
Differentiable Architecture Search with Random Features

Xuanyang Zhang*1 Yonggang Li*2 Xiangyu Zhang1 Yongtao Wang2 Jian Sun1

1MEGVII Technology, 2Peking University
xuanyang91.zhang@gmail.com {zhangxiangyu, sunjian}@megvii.com

{liyonggang, wangyongtao}@pku.edu.cn

Abstract

Differentiable architecture search (DARTS) has signif-
icantly promoted the development of NAS techniques be-
cause of its high search efficiency and effectiveness but suf-
fers from performance collapse. In this paper, we make
efforts to alleviate the performance collapse problem for
DARTS from two aspects. First, we investigate the expres-
sive power of the supernet in DARTS and then derive a
new setup of DARTS paradigm with only training Batch-
Norm. Second, we theoretically find that random features
dilute the auxiliary connection role of skip-connection in
supernet optimization and enable search algorithm focus on
fairer operation selection, thereby solving the performance
collapse problem. We instantiate DARTS and PC-DARTS
with random features to build an improved version for each
named RF-DARTS and RF-PCDARTS respectively. Experi-
mental results show that RF-DARTS obtains 94.36% test ac-
curacy on CIFAR-10 (which is the nearest optimal result in
NAS-Bench-201), and achieves the newest state-of-the-art
top-1 test error of 24.0% on ImageNet when transferring
from CIFAR-10. Moreover, RF-DARTS performs robustly
across three datasets (CIFAR-10, CIFAR-100, and SVHN)
and four search spaces (S1-S4). Besides, RF-PCDARTS
achieves even better results on ImageNet, that is, 23.9%
top-1 and 7.1% top-5 test error, surpassing representative
methods like single-path, training-free, and partial-channel
paradigms directly searched on ImageNet.

1. Introduction
Differentiable architecture search (DARTS) [27] has

demonstrated both higher search efficiency and better
search efficacy than early pioneering neural architecture
search (NAS) [1,50,51] attempts in the image classification
task. In the past few years, many following works further

*Equal contributions.This work is done during Yonggang Li’s in-
ternship at MEGVII Technology. This work is supported by Science
and Technology Innovation 2030-New Generation Artificial Intelligence
(2020AAA0104401).

improve DARTS by introducing additional modules, such
as Gumbel-softmax [13], early stop criterion [23], auxiliary
skip-connection [10], etc. We have witnessed tremendous
improvements in the image recognition task, but it is getting
farther away from exploring how DARTS works. Newly, in
this work, we intend to demystify DARTS by disassembling
key modules rather than make it more complex.

We overview the vanilla DARTS paradigm, and sum-
mary three key modules, namely dataset, evaluation met-
ric, and supernet as follows:

• Dataset. DARTS [27] searches on proxy dataset
and then transfers to target dataset due to huge
requirements for GPU memory. PC-DARTS [36]
proves that proxy datasets inhibit the effectiveness of
DARTS and directly searching on target dataset ob-
tains more promising architectures. UnNAS [25] and
RLNAS [46] ablate the role of labels in DARTS, and
further conclude that ground truth labels are not neces-
sary for DARTS.

• Evaluation metric. DARTS [27] introduces architec-
ture parameters to reflect the strengths of the candidate
operations. PT-DARTS [32] suspects the effectiveness
of architecture parameters and shows that the magni-
tude of architecture parameters does not necessarily
indicate how much the operation contributes to the su-
pernet’s performance. FreeNAS [45] and TE-NAS [7]
further put forward training-free evaluation metrics to
predict the performance of candidate architectures.

• Supernet. DARTS encodes all candidate architectures
in search space into the supernet. The search cell of
supernet will change as the search space changes. R-
DARTS [41] proposes four challenging search spaces
S1-S4 where DARTS obtains inferior performance
than the Random-search baseline. R-DARTS attributes
the failure of vanilla DARTS to the dominant skip-
connections. Thus R-DARTS concludes that the topol-
ogy of supernet has great influence on the efficacy
of DARTS. P-DARTS [9] finds that the depth gap

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16060

(a) Results on CIFAR-10 (b) Results on CIFAR-100 (c) Results on ImageNet16-120

Figure 1. The correlation between the DARTS supernet performance (blue histograms) and the searched architecture performance (orange
histograms) in NAS-Bench-201 [14] search space (best viewed in color). We directly searched on target datasets CIFAR-10, CIFAR-100,
and ImageNet16-120 in three runs and plot average results. Histograms on three datasets reflect a consistent phenomenon. Supernet
performance and the expressive power are positively correlated. However, supernet with higher performance can not search for better
architectures, and supernet optimized with only BN has the best search effect.

between search and evaluation architecture prevents
DARTS from achieving better search results.

Option (state) Learnable modules in supernet Expressive
Convolution BN Affine Power

A (unexplored) ! ! strong
B (explored) ! %

wwww�C (unexplored) % !

D (unexplored) % % weak

Table 1. Enumerate four combinations of learnable modules in
supernet. We keep the composition of supernet unchanged and
just change the optimizable weights. !means updating weights
with the optimizer. %means freezing weights at the initialization.

In this paper, we take a further step to investigate the su-
pernet in DARTS from two respects. First, we ablate the
expressive power of supernet in DARTS. Specifically, each
convolution operation (like separable convolutions) consists
of two learnable modules: convolution layers and Batch-
Norm (BN) [21] layers. Each convolution layer is followed
by a private BN layer. To study the expressive power in iso-
lation, we thoroughly traverse four combinations (named A,
B, C, and D for simple) of learnable modules as shown in
Tab. 1. Existing DARTS variants [9, 27, 36] adopt option
B by default, which disables BN affine weights and only
trains convolution weights during the supernet training. On
the contrary, option A, C, and D are still unexplored, thus
it is a mystery what will happen when supernet is equipped
with different expressive power, that is, trained with option
of A, C, and D. Hence, we make a sanity check between su-
pernet performance and searched architecture performance
across the above four combinations. As shown in Fig. 1, the
relative ranking of supernet performance is A≈B>C>D,
which is consistent with the ranking of supernet’s expres-
sive power. However, the relative ranking of searched archi-

tecture performance is C≫D>A≈B, which sounds count-
intuitive. This result implies that the performance of su-
pernet is not such significant and scaling random fea-
tures with BN affine weights is good enough for archi-
tecture search. Therefore, we propose a new extension of
DARTS with random features driven by the surprising re-
sults of only training BN. Second, we explore the work-
ing mechanism of random features by considering skip-
connection roles in DARTS. Skip-connection in DARTS
plays two roles [10]: 1) as a shortcut to help the optimization
of supernet, and 2) a candidate operation for architecture
search. Random features dilute the role of auxiliary con-
nection that skip-connection plays in supernet training and
enable DARTS to focus on fairer operation selection, thus
implicitly solving performance collapse of DARTS [10,41].

Based on the versatility of supernet optimization, we
arm popular DARTS [27] and PC-DARTS [36] with ran-
dom features to build more effective algorithms RF-DARTS
and RF-PCDARTS. On CIFAR-10, RF-DARTS obtains
94.36% test accuracy that is the nearest optimal re-
sults (94.37%) in NAS-Bench-201. RF-DARTS achieves
the state-of-the-art 24.0% top-1 test error on ImageNet
when transferred from CIFAR-10 in DARTS search space.
RF-DARTS also performs robustly on CIFAR-10, CIFAR-
100, and SVHN across S1-S4. RF-PCDARTS directly
searches on ImageNet and achieves 23.9% top-1 test er-
ror, which surpasses representative methods from single-
path, training-free, and partial channel paradigms. Overall,
comprehensive results reveal that the expressive power of
DARTS supernet is over-powerful, and random features is
just perfect for DARTS. We hope these essential analyses
and results will inspire new understandings for NAS.

16061

2. Related Work

Differentiable architecture search. With the promising
search efficiency, the variants of differentiable architec-
ture search (DARTS) [27] have achieved remarkable per-
formance improvement in various computer vision tasks,
like image classification [31, 33], object detection [35], and
image segmentation [24]. However, DARTS achieves an
efficient search with the cost of several optimization gaps
[4, 9, 13, 23, 34, 36–38, 40, 48] between the search and re-
training stage. Nevertheless, except for the above optimiza-
tion gaps, DARTS suffers from the severe performance col-
lapse [2, 8, 10, 11, 23, 41], which hinders a wide range of
applications of DARTS algorithms. DARTS- [10] finds
that the skip-connection has the advantage for stabilizing
the supernet training, and thereby supernet has the ten-
dentiousness for choosing skip-connection compared with
other operations. Therefore, they introduce an auxiliary
skip-connection to decouple its role for stabilizing the gra-
dient flow and role as a candidate operation. Compared to it,
RF-DARTS provides a straightforward method — directly
training supernet with random features, to prevent the per-
formance collapse brought by skip-connection.

Random features. Learning with random features [3, 16,
29, 39], which fixes the neural network’s weights at ini-
tialization, has been developed a long time and has con-
siderable expressive power [16, 39] for building networks.
Recently, Frankle et al. [15] investigated the performance
achieved by random features when training only the affine
parameters of BatchNorm (BN) [21]. Nevertheless, there
are few works to explore the expressive power of random
features for neural architecture search. Although both BN-
NAS and BNNAS++ training only BN in NAS community,
RF-DARTS has three main difference from BN-NAS [6]
and BNNAS++ [49]. Firstly, the motivations are quite dif-
ferent. Performance collapse in DARTS is an important
open problem and a lot of previous work like DARTS+ [23],
DARTS- [10]and etc try to alleviates this problem. To the
best of our knowledge, it is brand new that training only BN
and still using architecture parameter to distinguish opera-
tions can solve the performance collapse problem. How-
ever, both BN-NAS and BNNAS++ propose a new model
evaluation metric to improve the search efficiency. Sec-
ondly, BN-NAS and BNNAS++ are applied for SPOS [18]
framework while RF-DARTS is for gradient-based NAS.
BNNAS and BNNAS++ have to introduce additional BN
layers for each operations while it is not necessary for RF-
DARTS because of architecture parameters. This prop-
erty shrinks the gap between supernet and searched archi-
tecture, thus RF-DARTS can performance robustly across
both simple search space like NAS-Bench-201, complex
search space like DARTS and Robust DARTS search space.
Thirdly, this paper explores the working mechanism of

random features by considering skip-connection roles in
DARTS. Random features dilute the role of auxiliary con-
nection that skip-connection plays in supernet training and
enable DARTS to focus on fairer operation selection. Be-
sides, both theoretical and empirical analysis of random fea-
tures from the perspective of gradient in DARTS are also
new tools to understand NAS.

3. Methodology
3.1. Preliminary: DARTS

DARTS searches for the shared cells for a network with
L layers, where each cell is a directed acyclic graph (DAG)
with N nodes. Given the pre-defined candidate operations
set O with candidate operation o(·) (e.g., skip-connection,
convolution), DARTS needs to determine the operation se-
lection o ∈ O for each edge between every two nodes of
the shared cell. Rather than directly making the categori-
cal choice of a certain operation like ENAS [28], DARTS
relaxes the search space to the continuous one through a
softmax over all operations in the candidate set O:

ō(x,wconv, α) =
∑
o∈O

exp(αo)∑
o′∈O exp(αo′)

o(x,wo
conv), (1)

where parameter α ∈ R|O| represents the operations mix-
ing weight, and wconv is the weight of convolution layer for
each operation (DARTS disables the affine weights of Batch-
Norm (BN), thus only optimizes the weights of the convolu-
tion layer). Thereby, for determining a neural architecture
with high validation performance, DARTS aims to optimize
the architecture parameters α and the convolution weights
wconv of supernet jointly, and finally uses the optimized pa-
rameters α to derive discrete architectures.

Formally, DARTS seek to find the architecture parame-
ters α∗ with minimal validation loss Lval(w

∗
conv, α

∗) where
the architecture weights w∗

conv are optimized by minimiz-
ing the training loss Ltrain(wconv, α

∗). This objective can be
represented as the below bi-level optimization formulation:

min
α

Lval(w
∗
conv(α), α), (2)

s.t. w∗
conv(α) = argmin

wconv

Ltrain(wconv, α). (3)

However, it is tough to solve the above nested optimiza-
tion problem directly due to the prohibitive gradient of α
w.r.t. Lval. Therefore, DARTS proposes to approximate the
gradient using only one single training step as below:

∇αLval(w
∗
conv(α), α)) ≈ (4)

∇αLval(wconv − ξ∇wconvLtrain(wconv, α), α)). (5)

In this way, DARTS iteratively optimize the weights wconv
and parameters α jointly through gradient descent.

16062

3.2. RF-DARTS: DARTS with Random Features

The supernet of DARTS usually contains two learnable
modules – convolution (Conv) and BatchNorm (BN) layer.
However, DARTS and its variants only consider optimiz-
ing the weights of Conv but freezing the learnable affine
weights of BN. To understand the expressive power of the
above two learnable modules in the weight-sharing super-
net, we extend DARTS by introducing the learnable affine
weights of BN wbn to the search stage of supernet:

ō(x,wconv, wbn, α) =
∑
o∈O

exp(αo)∑
o′∈O exp(αo′)

o(x,wo
conv, w

o
bn).

(6)

Through the analyses of Sec. 4, we find that it is ad-
vantageous for search promising architecture when we op-
timize the weights of the Conv and BN in an inverse way as
DARTS. Consequently, we propose the DARTS with ran-
dom features (RF-DARTS), which only updates the weights
of BN but freezes the weights of the Conv at initialization.
Hence, the optimization object of RF-DARTS can be for-
mulated as follows:

min
α

Lval(w
init
conv, w

∗
bn(α), α), (7)

s.t. w∗
bn(α) = argmin

wbn

Ltrain(w
init
conv, wbn, α), (8)

where winit
conv is kept at initialization and only wbn and α are

optimized. To solve the above objective, we alternatively
optimize the architecture parameters α and the weights of
BN wbn in a similar way as DARTS. Furthermore, to accel-
erate the search procedure, we simply utilize the first-order
approximation of gradient by setting ξ = 0 when calculat-
ing gradient ∇αLval(wconv, wbn − ξ∇wbn , α).

4. Analysis and Discussions
As verified by Frankle et al. [15], the random features

when only training BN (we refer it as random features in be-
low for simplification) have good enough expressive power
for image classification tasks. In this section, we mainly
focus on verifying that the expressive power of random
features is also good enough for differentiable architecture
search. Firstly, we provide analysis for exploring the fail-
ure of DARTS when we train all the weights of supernet
in Sec. 4.1. Secondly, we provide theoretical analyses to
explain how random features solve the failure of DARTS
in Sec. 4.2. Finally, we conduct experiments to verify the
above analyses in Sec. 4.3.

4.1. The devil of skip-connection as an auxiliary
connection in the supernet of DARTS

DARTS suffers from the performance collapse mainly
due to the instability optimization when the search space

includes skip-connection. For example, Amended-DARTS
[2] finds that the normal cell will collapse to choose only
skip-connection operation in every edge after a very long
time search, like 200 epochs. Similarly, DARTS- [10] also
thinks that DARTS tenders to select the skip-connection
in the final architecture, since skip-connection can help
the back-propagation of the gradient when the supernet is
very deep. To verify it, they introduce an extra trainable
coefficient λ ∈ [0, 1] on all skip-connections of ResNet-
50 [20] and observe that the coefficient will converge to
1 no matter the initialization (see Fig. 3a). Theoretically,
given a deep residue model with L residue blocks, the out-
put Xl+1 ∈ RN×C is calculated as:

Xl+1 = fl(Xl,Wl) + λXl, (9)

where Xl ∈ RN×C is the input feature and fl is the non-
linear function with weights Wl ∈ RC×C . They investigate
the gradient of Xl w.r.t. the loss L, which can calculate as
(1 is the identity matrix):

∂L
∂Xl

= (
∂fl
∂Xl

+ λ · 1) · ∂L
∂Xl+1

. (10)

With the above gradient formulation, the deep model prefers
to push the coefficient λ to 1 for better gradient back-
propagation. Thereby, the skip-connection not only serves
as a candidate operation but also serves as an auxiliary con-
nection for stabilizing training in the supernet of DARTS.
With the above two roles of skip-connection, it is hard to
determine the best sub-network since the supernet will tend
to choose skip-connection as the candidate operation.

4.2. The power of random features for diluting skip-
connection’s role of auxiliary connection

To resolve the search performance collapse of DARTS, it
is vital to remove the unfair advantages of skip-connection.
DARTS- introduces an auxiliary skip-connection to distin-
guish the two roles that skip-connection plays in supernet
training, thus reserving only its role as candidate operation.
In this paper, we focus on using random features to resolve
the search performance collapse of DARTS. Through the
analysis below, we find that the gradient vanishing prob-
lem of the deep model will not occur when we use random
features. In this way, there is no need for skip-connection to
solve the gradient vanishing problem, but only as of the spe-
cific Conv operation with identity kernel. Thereby, random
features can help dilute the role of auxiliary connection that
skip-connection plays and thus make a fairer competition
with all operations. The analysis is shown below.

To understand how random features solve the gradient
vanishing problem, we investigate the variance of the gradi-
ent in each layer of the plain network. Following the deriva-
tion of [19], we assume each layer with one Conv layer and

16063

the activation function g, then the output Xl+1 ∈ RC×C is:

Xl+1 = g(Yl), Yl = WlXl, (11)

where Xl ∈ Rk2C×1 represents k ·k pixels in C input chan-
nels, and W ∈ RC×k2C is the Conv kernal with spatial size
k. Then gradient of Xl w.r.t loss L and its variance can be
represented as (∆X and ∆Y donate gradients ∂L

∂X and ∂L
∂Y):

∆Xl = Wl∆Yl, (12)
V ar[∆Xl] = n · V ar[Wl] · V ar[∆Yl], (13)

where n = k2C and ∆Yl = g′(Yl)∆Xl+1. With the as-
sumption of g is ReLU (thus g′(Yl) is zero or one with
equal probabilities), we have V ar[∆Yl] =

1
2V ar[∆Xl+1].

Putting together the following layers for layer o, we have:

V ar[∆Xo] = V ar[∆XL+1](

L∏
l=o

1

2
nV ar[Wl]). (14)

Kaiming initialization [19] gives a sufficient initialization
condition (12nV ar[Wl] = 1,∀l) to make sure the variance
of gradient at initialization not exponentially large/small,
even when the model is extremely deep. Nevertheless, when
we train the weights W of deep models using stochastic
gradient descent, variances of weights W will change along
with the training procedure, which thereby still cannot avoid
the gradients vanishing problem for deep models.

On the contrary, by utilizing random features which
freezes all Conv weights of the network (without BN in
network) at initialization, the variances of gradient will not
change, and the gradient vanishing problem is also avoided.
However, the above derivation does not consider the influ-
ence of BN. When we consider the utilization of BN, the
variances of the gradient are still changing along with the
running variance updating. Despite all this, we find that
by fixing the weights of Conv and only updating the affine
weights of BN, it is still much easy to keep the variances
of gradients in a normal range compared with the standard
training setting. The derivation is shown as below.

We further include the BN in each layer. Therefore, the
output Xl+1 = g(Yl) can be represented as:

Yl = BN(Conv(Xl,Wl), {γbn
l , βbn

l }) (15)

=
WlXl − µl√

σ2
l + ϵ

· γbn
l + βbn

l , (16)

where µl ∈ RC×1 and σ2
l ∈ RC×1 are the means and the

variances of WlXl respectively, and γbn
l ∈ RC×1 and βbn

l ∈
RC×1 are the learnable affine weights of BN. Here, we let
the µl and σ2

l are the population statistics rather than the

mini-batch statistics for simplicity. Thereby, the gradient of
Xl w.r.t. loss L can be denoted as:

∆Xl =
Wl√
σ2
l + ϵ

· γbn
l ·∆Yl ≃ Wl ·

γbn
l

σl
·∆Yl. (17)

Then the variance of the gradient ∆Xl will be:

V ar[∆Xl] = n · V ar[Wl ·
γbn
l

σl
] · V ar[∆Yl]. (18)

Thereby, to make the gradient not vanish, we consider
the similar condition 1

2n·V ar[Wl · γ
bn
l

σl
] = 1 like the kaiming

initalization. Since we have initialized the weight Wl using
xavier [17] or kaiming initialization [19], we only need to
make the Wl · γbn

l

σl
have variance as Wl to keep every layer

with a normal range of gradient. Therefore, it is easy and
enough to only update the weights of BN to avoid the gra-
dient vanishing problem of deep model.

4.3. Verification of random features’s power
through experiments

As we all know, the deeper models suffer from the per-
formance degradation problem: the network depth increas-
ing leads to the performance degradation. Here, we conduct
an intuitive experiment to verify that the deep model with
random features will not occur the performance degrada-
tion problem since it has solved gradient vanishing problem
(Sec. 4.2). We train 18-layer and 50-layer plain ResNets
(without skip-connection in the building blocks) on CIFAR-
10 with the standard training setting (Conv+BN) and the
only BN training setting (Only BN). As shown in Fig. 2a,
both the training and test error rate of 50-layer plain ResNet
is higher than the 18-layer one when we use the standard
training setting. On the contrary, the deeper network has a
lower training error rate and test error rate (Fig. 2b) when
we use random features. With the above observations, we
can conclude that random features can avoid the perfor-
mance degradation problem of the deep model directly.

Skip-connection introduced by ResNet has been the es-
sential technique for solving the performance degradation
problem. With the utilization of random features, we avoid
the performance degradation problem. In this way, the su-
pernet will have no preference of choosing skip-connection.
Thereby, random features can dilute the role of auxiliary
connection that skip-connection plays. We follow the set-
ting of DARTS- for training ResNet-50 with CIFAR-10 to
verify it. We visualize changes of λ for skip-connection
of ResNet-50 with different initialization . As shown in
Fig. 3a, when we train all the trainable weights including
the weights of Conv and BN, λ converges to 1 for all ini-
tialization settings. On the contrary, we find that λ does not
have an evident tendency when we train only the weights of
BN. As shown in Fig. 3b, except the begin epochs λ chang-
ing frequently, λ keeps constant in the end 100 epochs.

16064

0 40 80 120 160 200
Epoch

0

5

10

15

20

Tr
ai

ni
ng

 E
rro

r R
at

e
(%

)

18-layer
50-layer

0 40 80 120 160 200
Epoch

0

5

10

15

20

Te
st

 E
rro

r R
at

e
(%

)

18-layer

50-layer

(a) Conv+BN

0 40 80 120 160 200
Epoch

30

35

40

45

50

Tr
ai

ni
ng

 E
rro

r R
at

e
(%

)

18-layer

50-layer

0 40 80 120 160 200
Epoch

30

35

40

45

50

Te
st

 E
rro

r R
at

e
(%

)
18-layer

50-layer

(b) Only BN

Figure 2. Comparison the training and test error rate of two
training settings on CIFAR-10 dataset with 18-layer and 50-layer
”plain” ResNet (without skip-connection in the building blocks).

0 20 40 60 80 100 120 140 160 180 200
Epoch

0.00

0.25

0.50

0.75

1.00

 for init = 0.0
 for init = 0.5
 for init = 1.0

10

35

60

85

100

Tr
ai

n
Ac

c
(%

)

Acc for init = 0.0
Acc for init = 0.5
Acc for init = 1.0

(a) Conv+BN

0 20 40 60 80 100 120 140 160 180 200
Epoch

0.00

0.25

0.50

0.75

1.00

 for init = 0.0
 for init = 0.5
 for init = 1.0

10

30

50

70

90

Tr
ai

n
Ac

c
(%

)

Acc for init = 0.0
Acc for init = 0.5
Acc for init = 1.0

(b) Only BN

Figure 3. Visualization of evolved λ with two training settings.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Va
ria

nc
e

Only BN
Conv+BN

(a) η along model training

0 10 20 30 40 50
Layer

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Va
ria

nc
e

Only BN
Conv+BN

(b) η when model converges

Figure 4. Visualization of relative variance η on plain ResNet-50.

Finally, we observe the evidence of random features
solving the gradient vanishing problem. We calculate
V ar(Wl · γbn

l

σl
) and V ar(W init

l) on plain ResNet-50. Then,

we plot the relative variance η = V ar[Wl · γ
bn
l

σl
]/V ar[W init

l]
in Fig. 4. When we train only the weights of BN, the mean
of relative scale is close to 1. In this way, the gradients
vanishing problem will not happen. However, the relative
scale is close to 0 when we train all trainable weights, which
makes the gradient vanish for the extremely deep model.

The above phenomenons demonstrate that random fea-
tures can avoid the gradient vanishing problem, and skip-
connection is not necessary for the training of supernet with
random features. Thereby, we can diminish the role of skip-
connection for avoiding the gradient vanishing of supernet
and make supernet focusing on fairer operation selection.

5. Experiment
Based on the above theoretical analyses, we further eval-

uate DARTS with random features across three popular
search spaces. In NAS-Bench-201 [14] (Sec. 5.1), we
compare RF-DARTS with the concurrent work BN-NAS,
visualize the architecture parameters in RF-DARTS and
further make comparisons with the state-of-the-art meth-
ods. In DARTS search space [27] (Sec. 5.2), RF-DARTS
searches on CIFAR-10 and then searched architectures are
transferred to CIFAR-100 and ImageNet. RF-PCDARTS
directly searches on ImageNet. In RobustDARTS S1-
S4 search spaces [41] (Sec. 5.3), we verify the robust-
ness of RF-DARTS. RF-DARTS and RF-PCDARTS follow
the default training setting as DARTS and PC-DARTS re-
spectively. We describe implementation details and plot
searched architectures in the supplementary material.

5.1. NAS-Bench-201 results

Comparison with BN-NAS. BN-NAS [6] has introduced
a similar supernet optimization paradigm of only training
BatchNorm as RF-DARTS. BN indicator for predicting per-
formance is the key contribution in BN-NAS, and only
training BN aims to obtain the bonus of 20% search ef-
ficiency improvement. Instead, RF-DARTS intends to in-
vestigate the expressive power of supernet and alleviate the
problem of performance collapse. Except for the different
motivations of these works, we further compare the search
performance of RF-DARTS and BN-NAS in NAS-Bench-
201. As described in BN-NAS [6], BN-indicator for an
operation is dependent on the BatchNorm (BN) layer, but
there is no BN in none-parametric operations, like skip-
connection, avg-pooling, and none. To make BN-NAS gen-
eralize to NAS-Bench-201, we introduce additional a BN
layer after each none-parametric operation. We train BN-
NAS with convolution and BN or only with BN layer with
10 epochs, 50 epochs, and 250 epochs and use evolution
search with BN indicator. We conduct each experiment in
3 runs and report the best accuracy in Tab. 3. BN-NAS
converges to search cell with six none operations in 3 out
of 6 configurations and obtains inferior performance less
than 93% in other three configurations, while RF-DARTS
achieves the nearest optimal test accuracy 94.36%. These
comparison results imply that RF-DARTS surpasses BN-
NAS by a large margin and it is hard to extend BN-NAS to
search space with none-parametric operations.

Visualization of architecture parameters. As discussed
in Sec. 4, we attribute the success of RF-DARTS to alle-
viate the issue of skip-connection dominance. To further
support our analysis in the practical search phase, we visu-
alize the evolved architecture parameters of best searched
architecture on CIFAR-10. As Fig. 5 shows, after search-
ing 50 epochs, the evolved architecture parameters converge

16065

Method CIFAR-10 CIFAR-100 ImageNet16-120
Valid Acc (%) Test Acc (%) Valid Acc (%) Test Acc (%) Valid Acc (%) Test Acc (%)

RandomNAS [22] 80.42±3.58 84.07±3.61 52.12±5.55 52.31±5.77 27.22±3.24 26.28±3.09
DARTS1st [27] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS2nd [27] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
SETN [12] 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
GDAS [13] 89.89±0.08 93.61±0.09 71.34±0.04 70.70±0.30 41.59±1.33 41.71±0.98
iDARTS [44] 89.86±0.60 93.58±0.32 70.57±0.24 70.83±0.48 40.38±0.59 40.89±0.68
DARTS- [10] 91.03±0.44 93.80±0.40 71.36±1.51 71.53±1.51 44.87±1.46 45.12±0.82

RF-DARTS (ours) 91.30±0.36 94.27±0.15 72.95±0.76 72.94±0.81 46.40±0.04 46.10±0.34
optimal 91.61 94.37 73.49 73.51 46.77 47.31

Table 2. Search performance on NAS-Bench-201 across CIFAR-10, CIFAR-100 and ImageNet16-120.

Method Configurations CIFAR-10 (%)

BN-NAS [6]

Conv BN Epochs Valid Acc Test Acc
✓ ✓ 10 9.71 10.00
✓ ✓ 50 86.28 88.77
✓ ✓ 250 88.48 92.28
% ✓ 10 9.71 10.00
% ✓ 50 9.71 10.00
% ✓ 250 84.35 86.45

RF-DARTS % ✓ 50 91.55 94.36

Table 3. Comparison with BN-NAS searched on CIFAR-10.

to architecture {edge 0→1: conv-3x3, edge 0→2: conv-
3x3, edge 1→2: conv-3x3, edge 0→3: skip-connection,
edge 1→3: conv-3x3, edge 2→3: conv-3x3}. There is
only one skip-connection in the searched architecture rather
than six skip-connection as DARTS1st and DARTS2nd.
As for the performance, RF-DARTS boosts test accu-
racy from 54.30% to 94.36% (+40.06%) on CIFAR-10,
15.61% to 73.51% (+57.90%) on CIFAR-100 and 16.32%
to 46.34% (+30.02%) on ImageNet16-120. Thus we further
conclude that RF-DARTS dilutes role of skip-connection in
supernet optimization and improves the search efficacy by a
large margin by making a fairer comparison.

0 10 20 30 40 50
Epochs

0.14

0.16

0.18

0.20

0.22

So
ftm

ax
(

)

none
skip-connect
conv-1×1
conv-3×3
avg-pool

(a) edge 0→1

0 10 20 30 40 50
Epochs

0.14

0.16

0.18

0.20

0.22

0.24

0.26

So
ftm

ax
(

)

none
skip-connect
conv-1×1
conv-3×3
avg-pool

(b) edge 0→2

0 10 20 30 40 50
Epochs

0.125

0.150

0.175

0.200

0.225

0.250

0.275

So
ftm

ax
(

)

none
skip-connect
conv-1×1
conv-3×3
avg-pool

(c) edge 1→2

0 10 20 30 40 50
Epochs

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

So
ftm

ax
(

) none
skip-connect
conv-1×1
conv-3×3
avg-pool

(d) edge 0→3

0 10 20 30 40 50
Epochs

0.16

0.18

0.20

0.22

0.24

So
ftm

ax
(

)

none
skip-connect
conv-1×1
conv-3×3
avg-pool

(e) edge 1→3

0 10 20 30 40 50
Epochs

0.16

0.18

0.20

0.22

0.24

0.26

So
ftm

ax
(

)

none
skip-connect
conv-1×1
conv-3×3
avg-pool

(f) edge 2→3

Figure 5. Evolved architecture parameters on CIFAR-10. There
are total 6 edges in each search cell. We use edge i→j to represent
the operation from source node i to target node j.

Comparison with state-of-the-art methods. For a fur-
ther step, we verify the efficacy of RF-DARTS with the
comparison of state-of-the-art DARTS variants in NAS-
Bench-201. RF-DARTS searches on CIFAR-10 with
three runs and then we look up the ground truth per-
formance (both validation accuracy and test accuracy) of
searched architectures across CIFAR-10, CIFAR-100 and
ImageNet16-120. We report results with the mean±std for-
mat in Tab. 2. RF-DARTS almost achieves the optimal per-
formance. More specifically, for test accuracy, RF-DARTS
outperforms the newest state-of-the-art method DARTS- by
0.47%, 1.41% and 0.98% on CIFAR-10, CIFAR-100, and
ImageNet16-120 respectively.
5.2. DARTS search space results
Results searched on CIFAR-10. In DARTS search
space, RF-DARTS searches architectures on CIFAR-10 and
then evaluates the searched architectures on CIFAR-10,
CIFAR-100, and ImageNet. As shown in Tab. 3, RF-
DARTS obtains test error 2.60%, 16.50%, and 24.0% on
these three datasets respectively. Compared with vanilla
DARTS2nd, RF-DARTS achieves 0.16%, 0.96%, and 2.9%
improvements across three datasets. As for the compari-
son with the state-of-the-art method PDARTS, except for
the inferior performance in CIFAR-10, RF-DARTS can also
obtain 0.13% and 0.4% improvements on the other two
datasets. Besides, RF-DARTS obtains comparable test er-
ror compared with DARTS- on CIFAR-10, but RF-DARTS
has a much stronger transferring ability. To the best of our
knowledge, 24.0% test error on ImageNet is the newest
state-of-the-art result with 600M FLOPs constrain when
transferring architectures from CIFAR-10.
Results searched on ImageNet. We verify the search
efficacy of RF-PCDARTS on ImageNet. To overcome
the challenge of huge GPU memory requirements in
vanilla DARTS, there are total three popular paradigms
that can directly searched on ImageNet in DARTS search
space, namely the partial-channel paradigm, the single-
path paradigm and the training-free paradigm. We se-
lect two representative methods from each paradigm as
the baselines: 1) PC-DARTS and DARTS+ belong the

16066

Method Test error (%) Params FLOPs Search
CIFAR-10 CIFAR-100 ImageNet (M) (M) Method

NASNet-A [50] 2.65 17.81 26.0/8.4 3.3 564 RL
PNAS [26] 3.41±0.09 17.63 25.8/8.1 3.2 588 SMBO
AmoebaNet-A [30] 3.34±0.06 - 25.5/8.0 3.2 555 EA
ENAS [28] 2.89 18.91 - 4.6 - RL
EN2AS [43] 2.61±0.06 16.45 26.7/8.9 3.1 506 EA
RandomNAS [22] 2.85±0.08 17.63 27.1 4.3 613 random
NSAS [42] 2.59±0.06 17.56 25.5/8.2 3.1 506 random

PARSEC [5] 2.86±0.06 - 26.3 3.6 509 gradient
SNAS [34] 2.85±0.02 20.09 27.3/9.2 2.8 474 gradient
SETN [12] 2.69 17.25 25.7/8.0 4.6 610 gradient
MdeNAS [47] 2.55 17.61 25.5/7.9 3.6 506 gradient
GDAS [13] 2.93 18.38 26.0/8.5 3.4 545 gradient
PDARTS [9] 2.50 16.63 24.4/7.4 3.4 557 gradient
PC-DARTS [36] 2.57±0.07 17.11 25.1/7.8 3.6 586 gradient
DARTS 2nd [27] 2.76±0.09 17.54 26.9/8.7 3.4 574 gradient
DARTS-† [10] 2.58 16.80 25.4/7.9 3.5 547 gradient

RF-DARTS (ours) 2.60 16.50 24.0/7.2 4.6 593 gradient

Table 4. Comparison results with state-of-the-art weight-sharing NAS approaches in DARTS search space. These evaluated architectures
are searched on CIFAR-10 and transferred to CIFAR-100 and ImageNet. † we retrain the architecture reported in DARTS- [10].

Paradigm Method Test error Params FLOPs
(%) (M) (M)

single-path SPOS [18] 25.5/7.9 4.6 512
RLNAS [46] 24.1/7.1 5.5 597

training-free FreeNAS [45] 25.1/7.8 3.6 592
TE-NAS [7] 24.5/7.5 5.4 591

partial-channel
PC-DARTS [36] 24.2/7.3 5.3 597
DARTS+ [23] 23.9/7.4 5.1 582
RF-PCDARTS 23.9/7.1 5.4 600

Table 5. Comparison results with popular NAS paradigms directly
searched on ImageNet (mobile setting) in DARTS search space.

partial-channel paradigm; 2) SPOS and RLNAS belong
the single-path paradigm; 3) FreeNAS and TE-NAS follow
the training-free paradigm. Following the setting of PC-
DARTS, RF-PCDARTS directly searches architectures on
ImageNet. As Tab. 4 shows, considering top-1 and top-5
test error comprehensively, RF-PCDARTS consistently ex-
ceeds six powerful benchmarks across three paradigms.
5.3. Robustness verification across DARTS S1-S4

R-DARTS [41] proposes four search spaces S1-S4 where
vanilla DARTS fails. We evaluate the robustness of
RF-DARTS in S1-S4 across CIFAR-10, CIFAR-100, and
SVHN. In this section, RF-DARTS directly searches archi-
tectures on target datasets. To prove the effectiveness of
RF-DARTS, we choose DARTS, R-DARTS(DP/L2), and
DARTS(ES/ADA) as benchmarks. Tab. 5 shows compar-
ison results between RF-DARTS and three benchmarks.
RF-DARTS consistently outperforms vanilla DARTS by a
large margin across four search spaces and three datasets.
For the other two stronger elaborate benchmarks R-
DARTS(DP/L2) and DARTS(ES/ADA), RF-DARTS still
obtain superior performance in most cases. These results

Benchmark DARTS R-DARTS DARTS OursDP L2 ES ADA

C10

S1 3.84 3.11 2.78 3.01 3.10 2.95
S2 4.85 3.48 3.31 3.26 3.35 4.21
S3 3.34 2.93 2.51 2.74 2.59 2.83
S4 7.20 3.58 3.56 3.71 4.84 3.33

C100

S1 29.46 25.93 24.25 28.37 24.03 22.75
S2 26.05 22.30 22.24 23.25 23.52 22.18
S3 28.90 22.36 23.99 23.73 23.37 24.67
S4 22.85 22.18 21.94 21.26 23.20 21.19

SVHN

S1 4.58 2.55 4.79 2.72 2.53 2.42
S2 3.53 2.52 2.51 2.60 2.54 2.39
S3 3.41 2.49 2.48 2.50 2.50 2.47
S4 3.05 2.61 2.50 2.51 2.46 2.49

Table 6. Test error on CIFAR-10, CIFAR-100 and SVHN across
RobustDARTS S1-S4. Both RF-DARTS and three benchmarks
search directly on target datasets.

demonstrate that RF-DARTS performs substantially robust.

6. Conclusion
To alleviate performance collapse in DARTS, we chal-

lenge the conventional supernet optimization paradigm and
demystify DARTS from a new perspective of expressive
power in supernet. We surprisingly find that only training
BatchNorm achieves higher search performance, which sur-
passes DARTS with other three learnable module combina-
tions by a large margin and thus we propose RF-DARTS.
We further theoretically analyze the variance of gradient in
RF-DARTS and conclude that random features can allevi-
ate the problem of performance collapse by diminishing the
role of skip-connection. Comprehensive experiments across
various datasets and search spaces consistently demonstrate
the effectiveness and robustness of RF-DARTS.

16067

References
[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh

Raskar. Designing neural network architectures using rein-
forcement learning. arXiv preprint arXiv:1611.02167, 2016.
1

[2] Kaifeng Bi, Changping Hu, Lingxi Xie, Xin Chen, Longhui
Wei, and Qi Tian. Stabilizing DARTS with amended gradient
estimation on architectural parameters. CoRR, 2019. 3, 4

[3] Hans-Dieter Block. The perceptron: A model for brain func-
tioning. Reviews of Modern Physics, 34(1):123, 1962. 3

[4] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. In
ICLR, 2019. 3

[5] Francesco Paolo Casale, Jonathan Gordon, and Nicolo Fusi.
Probabilistic neural architecture search. arXiv preprint
arXiv:1902.05116, 2019. 8

[6] Boyu Chen, Peixia Li, Baopu Li, Chen Lin, Chuming Li,
Ming Sun, Junjie Yan, and Wanli Ouyang. Bn-nas: Neural
architecture search with batch normalization. In ICCV, 2021.
3, 6, 7

[7] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural
architecture search on imagenet in four GPU hours: A theo-
retically inspired perspective. In ICLR, 2021. 1, 8

[8] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differen-
tiable architecture search via perturbation-based regulariza-
tion. In ICML, 2020. 3

[9] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive dif-
ferentiable architecture search: Bridging the depth gap be-
tween search and evaluation. In ICCV, 2019. 1, 2, 3, 8

[10] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xi-
aolin Wei, and Junchi Yan. DARTS-: robustly stepping out
of performance collapse without indicators. In ICLR, 2021.
1, 2, 3, 4, 7, 8

[11] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li.
Fair DARTS: eliminating unfair advantages in differentiable
architecture search. In ECCV, 2020. 3

[12] Xuanyi Dong and Yi Yang. One-shot neural architecture
search via self-evaluated template network. In ICCV, 2019.
7, 8

[13] Xuanyi Dong and Yi Yang. Searching for a robust neural
architecture in four GPU hours. In CVPR, 2019. 1, 3, 7, 8

[14] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the
scope of reproducible neural architecture search. In ICLR,
2020. 2, 6

[15] Jonathan Frankle, David J. Schwab, and Ari S. Morcos.
Training batchnorm and only batchnorm: On the expressive
power of random features in cnns. In ICLR, 2021. 3, 4

[16] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and
Andrea Montanari. Linearized two-layers neural networks
in high dimension. CoRR, 2019. 3

[17] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In AIS-
TATS, 2010. 5

[18] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot
neural architecture search with uniform sampling. In ECCV,
2020. 3, 8

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In ICCV, 2015. 4, 5

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 4

[21] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015. 2, 3

[22] Liam Li and Ameet Talwalkar. Random search and repro-
ducibility for neural architecture search. In Uncertainty in
artificial intelligence, 2020. 7, 8

[23] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He,
Weiran Huang, Kechen Zhuang, and Zhenguo Li. Darts+:
Improved differentiable architecture search with early stop-
ping. arXiv preprint arXiv:1909.06035, 2019. 1, 3, 8

[24] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Auto-
deeplab: Hierarchical neural architecture search for semantic
image segmentation. In CVPR, 2019. 3

[25] Chenxi Liu, Piotr Dollár, Kaiming He, Ross Girshick, Alan
Yuille, and Saining Xie. Are labels necessary for neural ar-
chitecture search? In ECCV, 2020. 1

[26] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In ECCV, 2018. 8

[27] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
differentiable architecture search. In ICLR, 2019. 1, 2, 3, 6,
7, 8

[28] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. In ICML, 2018. 3, 8

[29] Ali Rahimi and Benjamin Recht. Random features for large-
scale kernel machines. In NeurIPS, 2007. 3

[30] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In AAAI, 2019. 8

[31] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-
dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,
Kan Chen, Peter Vajda, and Joseph E. Gonzalez. Fb-
netv2: Differentiable neural architecture search for spatial
and channel dimensions. In CVPR, 2020. 3

[32] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi-
aocheng Tang, and Cho-Jui Hsieh. Rethinking architecture
selection in differentiable NAS. In ICLR, 2021. 1

[33] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
CVPR, 2019. 3

[34] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
SNAS: stochastic neural architecture search. In ICLR, 2019.
3, 8

[35] Hang Xu, Lewei Yao, Zhenguo Li, Xiaodan Liang, and Wei
Zhang. Auto-fpn: Automatic network architecture adapta-
tion for object detection beyond classification. In ICCV,
2019. 3

16068

[36] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. PC-DARTS: partial chan-
nel connections for memory-efficient architecture search. In
ICLR, 2020. 1, 2, 3, 8

[37] Yibo Yang, Hongyang Li, Shan You, Fei Wang, Chen Qian,
and Zhouchen Lin. ISTA-NAS: efficient and consistent neu-
ral architecture search by sparse coding. In NeurIPS, 2020.
3

[38] Yibo Yang, Shan You, Hongyang Li, Fei Wang, Chen Qian,
and Zhouchen Lin. Towards improving the consistency, ef-
ficiency, and flexibility of differentiable neural architecture
search. In CVPR, 2021. 3

[39] Gilad Yehudai and Ohad Shamir. On the power and limita-
tions of random features for understanding neural networks.
In NeurIPS, 2019. 3

[40] Hongyuan Yu and Houwen Peng. Cyclic differentiable ar-
chitecture search. arXiv preprint arXiv:2006.10724, 2020.
3

[41] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Mar-
rakchi, Thomas Brox, and Frank Hutter. Understanding
and robustifying differentiable architecture search. In ICLR,
2020. 1, 2, 3, 6, 8

[42] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang,
Zongyuan Ge, and Steven W Su. Differentiable neural archi-
tecture search in equivalent space with exploration enhance-
ment. In NeurIPS, 2020. 8

[43] Miao Zhang, Huiqi Li, Shirui Pan, Taoping Liu, and
Steven W Su. One-shot neural architecture search via nov-
elty driven sampling. In IJCAI, 2020. 8

[44] Miao Zhang, Steven Su, Shirui Pan, Xiaojun Chang, Ehsan
Abbasnejad, and Reza Haffari. idarts: Differentiable ar-
chitecture search with stochastic implicit gradients. arXiv
preprint arXiv:2106.10784, 2021. 7

[45] Miao Zhang, Steven Su, Shirui Pan, Xiaojun Chang, Wei
Huang, and Gholamreza Haffari. Differentiable architecture
search without training nor labels: A pruning perspective.
arXiv preprint arXiv:2106.11542, 2021. 1, 8

[46] Xuanyang Zhang, Pengfei Hou, Xiangyu Zhang, and Jian
Sun. Neural architecture search with random labels. In
CVPR, 2021. 1, 8

[47] Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang,
Jianzhuang Liu, and Qi Tian. Multinomial distribution learn-
ing for effective neural architecture search. In ICCV, 2019.
8

[48] Qinqin Zhou, Xiawu Zheng, Liujuan Cao, Bineng Zhong,
Teng Xi, Gang Zhang, Errui Ding, Mingliang Xu, and Ron-
grong Ji. Ec-darts: Inducing equalized and consistent opti-
mization into darts. In ICCV, 2021. 3

[49] Yichen Zhu and Xiaowei Fu. Bnnas++: Towards unbiased
neural architecture search with batch normalization. IEEE
Access, 10:128424–128432, 2022. 3

[50] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016. 1, 8

[51] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In CVPR, 2018. 1

16069

