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Abstract

Existing works on document image shadow removal
mostly depend on learning and leveraging a constant back-
ground (the color of the paper) from the image. However,
the constant background is less representative and frequent-
ly ignores other background colors, such as the printed col-
ors, resulting in distorted results. In this paper, we present
a color-aware background extraction network (CBENet) for
extracting a spatially varying background image that ac-
curately depicts the background colors of the documen-
t. Furthermore, we propose a background-guided docu-
ment images shadow removal network (BGShadowNet) us-
ing the predicted spatially varying background as auxil-
iary information, which consists of two stages. At Stage
I, a background-constrained decoder is designed to pro-
mote a coarse result. Then, the coarse result is refined
with a background-based attention module (BAModule) to
maintain a consistent appearance and a detail improvement
module (DEModule) to enhance the texture details at Stage
II. Experiments on two benchmark datasets qualitatively
and quantitatively validate the superiority of the proposed
approach over state-of-the-arts.

1. Introduction
Documents, such as textbooks, newspapers, leaflets, and

receipts, are available daily, often saved as electronic doc-
uments for digital document archives or online message
transfer. Since the wide use and convenience of mobile
phones, people currently prefer to use mobile phones for
digital document copying. However, the captured docu-
ment images become highly susceptible to shadows when
the light sources are blocked. The low brightness in shadow
regions reduces the quality and readability of the documen-

∗Corresponding author: Chunxia Xiao (cxxiao@whu.edu.cn).

(a) Shadow image (b) Our background (c) Our result

(d) Result of [2] (e) Background of [24] (f) Result of [24]
Figure 1. Document image shadow removal. With the assumption
of constant background, results of [2] and [24] may cause color
distortion or shadow remnant. By using a spatially varying back-
ground, our method can produce more desirable result.

t image, resulting in illegible content and unpleasant user
experience [2, 10, 12, 19, 28, 29]. Thus, shadow removal for
document images is a required image processing task in var-
ious vision applications [3, 4, 33, 37, 46, 48].

Although natural image shadow removal has made sub-
stantial progress [16, 20, 22, 40, 44, 45], these approach-
es generally perform poorly on document pictures due
to their drastically different features from natural images.
Natural image, for example, emphasizes background con-
tent (shadow-free image) without a shadow layer [6, 7, 13,
27, 41], whereas document image emphasizes text content
[2, 19, 30]. Without considering the particular properties of
the document image, traditional approaches to natural im-
age generally yield incorrect result when they are applied
to document image, as well as learning-based methods (see
Figure 9(c-f)) due to the less attention to the content struc-
tures.
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Several approaches on document image shadow removal
are currently available, which dig into the specific charac-
teristics of the document image [3, 21, 30, 49]. However,
these approaches may cause color distortion or shadow rem-
nant for image with complex backgrounds, as illustrated in
Figure 1(d). Recently, Lin et al. [24] estimate a constant
background for the image and propose BEDSR-Net for doc-
ument image shadow removal. The constant background is
the color of the paper (see Figure 1(e)), which ignores some
other background colors, such as the printed colors. The
constant background may provide inaccurate information
for the shadow removal task, resulting in unsatisfactory re-
sults (see Figure 1(f)). To address this problem, we propose
a color-aware background extraction network (CBENet) to
extract a spatially varying background, which can preserve
various background colors of the original image (see Figure
1(b)). The spatially varying background can provide more
useful color information, which contributes to image shad-
ow removal, as shown in Figure 1(c).

With the background image, we propose a background-
guided shadow removal network (BGShadowNet) for doc-
ument image that exploits the background image as aux-
iliary information. Figure 2 presents the framework of
the proposed BGShadowNet, which removes shadows in
a two-stage process. First, we introduce a background-
constrained decoder to combine background features with
image features, which can help to promote the realistic
coarse shadow-removal result. Then, we refine the coarse
result with a background-based attention module (BAMod-
ule) and a detail enhancement module (DEModule). In par-
ticular, BAModule is designed to eliminate the illumination
and color inconsistency in the image by using the attention
mechanism. Inspired by image histogram equalization, DE-
Module aims to enhance the detail features at low-level s-
cales.

Due to the lack of large-scale real document image
datasets, we construct a new dataset comprised of real doc-
ument images to facilitate the performance of document
image shadow removal. Experiments on extensive docu-
ment images and evaluations on two datasets verify that our
BGShadowNet outperforms existing approaches.

In summary, our main contributions are three-fold:
• We present a color-aware background extraction net-

work (CBENet) for estimating a spatially varying
background image that guides the shadow removal of
document image.
• We propose a framework named BGShadowNet for

document image shadow removal, which takes full ad-
vantage of the background image and is able to robust-
ly produce high-quality shadow removal results.
• We design a background-based attention module

(BAModule) to maintain a consistent appearance and
a detail enhancement module (DEModule) to enhance
texture details.

2. Related Work
2.1. Shadow removal for natural image

Traditional methods for natural image shadow removal
usually focus on studying the different physical properties
of shadows [1, 9, 25]. Finlayson et al. [8, 9] reconstruct-
ed shadow removal images based on gradient consistency.
However, these methods can incur obvious shadow bound-
ary artifacts due to the change of illumination. Shor et
al. [34] defined an affine relationship between the shadow
and non-shadow areas. Xiao et al. [34, 42, 43] and Zhang
et al. [50] removed shadows by transforming illumination
from non-shadow regions to shadow regions. However,
these methods depended on the reference non-shadow ar-
eas, and often resulted in inconsistent illumination when the
reference areas are unfortunate.

Numerous learning-based methods have been proposed
for natural image shadow removal [6,11,15,16,18,23,26,27,
31, 35]. For example, Deshadow-Net [31] extracted multi-
context features to predict shadow matte layers for shad-
ow removal. Wang et al. [38] employed stacked condition-
al GANs for joint shadow detection and removal. Zhang
et al. [47] explored residual and illumination with GANs
for shadow removal. ARGAN [7] proposed a attentive re-
current generative adversarial network for shadow detection
and removal. Liu et al. [27] utilized shadow generation for
weakly-supervised shadow removal. More recently, Chen
et al. [5] transferred the contextual information from non-
shadow regions to shadow regions in the embedded feature
spaces.

Although these methods are effective for natural images,
they do not generalize well to document image shadow re-
moval due to the difference characteristics between natural
images and document images.

2.2. Shadow removal for document image

Most existing document shadow removal algorithms
[2,3,19,21,30] use heuristics algorithms to dig into specific
features of the document image. Bako et al. [2] removed
shadows using the estimated shadow map. This method
leaves slight trace at the boundary under strong shadows.
Oliveira et al. [30] used natural neighborhood interpolation
to estimate shadow image. Jung et al. [19] explored a water-
filling method for correcting the illumination of document
image by converting the input image to a topographic sur-
face. This method can achieve good performance in weak
or moderate level of shadows, but tends to produce color
degraded results for scenes with heavy shadows.

Recently, Lin et al. [24] proposed a BEDSR-Net for
document image shadow removal by estimating a constan-
t background. It is the first deep network specifically de-
signed for document image shadow removal, which takes
advantage of specific properties of document images. Due
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Figure 2. The framework of the proposed CBENet and BGShadowNet. Spatially varying background estimated by CBENet is used to
help BGShadowNet produce a high-quality shadow removal result. With a background-constrained decoder, BGShadowNet first predicts
a coarse shadow-removal result. Then, the coarse result is refined with a BAModule and a DEModule.

to ignoring some other background colors in the image, this
method may introduce artifacts, such as shadow boundaries
or unremoved shadows.

3. Document Dataset Construction
Although there are several document shadow removal

datasets, such as Bako [2], Kligler [21], Jung [19], RD-
SRD [24], SDSRD [24], they mostly have some limitations.
Bako, Kligler, Jung, and RDSRD are small-scale evaluation
datasets that are unsuitable for training a deep model. While
SDSRD is a large-scale dataset, it is a synthetic dataset.

Figure 3. Illustration of several captured shadow and shadow-free
image pairs in RDD. The first row shows shadow images, and the
second row demonstrates the corresponding shadow-free images.

Imaging is a physical generation process by the interac-
tion between light and material. Light environments in the
real world usually contains multiple different lights, which
are difficult to simulate in synthetic environments accurate-
ly. The statistical features of the synthetic and real images
are often different. To facilitate the performance of docu-
ment image shadow removal, we construct a new real doc-
ument dataset, named RDD, for shadow removal.

Concretely, we use documents as the background scene
to construct our dataset, such as papers, books, publicity
pamphlets, etc. We first capture a shadow image with il-
lumination blocked by an object. Then, we obtain the cor-
responding shadow-free image by removing the occluder.
Our RDD collects 4916 pairs of shadow and shadow-free
images, divided into two groups, 4371 for training and 545

for testing. Figure 3 presents some shadow and shadow-free
image pairs in our RDD. To the best of our knowledge, RD-
D is the first large-scale real document dataset for shadow
removal.

4. Methodology

We first introduce a color-aware background extraction
network (CBENet) to estimate a spatially varying back-
ground for shadow image. Then, we propose a background-
guided shadow removal network (BGShadowNet) for docu-
ment image, which uses the estimated background as auxil-
iary information to facilitate shadow removal task. Figure 2
presents the framework of our CBENet and BGShadowNet.

4.1. Color-aware Background Extraction Network

As document image focuses mostly on the text content, a
common strategy [2, 24] to perform document image shad-
ow removal is to utilize the background layer extracted from
the image, that only contains the color information for the
image without text content. These methods assume the doc-
ument has a constant color background (the color of the pa-
per), as shown in Figure 4(b). But discrepancy may exist
between a constant color background and the image. For
example, there may be other background colors due to color
printing, as shown in Figure 4(a). The constant background
will result in unsatisfactory results, as shown in Figure 4(c).

To address this problem, we propose a color-aware back-
ground extraction network (CBENet) to extract a spatial-
ly varying color background B̂ for the document image,
which preserves different background colors in the image,
as shown in Figure 4(d). Compared with the constant back-
ground, our spatially varying background can provide more
useful color information for the following shadow removal
network. Note that our background is shadow-free, which
can help BGShadowNet learn more shadow-free features,
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(a) (b) (c) (d) (e) (f)
Figure 4. Extracted background images and the corresponding shadow removal images. (a) is input images. (b) and (c) are the background
images and shadow removal results predicted by BEDSR-Net [24]. (d) and (e) are our spatially varying background images and shadow
removal results. (f) is the corresponding ground-truth images.

(a) (b) (c)
Figure 5. Visualization of background: (a) shadow images, (b)
local background images, and (c) final background images.

contributing to shadow removal while better avoiding illu-
mination or color artifacts in the image (see Figure 4(e)).

To train our CBENet, we employ a background calcu-
lator with local-to-global strategy to construct the ground-
truth background as the supervisor. Specifically, we first
divide the ground-truth shadow-free image Igt into 16× 16
patches to obtain the local background B. For each patch,
we use the Gaussian Mixture Model (GMM) to cluster it
into two clusters according to the pixel intensity of the im-
age [2], corresponding to text content and background, re-
spectively. With the observation that the background col-
or of the document is usually brighter [2, 24], we consider
the cluster with a higher intensity as the background clus-
ter and apply the average color of the background cluster as
the background of the patch. Since different patches have
different background colors, the local background B usual-
ly has obvious patch boundaries, as shown in Figure 5(b).
Thus, inspired by the guided filter for edge-preserving im-
age smoothing [14], we employ a color-preserving smooth-
ing operator to refineB and get a desired ground-truth back-
ground image B for the image, as shown in Figure 5(c).

The value of pixel i in B can be expressed as:

Bi =
∑

j∈N(i)

WijBj , (1)

where N(i) is a local neighborhood of pixel i. Wij is the
filter kernel, which measures the color similarity between
pixel i and pixel j. Due to the original image has the edge
information, we use Igt as the guidance image to calculate

the filter kernel Wij , that is,

Wij =
1

|ω|2
∑
i,j

(1 +
(Igti − µk)(I

gt
j − µk)

σ2
k + ε

), (2)

where µk and σ2
k are the mean and variance of Igt in N(i),

|ω| is the number of pixels in N(i), and ε is a regularization
parameter preventing Wij from being too large.

We adopt the U-Net structure to implement our CBENet.
The U-Net first applies five Conv+BN+LReLu to extrac-
t features from the image. Then, it takes five deconvolu-
tional layers with batch normalization and ReLU activation
function to predict the background image. Skip connection
is applied between convolutional layers and deconvolution-
al layers, increasing the number of channels in the network
and preserving the context information of the front layer.

4.2. Background-guided Shadow Removal Network

As aforementioned, the background can provide some
useful information to facilitate shadow removal. Thus,
we propose a background-guided shadow removal net-
work (BGShadowNet) exploiting the background image as
supplementary information. As shown in Figure 2, our
BGShadowNet includes two stages. At Stage I, besides
an image encoder, a background-constrained decoder is in-
troduced to produce a coarse shadow-removal result. At
Stage II, to improve the coarse result and produce the final
shadow-free image, a background-based attention module
(BAModule) and a detail enhancement module (DEMod-
ule) are embedded into an encoder-decoder network. A dis-
criminator is stacked at the end to distinguish whether the
produced image is real or not. We choose DenseUnet [32]
and Markovian discriminator [17] as our encoder-decoder
structure and discriminator.

Background-constrained Decoder. To take full advan-
tage of the features from background image, we replace the
common decoder with a background-constrained decoder at
Stage I. Concretely, features from the background encoder
are integrated into the background-constrained decoder at
each corresponding level. The integrated features can com-
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(a) (b) (c) (d) (e)
Figure 6. Results of stage I and II. (a): Input. (b): Coarse result at
stage I. (d): Result at stage II. (c)&(e): close-ups of (b) and (d).

plement the image features and help to produce a satisfac-
tory shadow-removal result.

Background-based Attention Module. Generally, ar-
eas with a similar background should have a similar ap-
pearance (color and illumination) in an image. Howev-
er, there might be illumination or color artifacts in the
coarse shadow-removal result (see Figure 6(b)). To pre-
serve the overall consistency of the image, we introduce
a background-based attention module (BAModule). Using
the learned background features and attention mechanism,
the BAModule helps to eliminate the appearance inconsis-
tency in the image (see Figure 6(d)).

+ X

ResidualBlock
Conv

Background 
Feature

Encoder Features

Color-aware 
Attention Map

Output Feature

Figure 7. The network of our background-based attention module
(BAModule).

Figure 7 illustrates the architecture of the proposed
BAModule. We first fuse the encoder and background fea-
tures to obtain the integrated features by channel-wise con-
catenation. Then, the integrated features are fed into an at-
tention computing unit to generate a color-aware attention
map. The attention computing unit consists of a convolu-
tional layer, a Leaky ReLu activation function, batch nor-
malization, and a ResidualBlock Layer. Finally, we fuse
the color-aware attention map and the integrated features by
element-wise multiplication to reconstruct the features, and
then embed these features into the corresponding decoder
level. The color-aware attention map can make the network
adaptively focus on the regions with a similar background,
promoting a consistent appearance in these regions.

Detail Enhancement Module. As multiple convolu-
tions and downsampling operators in the network, partial
detail information will be lost at high-level layers, resulting
in detail-blurred results (see Figure 6(c)). Compared to the
high-level features, low-level features in CNN layers usual-
ly contain more texture details. Thus, we introduce a detail
enhancement module (DEModule) to restore the texture de-
tails of the coarse result by utilizing the low-level features
of the network.

As we know, the statistical texture information of the im-
age reflects the texture intensities to some extent. Therefore,
our DEModule is inspired by image histogram equalization,

Conv
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Quantization Encodeing
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Figure 8. The pipeline of our detail enhancement module (DEM).

consisting of two parts. One is feature counting to obtain the
statistical information for low-level features, and the other
is feature equalization to enhance texture details. Figure 8
illustrates the pipeline of the proposed DEModule. Specif-
ically, we fuse the features of the first two low-level layers
from the encoder to get the concatenated low-level features
F , which are fed into DEModule for statistical analysis.

(1) Feature Counting. The purpose of feature counting is
to get the quantization encoding map and statistical feature.
We first use two 2×2 convolution layers to produce a feature
map M and perform global average pooling to obtain the
global averaged features M for M . Next, we calculate the
correlation between M and M by using cosine similarity,
denoted as S.

To effectively conduct quantification and statistics, we
construct a set of quantization levels L, which divide the
range of the minimum and maximum values of S into N
equal parts. Then, the correlation matrix S can be quantized
to a quantization encoding matrix E by using L:

Ei,n =

{
1− |Ln − Si|, if − 0.5

N ≤ Ln − Si ≤ 0.5
N

0, else
,

(3)
where i ∈ [1, HW ] and n ∈ [1, N ]. H andW are the length
and width of the image. Ln is the nth level of L, and Si is
the ith row of S. In our experiments, we set N = 128.

To avoid eliminating gradient information, we perform a
normalization operation for matrix E. We integrate the nor-
malized result and quantization levels L into a quantization
counting map C, which reflects the relative statistics of the
low-level input features. Due to the concatenation opera-
tion, the channel number of C is 2. Thus, we perform two
1 × 1 convolution operations for C to increase the channel
number, followed by a concatenation operation with M to
further get absolute statistical information H . H denotes
the statistical features which play the role of the histogram.

(2) Feature Equalization. Feature equalization is used
to enhance the texture details of low-level layers by recon-
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(a) (b) (c) (d) (e) (f) (g) (h) (i)
Figure 9. Visual comparison among state-of-the-art shadow removal methods: (a) input images, (b) Jung [19], (c) DSC [15], (d) Fu [11],
(e) DHAN [6], (f) CANet [5], (g) BEDSR-Net [24], (h) our BGShadowNet, and (i) ground-truth images.

structing a new set of quantization levels. We first perform
a 1 × 1 convolution operation for H to get G. Inspired by
the attention mechanism, we perform matrix multiplication
of G and its transposed matrix, followed by a softmax op-
eration, to build a learned adjacent matrix X . Matrix X
can be regarded as a similarity coefficient matrix. Then, we
can reconstruct the new quantization levels L′ with a matrix
multiplication for X and G.

Based on the reconstructed quantization levels L′, we
conduct feature equalization for the original quantization
encoding matrix E to enhance the detail features. The en-
hanced features R can be obtained using a matrix multipli-
cation of quantization levels L′ and matrix E. By using
the enhanced texture details, the decoder can easily capture
detail information.

4.3. Loss Function

Our loss functions for optimizing the proposed net-
work contain four components: background reconstruction
loss Lbackground, appearance consistency loss Lappearance,
structure consistency loss Lstucture and adversarial loss
Ladv .

Background reconstruction loss is used to constrain
the CBENet to obtain the desirable background image,
which uses the `1 distance between B̂ produced by CBENet
and the ground-truth background image B , that is,

Lbackground = ||B − B̂||1. (4)
Appearance consistency loss evaluates the data loss

between the predicted results and the ground-truth image,
which is calculated in the `1 distance:
Lappearance = λ1Lcoarse + λ2Lfinal

= λ1||Igt − Icoarse||1 + λ2||Igt − Ifree||1,
(5)

where λ1 and λ2 are the weight parameters. Icoarse is
the coarse result produced at Stage I, and Ifree is the final
shadow-removal result produced at Stage II.

Structure consistency loss aims to preserve image
structure, which is calculated as,

Lstucture = λ3||VGG(Igt)− VGG(Ifree)||22, (6)

where λ3 is the weight parameter, and VGG(·) is the feature
extractor from the pre-trained VGG19 model.

Adversarial loss is designed for the discriminator to
judge whether the produced results are real or fake, which
is described as:

Ladv = λ4E(I,Ifree,Igt)[log(D(Igt)) + log(1−D(I))],
(7)

where D is the discriminator, and I is the shadow image.

5. Experiments
5.1. Implementation Detail

Our network is implemented in Pytorch. In our exper-
iments, CBENet and BGShadowNet are trained separate-
ly. We first train CBENet for 200 epochs using the back-
ground ground-truth as the supervisor. Next, we fix the
CBENet and train BGShadowNet for 200 epochs on a N-
VIDIA GeForce RTX2080Ti. We use Adam optimizer to
optimize our generator and the discriminator with attenua-
tion rate betas = (0.5, 0.999). The initial learning rate is
set to 0.0004. The weight parameters λ1, λ2, λ3 and λ4 are
set to 1, 1, 0.05 and 0.01 in our experiments, respectively.

5.2. Comparison with State-of-the-arts

Datasets. Since SDSRD dataset [24] is not available,
we use the proposed RDD dataset to train and evaluate our
BGShadowNet. Apart from RDD, we also use Kligler’s
dataset [21] for evaluation.

Metrics. We utilize the root mean square error (RMSE)
in LAB color space between the shadow removal result and
the ground-truth shadow-free image to evaluate the shadow
removal performance. In addition, we also report the PSNR
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(a) (b) (c) (d) (e) (f) (g) (h) (i)
Figure 10. Visual comparison among state-of-the-art shadow removal methods: (a) input images, (b) Jung [19], (c) DSC [15], (d) DHAN
[6], (e) Fu [11], (f) BEDSR-Net [24], (g) CANet [5], (h) BMNet [51], and (i) our BGShadowNet.

Table 1. Quantitative comparisons of shadow removal on RDD and Kligler datasets in terms of RMSE, PSNR, and SSIM. All the learning-
based methods are trained on RDD dataset. ↑ means the larger the better while ↓ means the smaller the better.

Methods Venue/Year RDD Kligler
RMSE ↓ PSNR ↑ SSIM ↑ RMSE↓ PSNR ↑ SSIM ↑

ST-CGAN [39] CVPR/2018 3.143 34.328 0.974 6.826 27.433 0.931
DSC [15] PAMI/2020 6.357 28.151 0.914 7.705 25.615 0.898
DHAN [6] AAAI/2020 2.467 36.337 0.978 6.610 27.707 0.937

Fu [11] CVPR/2021 4.328 31.387 0.946 7.101 27.362 0.914
CANet [5] ICCV/2021 5.561 28.951 0.918 7.855 25.625 0.899

SG-ShadowNet [36] ECCV/2022 2.974 34.727 0.972 6.829 27.141 0.920
BMNet [51] CVPR/2022 9.409 24.289 0.915 16.459 19.031 0.874

Bako [2] ACCV/2016 14.648 20.741 0.894 9.058 24.777 0.895
Jung [19] ACCV/2018 30.190 14.364 0.861 28.247 13.726 0.852

BEDSR-Net [24] CVPR/2020 2.937 34.928 0.973 6.533 28.124 0.932
BGShadowNet CVPR/2023 2.219 37.585 0.983 5.377 29.176 0.948

and SSIM in the RGB colour space to evaluate the perfor-
mance of the proposed BGShadowNet.

To verify the effectiveness of our method, we compare
our results with various state-of-the-art shadow removal
methods including three document image shadow removal
methods (Bako [2], Jung [19] and BEDSR-Net [24]) and six
natural image shadow removal methods (ST-CGAN [39],
DSC [15], DHAN [6], Fu [11], CANet [5], SG-ShadowNet
[36] and BMNet [51]). To make fair comparison, we use
RDD dataset to train all the learning-based methods on the
same hardware. Table 1 concludes the comparison results.
From the table, we can observe that, our method achieves
the best values for all metrics among all the comparing
methods, clearly demonstrating the effectiveness.

Figure 9 provides some visual shadow removal result-
s to further demonstrate the superiority of our methods. It
can be seen, DSC [15] fails in handling image with heavy
shadows (see Figure 9(c)). The robustness of Fu [11] is lim-
ited, and their results may contain unremoved shadows, as
shown in Figure 9(d). DHAN [6] and CANet [5] have the
similar problem to Fu [11]. Ignoring the content character-
istics of the documents, Jung [19] leads to obvious color and
illumination distortion (see Figure 9(b)). With the constant
background, results of BEDSR-Net [24] sometimes exhib-
it artifacts along the shadow boundaries (see Figure 9(g)).

Comparatively, the proposed method effectively recovers il-
lumination in shadow regions without artifacts, as shown in
Figure 9(h), which is similar to the ground-truth image.

To further verify the robustness and generalization abil-
ity of the proposed method, Figure 10 presents some other
shadow removal results for document images, containing
some challenging cases, such as heavy shadows and incon-
sistent illumination in shadow regions. Apparently, results
recovered by our method look more natural and have little
artifacts.

User Study. We conduct an user study to evaluate the
visual performance of our method and some state-of-the-art
shadow removal methods. We prepare 100 sets of shad-
ow removal images. Each set contains seven shadow re-
moval results of our BGShadowNet, CANet, DSC, DHAN,
Fu, BEDSR-Net, and Jung, respectively. We randomly se-
lect 100 volunteers. For each volunteer, we randomly pro-
vide them twenty image sets. The volunteers are required
to select the best shadow-free image for each set. Count-
ing all the results, we find that 20.32% of shadow-removal
images generated by our BGShadowNet are chosen as the
best shadow-free images, while 11.92%, 11.67%, 16.72%,
13.25%, 15.91%, and 10.21% of shadow removal results
are chosen by CANet, DSC, DHAN, Fu, BEDSR-Net, and
Jung, respectively.
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(a) (b) (c) (d) (e) (f) (g) (h)
Figure 11. Visual comparison for ablation study: (a) input images, (b) BASE1, (c) BASE2, (d) BGShadowNet1, (e) BGShadowNet2, (f)
BGShadowNet3, (g) BGShadowNet4, and (h) our BGShadowNet.

Table 2. Quantitative results of ablation study on RDD and Kligler using RMSE, PSNR, and SSIM.

Methods RDD Kligler
RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑

BASE1 2.942 34.821 0.938 6.253 28.267 0.944
BASE2 2.897 35.976 0.945 5.811 28.895 0.947

BGShadowNet1 2.603 36.052 0.980 5.805 28.371 0.944
BGShadowNet2 2.583 36.135 0.981 5.731 29.035 0.947
BGShadowNet3 2.433 36.681 0.982 5.538 29.180 0.947
BGShadowNet4 2.344 37.049 0.982 5.633 28.840 0.948
BGShadowNet 2.219 37.585 0.983 5.377 29.176 0.948

5.3. Ablation Study

Ablation of BGShadowNet. To further evaluate the per-
formance of each component applied in our BGShadowNet,
we perform ablation experiments using six variants (with or
without the specific component) as follows:
(1) BASE1: one DenseUnet;
(2) BASE2: two stacked DenseUnet;
(3) BGShadowNet1: BGShadowNet without StageII;
(4) BGShadowNet2: BGShadowNet without DEModule
and BAModule;
(5) BGShadowNet3: BGShadowNet without BAModule;
(6) BGShadowNet4: BGShadowNet without DEModule.

We train the six variants and evaluate the results on RDD
and Kligler’s datasets. The results are summarized in Table
2. From the table, we can observe that the components em-
bedded in the two stages can improve the shadow removal
results. We also provide qualitative results in Figure 11,
which shows that our BGShadowNet with all the compo-
nents can produce more realistic results.

Ablation of Background Image. To verify the effec-
tiveness of the spatially varying background, we rebuild
BGShadowNet exploiting the constant background (denot-
ed as BGShadowNetb) estimated by BEDSR-Net [24], and
reorganize BEDSR-Net employing our spatially varying
background (denoted as BEDSRb). Table 3 summarizes the
comparison results. From the results, we can observe that,
variant BEDSRb using the spatially varying background
can obtain better values than BEDSR-Net. Besides, our
BGShadowNet can produce better results than that using the
constant background. These results show that our spatially
varying background contributes to superior results.

Table 3. Quantitative comparisons using different background im-
ages on RDD dataset.

Methods RMSE ↓ PSNR ↑ SSIM ↑
BEDSR-Net 2.937 34.928 0.973

BEDSRb 2.771 35.555 0.976
BGShadowNetb 2.740 35.821 0.980
BGShadowNet 2.219 37.585 0.983

Limitation. Our BGShadowNet can effectively remove
shadows in document images. However, when the images
are corrupted by heavy noise, our shadow removal results
may contain some residual noise, resulting in uneven illu-
mination with the surrounding environment.

6. Conclusion
In this paper, we propose a CBENet to estimate a spa-

tially varying background for the shadow image, which can
facilitate the proposed BGShadowNet performs document
shadow removal. Our BGShadowNet first predicts a coarse
shadow-removal result using a background-constrained de-
coder. Then, we embed a BAModule and a DEModule into
the encoder-decoder network to improve the coarse result
and produce the final shadow-free result with a consistent
appearance and detail-rich texture. Experiments comparing
our BGShadowNet to state-of-the-art approaches demon-
strate its superiority.

Acknowledgments
This work is partially supported by NS-

FC (No.61902286, No.61972299, No.U1803262,
No.61972298) and CAAI-Huawei MindSpore Open
Fund.

1825



References
[1] E. Arbel and H. Hel-Or. Shadow removal using intensity sur-

faces and texture anchor points. IEEE Transactions on Pat-
tern Analysis Machine Intelligence, 33(6):1202–1216, 2011.
2

[2] S. Bako, S. Darabi, E. Shechtman, J. Wang, and P. Sen. Re-
moving shadows from images of documents. In ACCV, pages
173–183, 2016. 1, 2, 3, 4, 7

[3] M. S. Brown and Y. C. Tsoi. Geometric and shading correc-
tion for images of printed materials using boundary. IEEE
Transactions on Image Processing, 15(6):1544–1554, 2006.
1, 2

[4] Cen Chen, Kenli Li, Sin G Teo, Xiaofeng Zou, Keqin Li, and
Zeng Zeng. Citywide traffic flow prediction based on mul-
tiple gated spatio-temporal convolutional neural network-
s. ACM Transactions on Knowledge Discovery from Data
(TKDD), 14(4):1–23, 2020. 1

[5] Zipei Chen, Chengjiang Long, Ling Zhang, and Chunxia Xi-
ao. Canet: A context-aware network for shadow removal. In
ICCV, pages 4743–4752, 2021. 2, 6, 7

[6] Xiaodong Cun, Chi-Man Pun, and Cheng Shi. Towards
ghost-free shadow removal via dual hierarchical aggregation
network and shadow matting gan. In AAAI, pages 10680–
10687, 2020. 1, 2, 6, 7

[7] B. Ding, C. Long, L. Zhang, and C. Xiao. Argan: Attentive
recurrent generative adversarial network for shadow detec-
tion and removal. In ICCV, pages 10213–10222, 2020. 1,
2

[8] G. D. Finlayson, M. S. Drew, and C. Lu. Entropy minimiza-
tion for shadow removal. International Journal of Computer
Vision, 85(1):35–57, 2009. 2

[9] G. D Finlayson, S. D Hordley, C. Lu, and M. S Drew. On
the removal of shadows from images. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 28(1):59–68,
2006. 2

[10] Gang Fu, Lian Duan, and Chunxia Xiao. A hybrid l2 − lp
variational model for single low-light image enhancement
with bright channel prior. In 2019 IEEE International Con-
ference on Image Processing (ICIP), 2019. 1

[11] Lan Fu, Changqing Zhou, Qing Guo, Felix Juefei-Xu,
Hongkai Yu, Wei Feng, Yang Liu, and Song Wang. Auto-
exposure fusion for single-image shadow removal. In CVPR,
pages 10571–10580, 2021. 2, 6, 7

[12] Basilios Gatos, Ioannis Pratikakis, and Stavros J Perantonis.
Adaptive degraded document image binarization. Pattern
Recognition, 39(3):317–327, 2006. 1

[13] Maciej Gryka, Michael Terry, and Gabriel J. Brostow. Learn-
ing to remove soft shadows. Acm Transactions on Graphics,
34(5):1–15, 2015. 1

[14] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image fil-
tering. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(6):1397–1409, 2013. 4

[15] Xiaowei Hu, Chi-Wing Fu, Lei Zhu, Jing Qin, and Pheng-
Ann Heng. Direction-aware spatial context features for
shadow detection and removal. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 42(11):2795–2808,
2020. 2, 6, 7

[16] X. Hu, Y. Jiang, C. W. Fu, and P. A. Heng. Mask-shadowgan:
Learning to remove shadows from unpaired data. In ICCV,
pages 2472–2481, 2019. 1, 2

[17] P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks. In CVPR,
pages 1125–1134, 2017. 4

[18] Yeying Jin, Aashish Sharma, and Robby T Tan. Dc-
shadownet: Single-image hard and soft shadow removal us-
ing unsupervised domain-classifier guided network. In IC-
CV, pages 5027–5036, 2021. 2

[19] Seungjun Jung, Muhammad Abul Hasan, and Changick
Kim. Water-filling: An efficient algorithm for digitized doc-
ument shadow removal. In ACCV, pages 398–414, 2018. 1,
2, 3, 6, 7

[20] S. H. Khan, M Bennamoun, F Sohel, and R Togneri. Au-
tomatic shadow detection and removal from a single image.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 38(3):431–446, 2016. 1

[21] N. Kligler, S. Katz, and A. Tal. Document enhancement us-
ing visibility detection. In CVPR, pages 2374–2382, 2018.
2, 3, 6

[22] Hieu Le and Dimitris Samaras. From shadow segmentation
to shadow removal. In ECCV, pages 264–281, 2020. 1

[23] Hieu Le and Dimitris Samaras. Shadow removal via shadow
image decomposition. In ICCV, pages 8578–8587, 2020. 2

[24] Y. H. Lin, W. C. Chen, and Y. Y. Chuang. Bedsr-net: A deep
shadow removal network from a single document image. In
CVPR, pages 12905–12914, 2020. 1, 2, 3, 4, 6, 7, 8

[25] Feng Liu and Michael Gleicher. Texture-consistent shadow
removal. In ECCV, pages 437–450, 2008. 2

[26] Z. Liu, H. Yin, Y. Mi, M. Pu, and S. Wang. Shadow removal
by a lightness-guided network with training on unpaired da-
ta. IEEE Transactions on Image Processing, 30. 2

[27] Z. Liu, H. Yin, X. Wu, Z. Wu, Y. Mi, and S. Wang. From
shadow generation to shadow removal. In CVPR, page
4927C4936, 2021. 1, 2

[28] Gaofeng Meng, Shiming Xiang, Nanning Zheng, and Chun-
hong Pan. Nonparametric illumination correction for s-
canned document images via convex hulls. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
35(7):1730–1743, 2012. 1

[29] Daniel Marques Oliveira and Rafael Dueire Lins. A new
method for shading removal and binarization of documents
acquired with portable digital cameras. In Third Interna-
tional Workshop on Camera-Based Document Analysis and
Recognition, pages 3–10, 2009. 1

[30] D. M. Oliveira, R. D. Lins, and Gabriel De Frana Pereira E
Silva. Shading removal of illustrated documents. In ICIAR,
2013. 1, 2

[31] L. Qu, J. Tian, S. He, Y. Tang, and Rwh Lau. Deshad-
ownet: A multi-context embedding deep network for shadow
removal. In CVPR, pages 4067–4075, 2017. 2

[32] N Bharath Raj and N Venkateswaran. Single image haze
removal using a generative adversarial network. In CVPR,
pages 37–42, 2018. 4

[33] Vatsal Shah and Vineet Gandhi. An iterative approach for
shadow removal in document images. In ICASSP, pages
1892–1896, 2018. 1

1826



[34] Yael Shor and Dani Lischinski. The shadow meets the mask:
Pyramid-based shadow removal. 27(2):577–586, 2008. 2

[35] Oleksii Sidorov. Conditional gans for multi-illuminant color
constancy: Revolution or yet another approach? In CVPRW,
pages 1748–1758, 2019. 2

[36] Jin Wan, Hui Yin, Zhenyao Wu, Xinyi Wu, Yanting Liu, and
Song Wang. Style-guided shadow removal. In ECCV, 2022.
7

[37] Bingshu Wang, Shuang Feng, and CL Philip Chen. Strong
shadow removal of text document images based on back-
ground estimation and shading scale. In ICCSS, pages 738–
742, 2020. 1

[38] J. Wang, X. Li, and J. Yang. Stacked conditional generative
adversarial networks for jointly learning shadow detection
and shadow removal. In CVPR, pages 1788–1797, 2018. 2

[39] Jifeng Wang, Xiang Li, and Jian Yang. Stacked conditional
generative adversarial networks for jointly learning shadow
detection and shadow removal. In CVPR, pages 1788–1797,
2018. 7

[40] Jinjiang Wei, Chengjiang Long, Hua Zou, and Chunxiad Xi-
ao. Shadow inpainting and removal using generative adver-
sarial networks with slice convolutions. Computer graphics
forum, 38(7):381–392, 2019. 1

[41] Tai Pang Wu, Chi Keung Tang, Michael S. Brown, and He-
ung Yeung Shum. Natural shadow matting. Acm Transac-
tions on Graphics, 26(2):8, 2007. 1

[42] Chunxia Xiao, Ruiyun She, Donglin Xiao, and Kwan Liu
Ma. Fast shadow removal using adaptive multi-scale illumi-
nation transfer. Computer Graphics Forum, 32(8):207–218,
2013. 2

[43] Chunxia Xiao, Donglin Xiao, Ling Zhang, and Lin Chen.
Efficient shadow removal using subregion matching illumi-
nation transfer. Computer Graphics Forum, 32(7):421–430,
2013. 2

[44] Yao Xiao, Efstratios Tsougenis, and Chikeung Tang. Shadow
removal from single rgb-d images. In CVPR, pages 3011–
3018, 2014. 1

[45] Qingxiong Yang, Kar Han Tan, and Narendra Ahuja. Shad-
ow removal using bilateral filtering. IEEE Transactions on
Image Processing, 21(10):4361–4368, 2012. 1

[46] Yibing Yang and Hong Yan. An adaptive logical method for
binarization of degraded document images. Pattern Recog-
nition, 33(5):787–807, 2000. 1

[47] Ling Zhang, Chengjiang Long, Xiaolong Zhang, and Chunx-
ia Xiao. Ris-gan: Explore residual and illumination with
generative adversarial networks for shadow removal. In
AAAI, pages 12829–12836, 2020. 2

[48] Li Zhang, Andy M Yip, Michael S Brown, and Chew Lim
Tan. A unified framework for document restoration using
inpainting and shape-from-shading. Pattern Recognition,
42(11):2961–2978, 2009. 1

[49] Li Zhang, Andy M Yip, and Chew Lim Tan. Removing shad-
ing distortions in camera-based document images using in-
painting and surface fitting with radial basis functions. In
ICDAR, volume 2, pages 984–988, 2007. 2

[50] Ling Zhang, Qing Zhang, and Chunxia Xiao. Shadow re-
mover: Image shadow removal based on illumination recov-

ering optimization. IEEE Transactions on Image Processing,
24(11):4623–36, 2015. 2

[51] Yurui Zhu, Jie Huang, Xueyang Fu, Feng Zhao, Qibin Sun,
and Zheng-Jun Zha. Bijective mapping network for shadow
removal. In CVPR, pages 5627–5636, 2022. 7

1827


