoder ResNet-50 val 36 51.0 69.0 56.0 34.0 54.4 64.6
DDQ DETR4scales ResNet-50 val 24 52.0 69.5 57.2 35.2 54.9 65.9
DDQ DETR5scales ResNet-50 val 24 52.8 69.9 58.1 37.4 55.7 66.0
Sparse R-CNN ResNeXt-64x4d-101 test-dev 36 46.9 66.3 51.2 28.6 49.2 58.7
Deformable DETR ResNeXt-64x4d-101 test-dev 50 49 68.5 53.2 29.7 51.7 62.8
DDQ FCN ResNeXt-64x4d-101 test-dev 36 47.7 67.0 52.6 30.4 49.9 58.3
DDQ R-CNN ResNeXt-64x4d-101 test-dev 36 49.9 68.8 54.8 31.8 52.2 61.7
Sparse R-CNN [26] Swin-B val 36 50.8 70.4 55.6 33.9 53.7 65.9
DDQ R-CNN Swin-B val 36 52.8 72.2 57.9 37.6 56.2 66.9
H-DeformableDETR4scales Swin-L val 36 57.6 76.5 63.2 41.4 61.7 73.9
DINO4scales Swin-L val 36 58.0 76.1 64.0 40.1 62.2 74.3
DDQ DETR4scales Swin-L val 30 58.7 76.8 64.5 41.6 62.9 74.3
DDQ DETR4scales Swin-L test-dev 30 58.8 77.0 64.6 39.4 62.1 74.0
Aug:Multi-Scale
ATSS [34] ResNet-101 test-dev 24 43.6 62.1 47.4 26.1 47.0 53.6
PAA [12] ResNet-101 test-dev 24 44.8 63.3 48.7 26.5 48.8 56.3
OTA [9] ResNet-101 test-dev 24 45.3 63.5 49.3 26.9 48.8 56.1
DW* [15] ResNet-101 test-dev 24 45.8 64.6 49.6 27.3 48.9 57.0
DDQ FCN ResNet-101 test-dev 24 45.9 65.1 50.7 28.3 48.6 55.6

Table 6. Recall improvement of dense distinct queries. Q means
queries and DQS stands for the distinct queries selection. L stands
for the latency of the model.

Method AR100 AR200 AR300 L(ms)
Sparse R-CNN 78.4 83.4 85.5 31.0
7000 Q & DQS 88.6 92.3 93.6 135.0
DDQ R-CNN 88.5 91.8 93.2 31.3

DETR exhibits a similar trend, as observed in Table 3. We
can find even though CDN training in [33] has been adopted
in DDQ DETR, distinctness still improves the performance.
By the way, we also report the performance of ATSS [34] at
different post-processing NMS IoU thresholds and show its
sensitivity to this hyperparameter, in contrast to the robust
behavior of DDQ in which a class-agnostic NMS is adopted
in both training and inference to filter out distinct queries.

7. Conclusion

This paper reveals that both sparse and dense queries in
end-to-end detection are problematic. We propose that the
expected queries should be both dense and distinct. Such

Table 7. Performance of DDQ on COCO when DQS adopts differ-
ent IoU thresholds. Results of ATSS adopting different IoU thresh-
olds in post-processing are also reported. None means we remove
DQS or post-processing from the inference pipeline.* means the
results are not stable and we report the average performance

COCO 0.5 0.6 0.7 0.8 0.9 None
DDQ FCN 40.8 41.4 41.5 41.4 40.5 39.5*
DDQ R-CNN 44.0 44.5 44.6 44.4 43.8 42.7*
DDQ DETR 50.1 50.7 50.9 51.3 51.0 50.7*
ATSS 39.3 39.5 39.3 38.7 36.7 19.6

a paradigm significantly improves the performance of var-
ious detectors including FCN, R-CNN, and DETRs. This
proves the paradigm blends advantages from the traditional
detectors and the recent end-to-end detectors. We hope it
can inspire researchers to consider the complementarity be-
tween traditional methods and end-to-end detectors.
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