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Abstract

Most current RGB-T trackers adopt a two-stream struc-
ture to extract unimodal RGB and thermal features and
complex fusion strategies to achieve multi-modal feature
fusion, which require a huge number of parameters, thus
hindering their real-life applications. On the other hand,
a compact RGB-T tracker may be computationally effi-
cient but encounter non-negligible performance degrada-
tion, due to the weakening of feature representation abil-
ity. To remedy this situation, a cross-modality distillation
framework is presented to bridge the performance gap be-
tween a compact tracker and a powerful tracker. Specifi-
cally, a specific-common feature distillation module is pro-
posed to transform the modality-common information as
well as the modality-specific information from a deeper two-
stream network to a shallower single-stream network. In
addition, a multi-path selection distillation module is pro-
posed to instruct a simple fusion module to learn more ac-
curate multi-modal information from a well-designed fusion
mechanism by using multiple paths. We validate the effec-
tiveness of our method with extensive experiments on three
RGB-T benchmarks, which achieves state-of-the-art perfor-
mance but consumes much less computational resources.

1. Introduction
RGB-T tracking is the task of estimating the state of

an arbitrary target in each frame of an RGB-T video se-

quence [35]. Due to the affordability of thermal infrared

(TIR) sensors, RGB-T tracking draws more and more re-

search interest.

As shown in Fig. 1 (a), most existing RGB-T tracking

models first adopt a two-stream structure to extract multi-

level unimodal RGB and TIR features, respectively, and

then employ elaborate-designed multi-modal feature fusion

modules to exploit complementary information within the
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Figure 1. Architectures of different RGB-T tracking models. (a)

Two-stream structure. (b) Single-stream structure. (c) Our pro-

posed method.

multi-modal data. Finally, they deduce the target state, of-

ten represented by a bounding box, from the fused features.

Although great progress has been made, these powerful

RGB-T tracking models usually require high computational

costs and large model sizes to handle the information of two

modalities in the stages of unimodal feature extraction and

multi-modal feature fusion.

There are two straightforward solutions to tackle the

complexity and efficiency issues. One is to adopt a single-

stream feature extractor with fewer convolutional layers,

and the other is to employ simpler multi-modal feature fu-

sion modules, as shown in Fig. 1 (b). Although such com-

pact models can reduce computational complexity, they in-

evitably bring non-negligible performance degradation due

to the weakening of unimodal feature representation ability

and multi-modal complementary information exploration

ability. For instance, a powerful RGB-T tracker [35] with a

two-stream structure and complicated multi-modal feature

fusion modules suffers from severe performance degrada-

tion after the above model simplification operations (84.4%

precision rate vs 78.1% precision rate on RGBT234 dataset

[11]), as shown in Fig. 2.

Now, the research question becomes: can we shrink

the RGB-T tracker without sacrificing performance? This

paper answers this question using knowledge distillation,

which allows a compact model to obtain a similar abil-

ity of a complex model at little cost. We call this com-

plex but powerful model the teacher model, and call this
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the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Experimental results of different RGB-T tracking struc-

tures on RGBT234 dataset [11]. Teacher denotes the two-stream

structure with complex fusion modules. Student denotes a single-

stream structure with simple fusion operations. The teacher model

employs ResNet50 [7] for feature extraction and fusion modules

in [35] for multi-modal feature fusion, respectively. The student

model employs ResNet18 [7] for feature extraction and concate-

nation for multi-modal feature fusion, respectively.

compact model the student model. Although some works

[15, 19, 20, 29] have made considerable progress on knowl-

edge distillation in multi-modal tasks, they fail to conduct a

deep investigation on the huge feature differences between

teacher and student in the unimodal feature extraction stage

as well as in the multi-modal feature fusion stage, thereby

resulting in suboptimal efficiency of the knowledge trans-

formation. For that, a novel teacher-student knowledge dis-

tillation training framework, named Cross-Modality Dis-

tillation (CMD), is proposed to elaborately guide efficient

imitation from three stages: unimodal feature extraction,

multi-modal feature fusion and target estimate estimation,

as shown in Fig. 1 (c).

Specifically, in the stage of unimodal feature extraction,

as pointed out by many previous works [9, 17], the shal-

lower layers of unimodal features usually contain abun-

dant low-level spatial details, which are usually modality-

dependent. Differently, the deeper layers of unimodal fea-

tures often contain many high-level semantic cues, which

tend to be strongly modality-consistent. The student model

uses a compact single-stream network to extract both RGB

features and TIR features, which not only lacks the ability to

extract modality-specific information in the shallower lay-

ers, but also insufficiently explores the modality-common

information in the deeper layers. These interesting observa-

tions inspire us to design a Specific-common Feature Dis-

tillation (SCFD) module, which transforms the modality-

specific information as well as the modality-common in-

formation from a two-stream deeper network to a single-

stream shallower network.

Second, in the stage of multi-modal feature fusion, the

complex multi-modal feature fusion modules in the teacher

model show great advantages in various scenarios, while

the simple fusion strategies in the student model are usu-

ally effective in some specific scenarios. It is difficult for a

student model with a single simple fusion strategy to learn

more effective complementary information mining capabil-

ities from a complex teacher model due to the large fea-

ture differences. Therefore, we design a fusion module with

multiple simple fusion strategies in the student model, de-

noted as Multi-path Selection Distillation (MPSD) module.

In the process of learning from the teacher model, the stu-

dent model can adaptively combine different types of fusion

features to make up for the lack of complementary informa-

tion mining capabilities of a single simple fusion strategy.

Finally, in the stage of target state estimation, with the

weakening of the feature representation ability of the stu-

dent model, the discriminative ability of the tracker for

distractors is also reduced. For that, we further present a

Hard-focused Response Distillation (HFRD) module to im-

prove the student model’s discriminative ability by alleviat-

ing the problem of data imbalance between the targets and

the backgrounds, which employs the response maps gener-

ated by the teacher model to instruct the student to focus on

distinguishing targets from hard negative samples.

As shown in Fig. 2, each of our proposed modules con-

tinuously reduces the performance gap between the student

model and the teacher model without increasing the number

of parameters obviously. To sum up, our work improves an

RGB-T tracker dramatically because of the following two

contributions:

• A Cross-Modality Distillation (CMD) framework is

presented to bridge the performance gap between a

compact student model and a powerful teacher model

through three stages, i.e, unimodal feature extraction,

multi-modal feature fusion and target state estimation.

To the best of our knowledge, we are the first to intro-

duce knowledge distillation for multi-modal tracking.

• Experimental results show that our proposed approach

helps a student model achieves the state-of-the-art per-

formance on the challenging GTOT [10], RGBT234

[11] and LasHer [14], while reducing the number of

parameters and computational complexity.

2. Related Work
RGB-T Tracking Methods. The past few years have

witnessed the increase of RGB-T tracking algorithms [4,

10, 13, 17, 31, 39]. Among them, numerous RGB-T track-

ers [6, 17, 30, 39] have been presented based on the MD-

Net [18]. For instance, in [17], Li et al. introduced a multi-

adapter architecture to learn modality-common, modality-

specific and instance-aware target representations, respec-

tively. In [39], Zhu et al. first presented a network to aggre-

gate the features from all of the layers and all of the modal-

ities. After that, these aggregated features were further
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pruned to reduce noise and redundancy. Recently, Zhang

et al. [35] introduced DiMP [1] as their baseline tracker

and achieved promising tracking performance. Meanwhile,

aiming to speed up the tracking, some works [36, 37] bring

the Siamese networks to RGB-T tracking, where their mod-

els are trained in an offline manner. Although some progress

has been made, these models still suffer from the limitations

of large model sizes and high computation costs.

Knowledge Distillation Methods. Knowledge Distilla-

tion (KD) was first proposed by Hinton et al. [8] to pass

dark knowledge from complicated teachers to compact stu-

dents, enabling students to maintain strong performance as

teachers. FitNet [21] proves that the semantic information

from intermediate features is also helpful to guide the stu-

dent model. Besides image classification, KD is widely ap-

plied to object detection and object tracking tasks. For in-

stance, [2] and [16] used KD to speed up the detection and

segmentation networks, respectively. Furthermore, Wang

[24] proposed to learn a more compact backbone for faster

feature extraction in correlation filter based trackers. Shen

et al. [22] used KD to compress deep Siamese-based track-

ers for high-performance visual tracking.

In addition, KD is also employed for some multi-modal

tasks, such as RGB-D salient object detection [19, 20]

and RGB-T pedestrian detection [15, 29]. Specifically, in

[20, 29], the single-stream feature extractors and the early

fusion strategies were employed in their student models.

However, both of them only simply employ the distillation

loss functions to improve the performance of student mod-

els by using fused features or label knowledges of teacher

models, and pay less attention to the huge differences be-

tween the teacher model and the student model in the uni-

modal feature extraction stage as well as in the multi-modal

feature fusion stage. Differently, in this paper, we aim to

narrow the feature differences between the student model

and the teacher model by specifically learning strategies at

multiple stages.

3. Distilled RGB-T Tracking
Given a powerful teacher model for RGB-T tracking, the

proposed CMD framework aims to prompt a more efficient

student model to learn from the teacher model. The knowl-

edge from the teacher model is transferred to the student

model to mimic more effective feature representation. This

section starts with an overview of the proposed CMD frame-

work. Then, we briefly provide an introduction of the em-

ployed teacher and student models. Finally, the three pro-

posed knowledge distillation modules (i.e., SCFD, MPSD

and HFRD) are described in details.

3.1. Overview

As illustrated in Fig. 3, the proposed CMD framework

includes a teacher model, a student model and three knowl-
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Figure 3. Overview of the proposed CMD framework.

edge distillation modules. The teacher model takes a pair of

RGB-T images as input, and employs a two-stream feature

extractor and several complex multi-modal feature fusion

modules for unimodal feature extraction and multi-modal

fusion, respectively. Finally, the fused features will be fed

into the target state estimation module to obtain the final

tracking results. Different from the teacher model, the stu-

dent model uses a single-stream feature extractor and sev-

eral efficient multi-modal fusion modules. Although the

student model has a higher running speed, the simplifica-

tion of the model inevitably leads to a decrease in tracking

performance.

To make up for the huge performance gap between the

student model and the teacher model, the proposed CMD

framework attempts to coach the learning process of the stu-

dent model from three stages: unimodal feature extraction,

multi-modal feature fusion and target state estimation. Ac-

cordingly, in the first stage, by using a proposed SCFD mod-

ule, the powerful two-stream feature extraction network of

the teacher model will transfer such modality-specific infor-

mation as well as modality-common information into the

single-stream network of the student model to enhance its

representation ability for unimodal features. In the second

stage, we will present an MPSD module to shrink the dif-

ferences between the fused features obtained by the teacher

model and those obtained by the student model via a multi-

path optimization strategy. In the third stage, with a pro-

posed HFRD module, we will adopt the response map gen-

erated by the teacher model in a form of spatial attention

to instruct the student model to focus on the discrimination

of difficult samples, thereby improving its discrimination

ability. The improvements in the above three stages will ef-

fectively narrow the performance gap between the student

model and the teacher model, enabling the student model to

achieve competitive tracking results with the teacher model

but with fewer parameters and higher computational effi-

ciency.
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3.2. Teacher and Student Model

In this section, we will describe the architectures of the

employed teacher and student models, which are both based

on the recent deep RGB tracker DiMP [1]. As shown in

Fig. 4, both the teacher model and the student model can

be divided into three stages: unimodal feature extraction,

multi-modal feature fusion and target state estimation.

Feature extraction. In the teacher model, two feature

extractors, denoted as Ergb and Ethe, regard RGB and TIR

modalities in parallel. The two feature extractors both adopt

ResNet50 [7] as the backbone to extract multi-level RGB

and TIR features, as shown in Fig. 4 (a). Differently, in the

student model, only one feature extractor, denoted as Estu,

regards both RGB and TIR modalities simultaneously. As

shown in Fig. 4 (b), Estu just adopts ResNet18 [7] as the

backbone for simplification. Similar to the original DiMP

tracker, in both the teacher model and the student model,

we use the features from block3 and block 4 for regression,

and those features only from block4 for classification. The

extracted RGB and TIR features from the teacher model are

denoted as ftirgb and ftitir, respectively, and the extracted

RGB and TIR features from the student model are denoted

as fsirgb and fsitir, respectively, where i ∈ {1, 2, 3, 4} in-

dexes the feature level.

Multi-modal feature fusion. By performing the multi-

modal fusion modules on the 3rd and 4th levels of RGB and

TIR features, we obtain the fused features ft3fus and ft4fus
in the teacher model and the fused features fs3fus and fs4fus
in the student model, respectively. Our teacher model em-

ploys a Modality Difference Compensation (MDC) module

and a Feature Re-selection module (FRS) for multi-modal

feature fusion [35]. Differently, our student model utilizes

the proposed MPSD modules for multi-modal feature fu-

sion. Details of MPSD will be introduced in Section 3.4.

Classification and regression. Finally, these fused fea-

tures will be fed to the classification and regression heads,

which have the same architectures with those in the origi-

nal DiMP. Especially, in this stage, the student and teacher

models both apply the original classification and regression

heads in DiMP. We refer readers to [1, 5] for more details.
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Figure 5. The proposed specific-common feature distillation mod-

ule for the RGB modality. The SCFD module for the TIR modality

employs the same architecture as that in the RGB modality.

3.3. Specific-Common Feature Distillation

This section elaborates on the proposed SCFD module

for the two-stage unimodal feature distillation, which lets

the single-stream feature extraction module in the student

model enable to learn the modality-common information as

well as the modality-specific information from the teacher

model, as shown in Fig. 5 (a).

We first perform cross-modal interaction on the uni-

modal RGB features and TIR features from the teacher

model to highlight the modality-common information and

modality-specific information at different layers, respec-

tively, for better guiding the learning of the student model.

Specifically, as shown in Fig. 5 (b), given the unimodal

features of shallow layers (i.e., {ftirgb|i = 1, 2, 3} and

{ftitir|i = 1, 2, 3}) from the teacher model, the proposed

Specific Enhanced Modules (SEMs) are employed to ob-

tain such modality-interacted features feirgb and feitir (i =
1, 2, 3) with more modality-specific information via sub-

traction and multiplication. Mathematically,

feirgb = (ftirgb � ftitir)⊕ (ftirgb � ftitir),

feitir = (ftirgb � ftitir)⊕ (ftitir � ftirgb),
(1)

where �, ⊕ and � denote element-wise subtraction,

element-wise addition and element-wise multiplication, re-

spectively. ftirgb � ftitir reflects the jointly valid informa-

tion within RGB and TIR features. While, ftirgb � ftitir
represents the modality-specific information of the RGB

modality with respect to the TIR modality. Similarly, the

modality-specific information of the TIR modality with re-

spect to the RGB modality can be obtained by ftitir�ftirgb.

Accordingly, feirgb and feitir highlight such modality-

specific information in addition to preserve jointly valid in-

formation, which can be applied to guide feature learning

of the student model in shallow layers.

Alternatively, for the RGB and TIR features of deep lay-
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ers (i.e., ft4rgb and ft4tir), the proposed Consistence En-

hanced Module (CEM) is employed to obtain modality-

interacted features fc4 with more modality-common infor-

mation via addition and multiplication, as shown in Fig. 5

(c). Mathematically,

fc4 = (ft4rgb � ft4tir)⊕ (ft4rgb ⊕ ft4tir). (2)

Here, by applying the element-wise addition on ft4rgb and

ft4tir, the consistency of high-level semantic cues within

multi-modal data can be further enhanced. Therefore, fc4

can better guide the learning of the student model in deep

layer.

With the modality-interacted features from the teacher

model, the next step is to adjust the feature-channel dimen-

sions of the student model to be consistent with those of

the teacher model. Here, inspired by the idea of Knowl-

edge Review [3], we employ a series of attention based fu-

sion (ABF) modules [3] to adjust the channel dimensions

of unimodal features and dynamically aggregate the cross-

layer features in the student model. The modified features

of the student model from ABFs (i.e., {fui
rgb|i = 1, 2, 3, 4}

and {fui
tir|i = 1, 2, 3, 4}) and the modality-interacted fea-

tures of the teacher model (i.e., {fe1rgb, fe2rgb, fe3rgb, fc4}
and {fe1tir, fe2tir, fe3tir, fc4}) will be employed together to

force the student model to mimic the specific and common

information from the teacher model via a proposed feature-

learning distillation loss LSCFD, which is formulated as:

Lspe =
∑3

i=1 l
(
feirgb, fu

i
rgb

)
+

∑3
i=1 l

(
feitir, fu

i
tir

)
,

Lcom = l
(
fc4, fu4

rgb

)
+ l

(
fc4, fu4

tir

)
,

LSCFD = Lspe + Lcom,
(3)

where l(∗) denotes the standard MSE loss used in [21].

3.4. Multi-path Selection Distillation

In order to learn the exploration ability of complemen-

tary information from the teacher model more effectively,

we design a fusion module by using multiple fusion strate-

gies, denoted as Multi-path Selection Distillation (MPSD)

module, in the student model. In the process of learning

from the teacher model, the student model can adaptively

optimize the pathes to reduce feature differences.

Specifically, in the student model, the proposed MPSD

module first performs multi-modal feature fusion from three

typical perspectives: modality differences, modality com-

monality and modality complementary. Given the original

RGB features fsirgb and TIR features fsitir from the 3rd
and 4th levels in the student model, three types of initially

fused features fsifus,1, fsifus,2 and fsifus,3 are computed

by

fsifus,1 = sa(fsirgb, fs
i
tir),

fsifus,2 = fsirgb � fsitir,

fsifus,3 = fsirgb � fsitir.

(4)
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Figure 6. The proposed multi-path selection distillation module.

Here, sa(∗) denotes the spatial attention mechanism, which

first utilizes a convolution layer of kernel size 1 × 1 and a

softmax layer to get a two-channel weight map. The two-

channel weight map is then split into two reliability weight

maps for selecting the RGB features and TIR features, re-

spectively. Mathematically, the self-attention mechanism is

expressed by:

wi
rgb, w

i
t = σ(conv(cat(fsirgb, fs

i
tir), θ1)),

fsifus,1 = (fsirgb � wi
rgb)⊕ (fsitir � wi

tir),
(5)

where cat(∗) denotes the concatenation operation and

conv(∗, θ1) denotes a 1 × 1 convolutional layer with its

parameters θ1. σ(∗) denotes the sigmoid layer. The fea-

tures fsifus,1 mainly reflect the complementary information

within multi-modal data. Features fsifus,2 and fsifus,3 re-

flect their interacted information and their differential infor-

mation, respectively.

After that, fsifus,1, fsifus,2 and fsifus,3 are further com-

bined together by a weighted fusion way, i.e,

wi
1, w

i
2, w

i
3 = softmax(fc(gmp(cat(fsifus,1, fs

i
fus,2, fs

i
fus,3)))),

fsifus = (fsifus,1 � wi
1)⊕ (fsifus,2 � wi

2)⊕ (fsifus,3 � wi
3).

(6)

where gmp(∗) and fc(∗) denote the global max pool-

ing layer and the fully connected layers, respectively.

softmax(∗) denote the softmax operation. The feature-

wise weights wi
1, w

i
2, w

i
3 reflect the importance of different

fused features for the current scenario. � denotes the broad-

casting multiplication operation.

With the fused features {ftifus|i = 3, 4} and {fsifus|i =
3, 4} obtained by the teacher model and the student model,

respectively, we calculate the fusion distillation loss Lfus
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between the fused features:

Lfus = l
(
ft3fus, fs

3
fus

)
+ l

(
ft4fus, fs

4
fus

)
(7)

What’s more, in order to enable the student model to

adaptively select a fusion path that is more similar to the

teacher model in different scenarios, we introduce an ad-

ditional penalty Lp for the efficiency of knowledge trans-

formation during training. More specifically, we first select

the fusion type with the smallest difference between the ini-

tially fused features of the student model and the fused fea-

tures of the teacher model by,

Li
fus,n = l

(
ftifus, fs

i
fus,n

)
, n = 1, 2, 3

Li
fus,λi = min(Li

fus,1, L
i
fus,2, L

i
fus,3),

(8)

where λi =1, 2 or 3 denotes the selected type of initially

fused features according to the fused feature difference be-

tween the teacher and student models.

After that, through the adaptive selection part in MPSD,

the student model itself will also predict a type of initially

fused features that is suitable for the current tracking scene,

i.e.,

wi
νi = max(wi

1, w
i
2, w

i
3), (9)

where νi =1, 2 or 3 denotes the predicted type of initially

fused features from the student model.

With wi
νi and wi

λi , we can use a penalty to help the stu-

dent model choose a fusion path that is more suitable for the

current scene under the guidance of the teacher model, i.e.,

Lp =

4∑
i=3

max(|Li
fus,λiwi

νi − Li
fus,λiwi

λi |, 0). (10)

By minimizing Lp, wi
νi and wi

λi will tend to be consistent,

which can enable the student model to adaptively select the

fusion path according to the teacher model to improve the

exploration ability of complementary information.

On top of that, the overall distill loss in the multi-modal

fusion stage can be obtained by:

LMPSD = Lfus + Lp. (11)

3.5. Hard-focused Response Distillation

To alleviate the data imbalance problem, we propose the

Hard-focused Response Distillation (HFRD) module to in-

struct the student to focus on distinguishing targets from

hard negative samples.

First, we obtain the response map Rt ∈ R
H×W from

the teacher model. Then, in order to prevent the teacher

model from failing to have high responses in the target

area within some scenes, we use the Gaussian-shaped mask

Rg ∈ R
H×W constructed by ground-truth bounding box as

in [1] to correct the response map of the teacher model Rt

as follows:

Rc(i, j) =

{
Rt(i, j) +Rg(i, j), if(Rt(i, j) +Rg(i, j)) < 1,

Rg(i, j), if(Rt(i, j) +Rg(i, j)) � 1.
.

(12)

where i, j are the the horizontal and vertical coordinates of

the response map, respectively. The corrected mask Rc ∈
R

H×W has higher response values not only on the positive

samples but also on the hard negative samples.

In the training process of the student model, with the as-

sistance of the corrected mask Rc from the teacher model,

the student model can focus more on distinguishing target

from hard negative samples by a proposed Hard-focused

Response Distillation loss LHFRD to alleviate the data im-

balance problem:

LHFRD = r(Rs �Rc, Rg), (13)

where r(∗) denotes the L2 loss function [5].

3.6. Overall loss

The overall distillation loss Ldistill is the sum of

LSCFD, LMPSD and LHFRD. We train the student model

with the total loss as follows:

Ldistill = α(LSCFD + LMPSD) + βLHFRD + Loriginal,
(14)

where α and β are hyper-parameters to balance the distil-

lation loss. Loriginal is the original loss for tracking as

in [35]. The distillation loss LSCFD and LMPSD are just

calculated on feature maps, which can be easily applied to

different tackers or other multi-modal vision tasks.

4. Experiments

Our tracking approach is implemented in Python based

on PyTorch. For inference, we test our tracker on a single

Nvidia RTX 1080Ti GPU.

4.1. Implementation details

Training Details. We adopt the training dataset in

LasHeR [14], which contains 979 pairs of RGB-T videos, to

train the teacher model and student model, respectively. The

proposed CMD framework includes two training stages. In

the first stage, we train the teacher model as in MFNet [35]

and fix its weights after training. In the second stage, the

optimization of the student model is jointly supervised by

the original tracking loss Loriginal as well as the knowledge

transfer loss LSCFD, LMPSD and LHFRD. α and β in Eq.

14 are experimentally set to 0.001 and 100, respectively.

Online Tracking. In the tracking phase, our method is

similar to DiMP [1]. We split tracking into classification

and regression subtasks. For classification subtask, we em-

ploy data augmentation [1] on the first frame to construct

an initial set, which contains 15 initial training samples for

initial classification model training. Then the initial classifi-

cation model is optimized using the augmented training set

during tracking. For regression subtask, the same settings

as those in [1] are employed.
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Table 1. Ablation study of different components.

Student SCFD MPSD HFRD PR/SR Params(M) FPS

� 78.1/56.0 19.8 31

� � 80.3/57.4 19.8 31

� � � 82.2/58.3 19.9 30

� � � � 82.4/58.4 19.9 30

4.2. Evaluation datasets and metrics

We evaluate our method on three large-scale benchmark

datasets, i.e., GTOT [10], RGBT234 [11] and LasHeR [14].

GTOT is the first standard dataset for RGB-T tracking. It

contains 50 RGB-T video sequences annotated with seven

challenging attributes. RGBT234 [11] contains 234 pairs of

RGB-T videos and 12 annotated attributes. LasHeR is cur-

rently the largest RGB-T tracking dataset, which consists

of 1244 RGB-T videos with more than 730K frame pairs

in total. Among them, 245 videos are used as the testing

set, and 979 videos are used as the training set. As in [17],

we utilize two widely used metrics, i.e., precision rate (PR)

and success rate (SR), to evaluate the tracking performance

on GTOT and RGBT234. As in [14], we adopt precision

rate (PR), normalized precision rate (NPR) and success rate

(SR) to evaluate different trackers on LasHeR.

4.3. Ablation Experiments and Analyses

We conduct some ablation studies on RGBT234 [11] to

discuss the impacts of different components in our CMD

framework.

Ablation experiments for each module. To investi-

gate the impact of each component in our proposed CMD,

several versions of our proposed method are provided for

comparisons. Specifically, ‘Student’ denotes the model that

without any knowledge transformation. Here, the proposed

SCFD, MPSD and HFRD are employed in the unimodal

feature extraction stage, multi-modal feature fusion stage

and target state estimation stage, respectively. The quan-

titative results of these models are shown in Table 1. It

can be seen that SCFD, MPSD and HFRD can all improve

the performance of the student model. This verifies that

each proposed component in CMD can effectively inherit

the knowledge learnt from a powerful teacher models to a

student model without obvious loss.

Effectiveness of the proposed SCFD module. To fur-

ther verify the effectiveness of the proposed SCFD module,

several variants are also compared with our proposed SCFD

module. Here, in the unimodal feature extraction stage,

‘AFD’, ‘SED’ and ‘CED’ denote initially fusing the uni-

modal features of each layer in the teacher model by using

the simple element-wise addition operation, the designed

SEM module and the designed CEM module, respectively,

and such initially fused features are then employed to guide

the student model for single-stream structure learning. As

well, ABF modules [3] are employed in all of these vari-

Table 2. Ablation study of the proposed SCFD module.

Student AFD SED CED SCFD PR/SR Params(M) FPS

� 78.1/56.0 19.8 31

� � 78.7/56.6 19.8 31

� � 79.2/56.5 19.8 31

� � 79.6/56.6 19.8 31

� � 80.3/57.4 19.8 31

Table 3. Ablation study of the proposed MPSD module.

Student+SCFD SAF CAF TF MPSD PR/SR Params(M) FPS

� 80.3/57.4 19.8 31

� � 81.9/58.0 19.9 30

� � 81.1/57.6 19.9 30

� � 82.6/58.6 25.9 23

� � 82.2/58.3 19.9 30

ants. As shown in Table 2, the proposed SCFD can better

exploit the modality-common and modality-specific infor-

mation from the teacher model.

Effectiveness of the proposed MPSD module. As

shown in Table 3, several versions of our proposed MPSD

module are also conducted to verify its effectiveness.

‘SAF’ denotes a spatial-wise attention based fusion mod-

ule. ‘CAF’ denotes a channel-wise attention based module.

‘TF’ denotes adopting the same fusion strategy as that in

the teacher model [35]. In particular, each layer adopts the

same fusion strategy in the student model. It can be seen

that the exploitation of the multi-path fusion strategy can

well improve the performance of the student model. In ad-

dition, the performance gap between ‘Student-MPSD’ and

‘Student-TF’ is much smaller, which indicates that our pro-

posed MPSD module can better mimic the fused features

in the teacher model to compensate for the performance

penalty from simple fusion operations.

Teacher-Student knowledge distillation experiments.
Table 4 shows the performance of using some other knowl-

edge distillation methods in the feature extraction and fea-

ture fusion stages for comparisons, including KD [8], Fit-

Nets [21], ReviewKD [3] and MD [29]. It is observed

from Table 4 that the proposed distillation strategy per-

forms the best. Due to the absence of cross-modal interac-

tions, these existing knowledge distillation methods usually

achieve some modest performance gains. In addition, we

notice that the student model with a single-stream feature

extractor performs obviously well than the student model

with a two-stream feature extractor after knowledge distilla-

tion. This may be due to the fact that the single-stream net-

work can narrow the modality difference to a certain extent

and better acquire the knowledge from the teacher model.

4.4. Comparison with the state-of-the-art

To evaluate the superiority of our proposed method, we

compare our method with some existing state-of-the-art

RGB-T trackers, including MANet [17], DAFNet [6], DAP-

Net [39], TODA [28], MACNet [30], CAT [12], CEDiMP
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Table 4. Ablation study of different knowledge distillation experi-

ments.

Method KD [8] FitNets [21] ReviewKD [3] ReviewKD [3] MD [29] Ours

Backbone 2 Res18 2 Res18 2 Res18 1 Res18 1 Res18 1 Res18

PR/SR 78.4/56.2 79.3/56.0 79.9/56.5 80.5/56.3 80.0/55.4 82.4/58.4

FPS 27 27 27 30 30 30

Params 31.6 31.6 31.6 19.9 19.9 19.9

Table 5. Quantitative comparisons of our method with some state-

of-the-arts methods on benchmark datasets. Higher values indicate

better performance.

Methods Year

RGBT234 [11] GTOT [10] LasHeR [14]
FPS Params

PR ↑ SR ↑ PR ↑ SR↑ PR ↑ NPR ↑ SR ↑
DAPNet [39] 2019 76.6 53.7 88.2 70.7 43.1 38.4 31.4 1 -

MANet [17] 2019 77.7 53.9 89.4 72.4 45.7 40.8 33.0 1 7.28M

DAFNet [6] 2019 79.6 54.4 89.1 71.6 44.9 39.0 31.1 14 5.50M

mfDiMP [31] 2019 78.6 55.5 83.6 69.7 44.7 39.5 34.4 22 175.82M

TODA [28] 2019 78.7 54.5 84.3 67.7 - - - 1 -

MACNet [30] 2020 79.0 55.4 88.0 71.4 48.3 42.3 35.2 1 14.86M

CAT [12] 2020 80.4 56.1 88.9 71.7 45.1 39.8 31.7 - -

FANet [40] 2021 78.7 55.3 89.1 72.8 44.2 38.4 30.9 12 38.44M

SiamCDA [36] 2021 76.0 56.9 87.7 73.2 - - - 24 107.90M

JMMAC [32] 2021 79.0 57.3 90.2 73.2 - - - - -

MANet++ [33] 2021 80.0 55.4 88.2 70.7 46.7 40.8 31.7 15 7.38M

ADRNet [33] 2021 80.9 57.1 90.4 73.9 - - - 15 68.50M

CBPNet [27] 2022 79.4 54.1 88.5 71.6 - - - 3 -

TFNet [41] 2022 80.6 56.0 88.6 72.9 - - - - -

MFGNet [25] 2022 78.3 53.5 88.9 70.7 - - - 3 8.09M

M5LNet [23] 2022 79.5 54.2 89.6 71.0 - - - 9 -

HMFT [34] 2022 78.8 56.8 91.2 74.9 - - - - 127.84M

APFNet [26] 2022 82.7 57.9 90.5 73.9 50.0 - 36.2 - 15.01M

MANet∗ [17] 2019 78.6 55.5 90.0 72.5 - - - 1 7.28M

DAFNet∗ [6] 2019 80.0 54.9 86.0 70.0 48.0 42.8 34.5 14 5.50M

mfDiMP∗ [31] 2019 82.4 58.3 87.7 73.1 58.3 54.2 45.6 22 175.82M

FANet∗ [40] 2021 79.4 53.9 90.1 72.1 48.2 42.5 34.3 12 38.44M

Teacher [35] 2022 84.4 60.1 90.7 73.5 59.7 55.4 46.7 18 81.01M

Student-Origin 2022 78.1 56.0 88.5 72.3 55.4 50.3 42.3 30 19.90M

Student-Distill 2022 82.4 58.4 89.2 73.4 59.0 54.6 46.4 30 19.90M

[38], SiamCDA [36], mfDiMP [31], FANet [40], CBPNet

[27], MANet++ [33], JMMAC [32], ADRNet [33], TFNet

[41], MFGNet [25], M5LNet [23], HMFT [34], APFNet

[26] and MFNet [35], on three challenging datasets. Con-

sidering that existing methods usually employ different

training datasets, we use the LasHeR training set to retrain

some of these algorithms for fair comparisons, including

FANet∗, DAFNet∗, MANet∗ and mfDiMP∗.

On RGBT234. From Table 5, we observe that, in addi-

tion to the teacher model, our method achieves the best re-

sults with 82.4%/58.4% in PR/SR. In particular, our tracker

achieves 3.0%/4.5%, 3.8%/2.9% and 2.4%/3.6% improve-

ments against FANet∗ [40], MANet∗ [17] and DAFNet∗ [6]

in PR/SR, respectively. We should note that some MD-

Net [18] based trackers [6,17,33] employ merely three con-

volutional layers for unimodal feature extraction, thus have

fewer parameters in the unimodal feature extraction stage

with a two-stream structure (e.g., 3.6M in [30, 40]). How-

ever, in the multi-modal feature fusion stage, these meth-

ods’ parameters are significantly higher than those of the

proposed MPSD module. Meanwhile, due to the com-

plex updating strategy in MDNet, the above methods cannot

meet the needs of real-time operation.

On GTOT. From Table 5, we can see that our method

obtains competitive performance on GTOT dataset [10]

with 73.4% and 89.2% in success and precision scores, re-

spectively. Compared with the teacher model, our student

model achieves comparable performance but with a 75%

reduction in parameter sizes. Compared with the original

student model, our algorithm achieves 1.1% improvements

in success and 0.7% improvements in precision.

On LasHeR. LasHeR [14] is captured from a number

of scenes and categories and is highly diverse. A tracker re-

trained on this dataset usually achieves some improvements.

From Table 5, we can also see that, in addition to the teacher

model, our tracker still performs the best in terms of all the

three metrics with significant performance superiorities on

LasHeR. In particular, our tracker achieves 11.0%/11.9%

and 10.8%/12.1% improvements against DAFNet∗ [6] and

FANet∗ [40], which are based on MDNet [18]. Compared

with mfDiMP∗ [31], which is based on DiMP [1] and em-

ploys two ResNet50 [7] for feature extraction, our PR/SR is

0.7%/0.8% higher than it. This demonstrates that our pro-

posed method can effectively reduce the performance loss

caused by parameter reduction.

5. Conclusion

In this paper, a novel teacher-student knowledge distil-

lation training framework is proposed to reduce the perfor-

mance gap between a powerful teacher model and a com-

pact student model. Specifically, this framework distills the

knowledge from a deep two-stream network with complex

multi-modal feature fusion modules to a single-stream net-

work with efficient feature fusion modules. By virtue of the

proposed SCFD module, the modality-common information

as well as the modality-specific information can be trans-

formed from a two-stream network to a single-stream net-

work in the unimodal feature extraction stage, thus enhanc-

ing the representations of unimodal features. Besides, by

employing the proposed MPSD module, the student model

can adaptively combine multiple fused features generated

by various simple fusion strategies to explore complemen-

tary information from multi-modal data more thoroughly.

In addition, an HFRD module is proposed to improve the

student model’s discriminative ability against the distractors

by alleviating the problem of data imbalance in the target

state estimation stage. Experimental results show that our

approach helps a student model achieves the state-of-the-

art performance while reducing the number of parameters

and computational complexity dramatically.

Limitation: The current method dedicated to reducing

computational complexity at the stages of unimodal fea-

ture extraction and multi-modal feature fusion, but it paid

ZERO effort to improve the efficiency of target stage esti-

mation, which is our future work.
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