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Figure 1. Synthesized samples on various datasets, including FFHQ (10242 and 2562), LSUN Church (2562), LSUN Bedroom (2562),
LSUN Cat (2562) and CIFAR10 (322). All these samples are generated from a 642 noise except CIFAR10 from 162, while conventional
diffusion models can only start from a noise with the same dimension as the final sample.

Abstract
Diffusion models, which learn to reverse a signal de-

struction process to generate new data, typically require
the signal at each step to have the same dimension. We
argue that, considering the spatial redundancy in image
signals, there is no need to maintain a high dimension-
ality in the evolution process, especially in the early
generation phase. To this end, we make a theoretical
generalization of the forward diffusion process via signal
decomposition. Concretely, we manage to decompose an
image into multiple orthogonal components and control
the attenuation of each component when perturbing the
image. That way, along with the noise strength increasing,
we are able to diminish those inconsequential components
and thus use a lower-dimensional signal to represent the
source, barely losing information. Such a reformulation
allows to vary dimensions in both training and inference
of diffusion models. Extensive experiments on a range of
datasets suggest that our approach substantially reduces
the computational cost and achieves on-par or even better
synthesis performance compared to baseline methods. We
also show that our strategy facilitates high-resolution image
synthesis and improves FID of diffusion model trained on
FFHQ at 1024×1024 resolution from 52.40 to 10.46. Code
is available at https://github.com/damo-vilab/dvdp.

∗corresponding author.
† Work performed at Alibaba DAMO Academy.

1. Introduction
Diffusion models [2, 6, 9, 15, 21, 24, 28] have recently

shown great potential in image synthesis. Instead of directly
learning the observed distribution, it constructs a multi-
step forward process through gradually adding noise onto
the real data (i.e., diffusion). After a sufficiently large
number of steps, the source signal could be considered
completely destroyed, resulting in a pure noise distribution
that naturally supports sampling. In this way, starting from
sampled noises, we can expect new instances after reversing
the diffusion process step by step.

As it can be seen, the above pipeline does not change
the dimension of the source signal throughout the entire
diffusion process [6,26,28]. It thus requires the reverse pro-
cess to map a high-dimensional input to a high-dimensional
output at every single step, causing heavy computation
overheads [10, 22]. However, images present a measure of
spatial redundancy [4] from the semantic perspective (e.g.,
an image pixel could usually be easily predicted according
to its neighbours). Given such a fact, when the source
signal is attenuated to some extent along with the noise
strength growing, it should be possible to get replaced by
a lower-dimensional signal. We therefore argue that there
is no need to follow the source signal dimension along
the entire distribution evolution process, especially at early
steps (i.e., steps close to the pure noise distribution) for
coarse generation.
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Figure 2. Conceptual comparison between DDPM [6] and our proposed DVDP, where our approach allows using a varying dimension in
the diffusion process.

In this work, we propose dimensionality-varying diffu-
sion process (DVDP), which allows dynamically adjusting
the signal dimension when constructing the forward path.
The varying dimensionality concept is shown in Fig. 2. For
this purpose, we first decompose an image into multiple
orthogonal components, each of which owns dimension
lower than the original data. Then, based on such a
decomposition, we theoretically generalize the conventional
diffusion process such that we can control the attenuation of
each component when adding noise. Thanks to this refor-
mulation, we manage to drop those inconsequential com-
ponents after the noise strength reaches a certain level, and
thus represent the source image using a lower-dimensional
signal with little information lost. The remaining diffusion
process could inherit this dimension and apply the same
technique to further reduce the dimension.

We evaluate our approach on various datasets, including
objects, human faces, animals, indoor scenes, and outdoor
scenes. Experimental results suggest that DVDP achieves
on-par or even better synthesis performance than baseline
models on all datasets. More importantly, DVDP relies on
much fewer computations, and hence speeds up both train-
ing and inference of diffusion models. We also demonstrate
the effectiveness of our approach in learning from high-
resolution data. For example, we are able to start from a
64×64 noise to produce an image under 1024×1024 resolu-
tion. With FID [5] as the evaluation metric, our 1024×1024
model trained on FFHQ improves the baseline [28] from
52.40 to 10.46. All these advantages benefit from using a
lower-dimensional signal, which reduces the computational
cost and mitigates the optimization difficulty.

2. Related Work

Diffusion models. [26] proposes diffusion models for the
first time that generate samples from a target distribution by
reversing a diffusion process in which target distribution is
gradually disturbed to an easily sampled standard Gaussian.
[6] further proposes DDPM to reverse the diffusion process

by learning a noise prediction network. [28] considers
diffusion models as stochastic differential equations with
continuous timesteps and proposes a unified framework.
Accelerating diffusion models. Diffusion models signif-
icantly suffer from the low training and inference speed.
There are many methods that speed up sampling from
thousands of steps to tens of steps while keeping an accept-
able sample quality [1, 14, 17, 19, 25, 27, 30, 31]. Besides
improvements only on inference speed, there are other
works aiming at speeding up both training and inference.
[18] proposes a patch operation to decrease the dimen-
sionality of each channel while accordingly increasing the
number of channels, which greatly reduces the complexity
of computation. Besides, a trainable forward process [33] is
also proven to benefit a faster training and inference speed.
However, the price of their acceleration is a poor sampling
quality evaluated by FID score. In this work, we accelerate
DDPM on both training and inference from a different
perspective, i.e., reducing the dimensionality of the early
diffusion process, and thus improving the efficiency while
obtaining on-par or even better synthesis performance.
Varying dimensionality of diffusion models. Due to the
redundancy in image signals, it is possible to improve the
efficiency of diffusion models by varying dimensionality
during the generation process. The most relevant work to
our proposed model is subspace diffusion [10], which can
also vary dimensionality in the diffusion process. However,
subspace diffusion suffers from a trade-off between sam-
pling acceleration and sample quality, while our DVDP can
relieve this dilemma (see theoretical analysis in Sec. 4.4
and experimental results in Sec. 5.3). Instead of varying
dimensionality in one diffusion process, there are works
cascading several diffusion processes with growing dimen-
sionality [7, 21, 23, 24], where the subsequent process is
conditioned on the previous samples.
Discussion with latent diffusion. Besides varying dimen-
sionality in image space, there are other methods, which we
generally call latent diffusion, that directly apply diffusion
models in a low dimensional latent space, obtained by an
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autoencoder [3, 8, 20, 22, 29]. Although latent diffusion
can also speed up the training and sampling of diffusion
models, it decreases dimensionality by an additional model
and keeps the diffusion process unchanged. In this paper,
however, we focus on the improvement on the diffusion
process itself to accelerate training and sampling, which
is totally a different route. Besides training and sampling
efficiency, another important contribution of this work is to
prove that it it unnecessary for diffusion process to keep a
fixed dimension along time. By controlling the attenuation
of each data component, it is possible to change dimension-
ality while keeping the process reversible. Thus, we will
not further compare our DVDP with latent diffusion.

3. Background

We first introduce the background of Denoising Diffu-
sion Probabilistic Model (DDPM) [6, 26] and some of its
extensions which are closely related to our work. DDPM
constructs a forward process to perturb the distribution of
data q(x0) into a standard Gaussian N (0; I). Consider-
ing an increasing variance schedule of noises β1, . . . , βT ,
DDPM defines the forward process as a Markov chain

xt =
√
1− βtxt−1 +

√
βtϵ, t = 1, 2, · · · , T, (1)

where ϵ is a standard Gaussian noise. In order to generate
high-fidelity images, DDPM [6] denoises samples from a
standard Gaussian iteratively utilizing the reverse process
parameterized as

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+
√
βtϵ, (2)

where αt = 1 − βt, ᾱt =
∏t

s=1 αs, and ϵθ is a neural
network used to predict ϵ from xt. The parameters θ are
learned by minimizing the following loss function

L(θ) = Et,x0,ϵ

[
∥ϵ− ϵθ(xt(x0, ϵ), t)∥2

]
. (3)

While the standard diffusion model is implemented di-
rectly in the image space, [13] takes the relative importance
of different frequency components into consideration, and
generalizes the forward diffusion process as

xt = U(I−Bt)
1
2UTxt−1 +UB

1
2
t U

T ϵ, (4)

where U is an orthogonal matrix to impose a rotation on
xt, and the noise schedule is defined by the diagonal matrix
Bt. As Eq. (4) is too general to be directly instantiated as an
implementation, [13] only discusses one special case called
blur diffusion, which owns a clearly different focus from our
work. In this work, we extend the generalized framework
further and make it possible to vary dimensionality during
the diffusion process.

4. Dimensionality-Varying Diffusion Process

We formulate the dimensionality-varying diffusion pro-
cess in this section, which progressively decreases the di-
mension of xt in the forward process, and can be effectively
reversed to generate high-dimensional data from a low-
dimensional noise. To establish DVDP, we gradually atten-
uate components of x0 in different subspaces and decrease
the dimensionality of xt at dimensionality turning points by
downsampling operator (Sec. 4.1), which is approximately
reversible (Sec. 4.2) with controllable small error caused by
the loss of attenuated x0 component (Sec. 4.3).

4.1. Forward Process of DVDP

In this section, we will construct the forward process
of our DVDP, which decreases the dimensionality as time
evolves and can be effectively reversed. To this end,
we concatenate multiple diffusion processes with different
dimensions into an entire Markov chain by downsampling
operations, while we elaborately design each process so
that the information loss induced by downsampling is
negligible. Fig. 3 illustrates this overall framework. The
concatenation of different processes enables us to decrease
the dimensionality, and the control on information loss
ensures that downsampling operations are approximately
reversible, such that the entire process can be reversed
(discussed later in Sec. 4.2). To limit the information loss,
we decompose the data into orthogonal components and
control the attenuation of each component in the forward
process of each concatenated diffusion, which we call
Attenuated Diffusion Process (ADP). Once the lost data
component induced by downsampling is attenuated to be
small enough, the information loss will be negligible.
Notation list. As a prerequisite for constructing each ADP,
we first define a sequence of subspaces and other necessary
notations as follows:

• S0 ⊋ S1 ⊋ · · · ⊋ SK is a sequence of subspaces with
decreasing dimensionality d = d̄0 > d̄1 > · · · > d̄K ,
where S0 = Rd is the original space, K ∈ N+. For
simplicity, SK+1 ≜ {0} and d̄K+1 ≜ 0.

• di = dim(Si/Si+1), i = 0, 1, · · · ,K. Note that dK =
dim(SK/SK+1) = dim(SK).

• U0 = [Û0, · · · , ÛK ] ∈ Rd×d is an orthogonal matrix,
and column vectors of its sub-matrix Ûi ∈ Rd×di span
subspace Si/Si+1 for i = 0, 1, · · · ,K.

• Uk ∈ Rd̄k×d̄k is an orthogonal matrix for k =

0, 1, · · · ,K, and can be split as Uk = [Nk,Pk] when
k < K where Nk ∈ Rd̄k×dk , Pk ∈ Rd̄k×d̄k+1 .

• In ∈ Rn×n is an identity matrix.

• On ∈ Rn×n is a zero matrix.
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Figure 3. Framework illustration of DVDP. Each row represents an Attenuated Diffusion Process (ADP), which controls the attenuation
of each data component while adding noise. All K + 1 ADPs (K = 2 here) have different dimensions decreasing from top to bottom, and
are concatenated by some simple opeartions to obtain our DVDP. In the forward process, the concatenation is achieved by downsampling
operation, and in reverse process, it is the upsampling operation followed by adding a Gaussian noise.

With the above definitions, we can first construct an ADP
x0
t ∈ S0 for t = 0, 1, · · · , T as

x0
t =

K∑
i=0

(λ̄i,tv
0
i + σ̄i,tz

0
i )

=U0Λ̄0,tU
T
0 x0

0 +U0L̄0,tU
T
0 ϵ0,

(5)

where v0
i ∈ Si/Si+1 is the component of original data

point x0
0 in subspace Si/Si+1, λ̄i,t controls the attenuation

of v0
i along timestep t, z0i is the component of a standard

Gaussian noise ϵ0 ∈ Rd̄0 in the same subspace as v0
i

(i.e., Si/Si+1), σ̄i,t is the standard deviation of z0i , and
Λ̄0,t, L̄0,t ∈ Rd̄0×d̄0 are two diagonal matrices defined
as Λ̄0,t = diag(λ̄0,tId0 , λ̄1,tId1 , · · · , λ̄K,tIdK

) and
L̄0,t = diag(σ̄0,tId0 , σ̄1,tId1 , · · · , σ̄K,tIdK

). To control
the attenuation of each data component v0

i , we require λ̄i,t

to gradually decrease from 1 to approximate 0 for i =
0, 1, · · · ,K − 1 as timestep t evolves. As for λ̄K,t, it is
not required to decrease (explained later after Eq. (8)).

Starting from x0
t , we can recursively construct a

dimensionality-decreasing sequence of ADPs

xk
t = Dkx

k−1
t =

K∑
i=k

(λ̄i,tv
k
i + σ̄i,tz

k
i )

= UkΛ̄k,tU
T
k xk

0 +UkL̄k,tU
T
k ϵk, 1 ≤ k ≤ K,

(6)

where Dk : Rd̄k−1 → Rd̄k is a linear surjection, which
we call the k-th downsampling operator as it reduces
the dimensionality of the operand (without ambiguity,
we also use Dk to denote the corresponding matrix in
Rd̄k×d̄k−1 ), vk

i = Dkv
0
i ∈ Dk(Si/Si+1) is the com-

ponent of xk
0 = Dkx

0
0 ∈ Rd̄k (Dk ≜

∏k
i=1 Di),

zki = Dkz
0
i ∈ Dk(Si/Si+1) is the component of a

standard Gaussian noise ϵk = Dkϵ
0 ∈ Rd̄k , Λ̄k,t =

diag(λ̄k,tIdk
, λ̄k+1,tIdk+1

, · · · , λ̄K,tIdK
) ∈ Rd̄k×d̄k ,

L̄k,t = diag(σ̄k,tIdk
, σ̄k+1,tIdk+1

, · · · , σ̄K,tIdK
) ∈

Rd̄k×d̄k , and orthogonal matrix Uk ∈ Rd̄k×d̄k consists of
the last d̄k columns of DkUk−1, i.e., Uk = DkPk−1 (note
that this condition requires further restriction on Dk).

Both Eqs. (5) and (6) can be derived from Markov chains
with Gaussian kernels as (see Supplementary Material for
the proof)

xk
t = UkΛk,tU

T
k xk

t−1 +UkLk,tU
T
k ϵk, 0 ≤ k ≤ K, (7)

where Λk,t=Λ̄−1
k,t−1Λ̄k,t, Lk,t=(L̄2

k,t −Λ2
k,tL̄

2
k,t−1)

1/2.
Now with the ADPs {xk

t }Kk=0 given by Eq. (7), we can
construct the forward process of DVDP by merging differ-
ent parts of {xk

t }Kk=0 in the following manner: consider a
strictly increasing time sequence T1, · · · , TK , TK+1 = T ,
if for each k satisfying 1 ≤ k ≤ K, λ̄k−1,Tk

becomes small
enough, then xk−1

Tk
is downsampled by Dk to obtain xk

Tk

with lower dimensionality, and each Tk is a dimensionality
turning point. The entire process can be expressed as

x0
0 −→ x0

1 −→· · · −→ x0
T1

D1−→x1
T1

−→ x1
T1+1 −→· · · −→ x1

T2

...
DK−→xK

TK
−→ xK

TK+1 −→· · · −→ xK
T .

(8)

Between two adjacent dimensionality turning points Tk−1

and Tk, xk−1
t diffuses and attenuates data components

vk−1
i , i ≥ k − 1, which keeps the dimensionality d̄k−1.

When it comes to Tk, xk−1
Tk

Dk−→ xk
Tk

decreases the
dimension from d̄k−1 to d̄k. After the last dimensionality
turning point Tk, xK

t can just evolve as conventional
diffusion without data component attenuation. Thus, the
entire process in Eq. (8) decreases the dimensionality by K
times from d̄0 = d to d̄K . It should be noted that process
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in Eq. (8) is also Markovian since each diffusion sub-
process xk−1

Tk−1
→ xk−1

Tk
is Markovian, and the result of each

downsampling operation xk
Tk

is uniquely determined by the
previous state xk−1

Tk
. Also note that each downsampling

operation Dk loses little information because of small
λ̄k−1,Tk

which is a controllable hyperparameter. For better
understanding, consider the relationship between xk−1

Tk
and

xk
Tk

derived from Eq. (6)

xk−1
Tk

= DT
k x

k
Tk

+ λ̄k−1,Tk
vk−1
k−1︸ ︷︷ ︸

data component

+ σ̄k−1,Tk
zk−1
k−1︸ ︷︷ ︸

noise component

, (9)

where DT
k is the transpose of matrix Dk, named as the

k-th upsampling operator. From Eq. (9), it is clear that
xk
Tk

actually loses two terms compared with xk−1
Tk

: 1)
data component λ̄k−1,Tk

vk−1
k−1 which is informative but

negligible as λ̄k−1,Tk
is set to be small enough, and 2) noise

component σ̄k−1,Tk
zk−1
k−1 that is non-informative and can be

compensated in the reverse process, as we will discuss in
Sec. 4.2.

4.2. Reverse Process Approximating DVDP

In this section, we will derive an approximate reverse
process, which induces a data generation process with
progressively growing dimensionality. The approximation
error will be discussed in Sec. 4.3, and we can find that it
actually converges to zero. Loss function will also be given
at the end of this section. Implementation details of training
and sampling can be found in Supplementary Material.
Reverse transition. Since DVDP is a sequence of fixed-
dimensionality diffsion processes connected by downsam-
pling operations at dimensionality turning points, we con-
sider reverse transition kernels between and at dimension-
ality turning points separately.

For reverse transition between two adjacent dimension-
ality turning points, i.e., pθ(xk

t−1|xk
t ) with Tk−1 ≤ t ≤

Tk for k ∈ [1,K + 1], it can be defined as a Gaussian
kernel pθ(x

k
t−1|xk

t ) = N (xk
t−1;µθ(x

k
t , t),Σt). As in

DDPM [6], the covariance matrices Σt are set to untrained
time-dependent constants, and the mean term µθ(x

k
t , t) is

defined as (see Supplementary Material for details)

µθ =µ̃k,t

(
xk
t ,UkΛ̄

−1
k,tU

T
k xk

t

−UkΛ̄
−1
k,tL̄k,tU

T
k ϵθ(x

k
t , t)

)
,

(10)

where µ̃k,t(·, ·) is the mean function of forward process
posterior q(xk

t−1|xk
t ,x

k
0) = N (xk

t−1; µ̃k,t(x
k
t ,x

k
0), Σ̃k,t),

and ϵθ represents a trainable network.
For reverse transition at dimensionality turning points,

i.e., pθ(x
k−1
Tk

|xk
Tk
) for k ∈ [1,K], the corresponding

forward transitions barely lose information as illustrated by
Eq. (9) in Sec. 4.1, thus xk

Tk
→ xk−1

Tk
can be approximately

achieved without any trainable network as

xk−1
Tk

= DT
k x

k
Tk

+Uk−1∆Lk−1U
T
k−1ϵ

k−1, (11)

where DT
k ∈ Rd̄k×d̄k−1 is the upsampling operator, and

∆Lk−1 = diag(σ̄k−1,Tk
Idk−1

,Od̄k
) represents the stan-

dard deviation of the added Gaussian noise ϵk−1 ∈ Rd̄k−1 .
Eq. (11) can be understood as: we first upsample xk

Tk
, then

add a Gaussian noise in compensation for the lost noise
component in the forward downsampling operation, i.e.,
σ̄k−1,Tk

zk−1
k−1 in Eq. (9). The approximation error comes

from neglecting data component λ̄k−1,Tk
vk−1
k−1, and will be

analyzed later in Sec. 4.3.
Loss function. Similar with DDPM [6], a loss function
can be derived from a weighted variational bound as (see
Supplementary Material for details)

L(θ) = EkExk
0 ,ϵ

k,t∼Uk

[∥∥ϵk − ϵθ(x
k
t (x

k
0 , ϵ

k), t)
∥∥2], (12)

where Uk = U
(
(Tk, Tk+1]

)
is a discrete uniform distri-

bution between Tk (exclusive) and Tk+1 (inclusive), and
xk
t (x

k
0 , ϵ

k) represents the forward xk
t determined by xk

0 and
ϵk given in Eq. (6).

4.3. Error Analysis

In Sec. 4.2, we mention that the reverse process is just an
approximation of the forward DVDP at each dimensionality
turning point Tk. In this section, we will measure this
approximation error in probability sense, i.e., the difference
between the real forward distribution q(xk−1

Tk
) and the

reverse distribution p(xk−1
Tk

) under proper assumptions, and
will find that this difference converges to zero.

To measure the difference between two distributions, we
use Jensen-Shannon Divergence (JSD) as a metric. Under
this metric, upper bound of the approximation error can be
derived from Proposition 1 (see Supplementary Material for
proof):

Proposition 1 Assume p1(x|x0), p2(x|x0) are two Gaus-
sians such that p1(x|x0) = N (x;A1x0,Σ) and
p2(x|x0) = N (x;A2x0,Σ), where positive semi-definite
matrices A1, A2 satisfy A1 ⪰ A2 ⪰ 0, covariance matrix
Σ is positive definite, and the support of distribution p(x0)
is bounded, then Jensen-Shannon Divergence (JSD) of the
two marginal distributions p1(x) and p2(x) satisfies

JSD(p1||p2) ≤
√
2

2
e−

1
2B

(
2
√
2 +

Vd(r)

(2π)
d
2

)
· ∥Σ− 1

2 (A1 −A2)∥2,

(13)

where B is the upper bound of ∥x0∥2, Vd(·) is the volume
of a d-dimensional sphere with respect to the radius, and
r = 2B∥Σ− 1

2A1∥2.
With Proposition 1, the upper bound of JSD between the

forward distribution q(xk−1
Tk

) and the reverse distribution
p(xk−1

Tk
) can be obtained by Theorem 1 (see Supplementary

Material for proof)
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Theorem 1 (Reverse Process Error) Assume 0 < k ≤
K, q(xk−1

Tk
) and q(xk

Tk
) are defined by Eqs. (5) and (6),

p(xk−1
Tk

) is the marginal distribution of q(xk
Tk
)p(xk−1

Tk
|xk

Tk
)

where p(xk−1
Tk

|xk
Tk
) is defined by Eq. (11), and ∥x0∥2 ≤√

d, then

ξ1 ≤
√
2

2
e−

1
2

√
d

(
2
√
2 +

Vd(r)

(2π)
d
2

)
λ̄k−1,Tk

σ̄k−1,Tk

=o(λ̄k−1,Tk
),

(14)

where ξ1 ≜ JSD(q(xk−1
Tk

)||p(xk−1
Tk

)), and r =

2
√
dmaxk−1≤i≤K

λ̄i,Tk

σ̄i,Tk
.

Note that the assumption ∥x0∥2 ≤
√
d can be satisfied for

image data, since pixel values can be normalized in [−1, 1].
Thus, Theorem 1 claims that ξ1 can be arbitrarily small as
λ̄k−1,Tk

→ 0 if we can get an exact q(xk−1
Tk

) by reverse
process. It means that the approximation error caused by
stepping over Tk can be small enough.

4.4. Comparison with Subspace Diffusion

To reduce the dimensionality of latent space in dif-
fusion models, subspace diffusion is proposed to model
in a low-dimensional subspace at high noise levels, and
keep the original full-dimensional network at low noise
levels [10]. This can also be seen as a concatenation of
multiple diffusion processes with different dimensionality
like our DVDP, but without controllable attenuation on
each data component. Each concatenated processes is just
conventional isotropic diffusion.

Thus, subspace diffusion can be seen as a special case
of our DVDP with λ̄t ≜ λ̄0,t = λ̄1,t = · · · = λ̄K,t

and σ̄t ≜ σ̄0,t = σ̄1,t = · · · = σ̄K,t, which limits the
choice of dimensionality turning points. This limitation
can be further explained by Eq. (9): at dimensionality
turning point Tk in the forward process, xk−1

Tk
will lose

an informative data component λ̄k−1,Tk
vk−1
k−1 and a non-

informative noise component σ̄k−1,Tk
zk−1
k−1. To safely

neglect the data component in the reverse transition, it
requires that λ̄k−1,Tk

/σ̄k−1,Tk
≪ ∥zk−1

k−1∥/∥v
k−1
k−1∥. For

subspace diffusion, it means that the consistent λ̄t/σ̄t for
components in all subspaces should be small enough, which
usually indicates a large Tk, i.e., a large number of diffusion
steps in high dimensional space.

Therefore, as claimed in [10], the choice of Tk should
balance two factors: 1) smaller Tk reduces the number of
reverse diffusion steps occurring at higher dimensionality,
whereas 2) larger Tk makes the reverse transition at Tk

more accurate. Although [10] additionally proposes to
compensate the loss of data component by adding an
extra Gaussian noise besides compensation for the noise
component, this trade-off still exists.

However, our DVDP can set much smaller Tk with
little loss in accuracy, which benefits from the controllable
attenuation for each data component. Theorem 1 supports
this advantage theoretically, and experimental results in
Sec. 5.3 further demonstrate it.

5. Experiments
In this section, we show that our DVDP can speed

up both training and inference of diffusion models while
achieving competitive performance. Besides, thanks to
the varied dimension, DVDP is able to generate high-
quality and high-resolution images from a low-dimensional
subspace and exceeds existing methods including score-
SDE [28] and Cascaded Diffusion Models (CDM) [7] on
FFHQ 10242. Specifically, we first introduce our experi-
mental setup in Sec. 5.1. Then we compare our DVDP with
existing alternatives on several widely evaluated datasets in
terms of visual quality and modeling efficiency in Sec. 5.2.
After that, we compare our DVDP with Subspace Dif-
fusion [10], a closely related work proposed recently, in
Sec. 5.3. Finally, we implement necessary ablation studies
in the last Sec. 5.4.

5.1. Experimental Setup

Datasets. In order to verify that DVDP is widely applicable,
we use six image datasets covering various classes and a
wide range of resolutions from 32 to 1024. To be spe-
cific, we implement DVDP on CIFAR10 322 [12], LSUN
Bedroom 2562 [32], LSUN Church 2562, LSUN Cat 2562,
FFHQ 2562, and FFHQ 10242 [11].
Implementation details. We adopt the UNet improved by
[2] which achieves better performance than the traditional
version [6]. Since most baseline methods adopt a single
UNet network for all timesteps in the whole diffusion
process, our DVDP also keeps this setting, except the
comparison with Subspace Diffusion in Sec. 5.3, which
takes two networks for different generation stages [10].
In principle, the network structure of our DVDP is kept
the same as the corresponding baseline. However, when
resolution comes to 1024× 1024, the UNet in conventional
diffusion models should be deep enough to contain suffi-
cient downsampling blocks, thus to obtain embeddings with
proper size (usually 4× 4 or 8× 8) in the bottleneck layer.
On the contrary, our DVDP does not need such a deep
network since the generation starts from a low resolution
noise (64×64 in our case). Thus we only maintain a similar
amount of parameters but use a different hyperparameter
setting on FFHQ 10242.

We set the number of timesteps T = 1, 000 in all of
our experiments. For DVDP, we reduce the dimensionality
by 1

4 (i.e., h × w → h
2 × w

2 for image resolution) when
the timestep t reaches a dimensionality turning point. For
simplicity, we adopt T ≜ {T1, · · · , TK}. For CIFAR10
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Table 1. Quantitative comparison between DDPM [6] and our DVDP on various datasets regarding image quality and model efficiency.
∗ indicates our reproduced DDPM. Both DDMP∗ and our DVDP adopt the improved UNet [2] for a fair comparison.

Dataset Method FID (50k)↓ Training Speed Training Speed Sampling Speed Sampling Speed
(sec/iter) Up (sec/sample) Up

CIFAR10 32× 32
DDPM 3.17 − − − −
DDPM∗ 3.16 0.18 − 0.34 −
DVDP 3.24 0.15 1.2× 0.26 1.3×

LSUN Bedroom 256× 256
DDPM 6.36 − − − −
DDPM∗ 5.74 0.99 − 12.2 −
DVDP 4.88 0.45 2.2× 5.01 2.4×

LSUN Church 256× 256
DDPM 7.89 − − − −
DDPM∗ 7.54 0.99 − 12.2 −
DVDP 7.03 0.45 2.2× 5.01 2.4×

LSUN Cat 256× 256
DDPM 19.75 − − − −
DDPM∗ 18.11 0.99 − 12.2 −
DVDP 16.50 0.45 2.2× 5.01 2.4×

FFHQ 256× 256
DDPM∗ 8.33 0.99 − 12.2 −
DVDP 8.03 0.45 2.2× 5.01 2.4×

322, we set T = {600}, indicating that the resolution
is decreased from 32 × 32 to 16 × 16 when t = 600.
Similarly, we set T = {300, 600} for all 2562 datasets and
T = {200, 400, 600, 800} for FFHQ 10242.

In all of our experiments, the noise schedule of DVDP
is an adapted version of linear schedule [6], which is
suitable for DVDP and keeps a comparable signal-to-noise
ratio (SNR) with the original version (see Supplementary
Material for details).
Evaluation metrics. For sample quality, we calculate the
FID score [5] on 50k samples, except for FFHQ 10242

with 10k samples due to a much slower sampling. As for
training and sampling speed, both of them are evaluated
on a single NVIDIA A100. Training speed is measured
by the mean time of each iteration (estimated over 4,000
iterations), and sampling speed is measured by the mean
time of each sample (estimated over 100 batches). The
training batch size and sampling batch size are 128, 256
respectively for CIFAR10 322, and 24, 64 respectively for
other 2562 datasets.

5.2. Visual Quality and Modeling Efficiency.

Comparison with existing alternatives. We compare
DVDP with other alternatives here to show that DVDP has
the capability of acceleration while maintaining a reason-
able or even better visual quality. For the sake of fairness,
we reproduce DDPM using the same network structure
as DVDP with the same hyperparameters, represented as
DDPM∗. Some samples generated by our DVDP are shown
in Fig. 1, and Tab. 1 summarizes the quantitative results
on CIFAR10, FFHQ 2562, and three LSUN datasets. The
results show that our proposed DVDP achieves better FID

scores on all of the 2562 datasets, demonstrating an im-
proved sample quality. Meanwhile, DVDP enjoys improved
training and sampling speeds. Specifically, DDPM and
DDPM∗ spend 2.2× time as DVDP when training the same
epochs, and they spend 2.4× time in sampling. Although
the superiority of DVDP is obvious on all 2562 datasets, it
becomes indistinct when it comes to CIFAR10 322, which
is reasonable considering the small pixel redundancy and
low resolution of images in CIFAR10.
Towards high-resolution image synthesis. It is hard for
diffusion models to generate high-resolution images di-
rectly. This can attribute to the curse of dimensionality: the
support of high-dimensional data with large noise can only
be visited a small part during training, leading to inaccurate
prediction on unseen points [10]. Score-SDE [28] tries this
task by directly training a single diffusion model, but the
sample quality is far from reasonable. CDM performs better
in high-resolution image synthesis and obtains impressive
results [21, 24]. It first generates low-resolution images,
followed by several conditional diffusion models as super-
resolution modules. We compare DVDP with score-SDE
and CDM on FFHQ 10242 in Tab. 2. The FID of score-
SDE is evaluated on samples generated from their official
code and model weight without acceleration, and CDM is
implemented by three cascaded diffusions as in [21]. Our
DVDP is sampled by both DDPM method with 1000 steps
and DDIM method with 675 steps. The results show that
DVDP beats both score-SDE and CDM.

5.3. Comparison with Subspace Diffusion

Subspace diffusion [10] can also vary dimensionality
during the diffusion process. As mentioned in [10] and also
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Table 2. Synthesis performance of different models trained on
FFHQ 1024× 1024.

Model #Params (M) NFE FID (10k)↓

Score-SDE 100 2000 52.40

CDM
98 1525 24.7
165 1525 17.35
286 1525 17.24

DVDP 105
675 12.43

1000 10.46

Table 3. Ablation study on the number of downsampling times
on CelebA 128×128.

Downsampling
times K

0 1 2 3

FID (50k) 6.14 5.99 6.10 6.37

Training
Speed Up

− 1.98× 2.24× 2.25×

Sampling
Speed Up

− 2.12× 2.36× 2.43×

3

6

12

24

48

0 100 200 300 400

FI
D

Dimensionality turning point T1

Subspace

Ours

Figure 4. Quantitative comparison between subspace diffu-
sion [10] and our DVDP on CelebA 64×64 regarding different
dimensionality turning point T1.

Ours

Subspace

50 100 200 400!!

Figure 5. Qualitative comparison between subspace diffu-
sion [10] and our DVDP on CelebA 64×64. T1 denotes the
dimensionality turning point.

discussed in Sec. 4.4, dimensionality turning point Tk in
subspace diffusion should be large enough to maintain the
sample quality. However, large Tk means more diffusion
steps in high dimensional space, which will impair the
advantage of such dimensisonality-varying method, e.g.,
less acceleration in sampling. Thus, Tk is expected to be as
small as possible while maintaining the sampling quality.

Considering that the dimensionality decreases only once,
i.e., K = 1, and only one dimensionality turning point
T1, we compare DVDP with subspace diffusion when
the downsampling is carried out at different T1. Since
the subspace diffusion is only implemented on continuous
timesteps in [10], we reproduce it on discrete timesteps
similar as DDPM and use the reproduced version as a
baseline. Fig. 4 illustrates that DVDP is consistently better
with regard to sample quality on CelebA 64×64 [16] when
T1 varies, where the advantage gets larger when T1 gets
smaller. In addition, some samples of DVDP and subspace
diffusion are shown in Fig. 5, where the sample quality of
subspace diffusion is apparently worse than that of DVDP
especially when T1 is small. In conclusion, DVDP is much
more insensitive to the dimensionality turning point than
subspace diffusion.

5.4. Ablation Study

We implement ablation study in this section to show
that DVDP is able to keep effective when the number of
downsampling, i.e., K, grows. Specifically, we train DVDP

models on four different settings of dimensionality turning
points T for K = 0, 1, 2, 3. When K = 1, T is set to {250}.
Similarly, when K = 2 and K = 3, T is set to {250, 500}
and {250, 500, 750}, respectively. Furthermore, we use the
same noise schedule for these four different settings. Tab. 3
shows that when the number of downsampling grows, the
sample quality preserves a reasonable level, indicating that
DVDP can vary dimensionality for multiple times.

6. Conclusion
This paper generalizes the traditional diffusion process

to a dimensionality-varying diffusion process (DVDP). The
proposed DVDP has both theoretical and experimental con-
tributions. Theoretically, we carefully decompose the signal
in the diffusion process into multiple orthogonal dynamic-
attenuated components. With a rigorously deduced approx-
imation strategy, this then leads to a novel reverse process
that generates images from much lower dimensional noises
compared with the image resolutions. This design allows
much higher training and sampling speed of the diffusion
models with on-par or even better synthesis performance,
and superior performance in synthesizing large-size images
of 1024 × 1024 resolution compared with classic methods.
The results in this work can promote the understanding and
applications of diffusion models in broader scenarios.

This work was supported in part by the National Key R&D Program of
China under Grant 2022YFA1005000, in part by the NSFC under Grant
61701304.
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