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Abstract

Semi-supervised class-conditional image synthesis is
typically performed by inferring and injecting class labels
into a conditional Generative Adversarial Network (GAN).
The supervision in the form of class identity may be inade-
quate to model classes with diverse visual appearances. In
this paper, we propose a Learnable Cluster Prompt-based
GAN (LCP-GAN) to capture class-wise characteristics and
intra-class variation factors with a broader source of su-
pervision. To exploit partially labeled data, we perform soft
partitioning on each class, and explore the possibility of as-
sociating intra-class clusters with learnable visual concepts
in the feature space of a pre-trained language-vision model,
e.g., CLIP. For class-conditional image generation, we de-
sign a cluster-conditional generator by injecting a combi-
nation of intra-class cluster label embeddings, and further
incorporate a real-fake classification head on top of CLIP
to distinguish real instances from the synthesized ones, con-
ditioned on the learnable cluster prompts. This significant-
ly strengthens the generator with more semantic language
supervision. LCP-GAN not only possesses superior gen-
eration capability but also matches the performance of the
fully supervised version of the base models: BigGAN and
StyleGAN2-ADA, on multiple standard benchmarks.

1. Introduction

Generative Adversarial Networks (GANs) have achieved

considerable success in modeling complex data distribu-

tions and generating high-fidelity images from random vec-

tors [2, 18, 25]. To control class semantics in the generation

∗Joint first authors.
†Corresponding author.

Learnable prompt:  “? ? ? ? [class_name]”

“? ? ? ?” “Wavy Hair” “? ? ? ?” “Smiling”

Class Intra-class cluster
Figure 1. Different from generic class-conditional GANs con-

ditioned on discrete class labels, LCP-GAN learns intra-class

cluster-specific prompts to guide the generation process and cap-

ture underlying variation factors.

process, object category is typically represented in the form

of a discrete label, which is injected into both generator and

discriminator through learnable embedding layers. Howev-

er, sufficient labeled training data may be difficult to collect

in real-world applications. Significant efforts have been de-

voted to semi-supervised generative learning that aims to re-

duce the dependence of class-conditional GANs on labeled

training data [6, 15, 29, 33].

In the semi-supervised setting, the amount of unlabeled

training samples can be significantly greater than that of la-

beled ones. As one of the early attempts, CatGAN [44]

trained a discriminator to infer the class labels of real im-

ages with high confidence, but not for the synthesized

ones. Both TripleGAN [29] and Δ-GAN [15] incorpo-

rated an auxiliary classifier to focus on class label pre-

diction in the adversarial training process. The unlabeled

images with pseudo labels were used to train the class-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7392



Figure 2. An overview of the proposed LCP-GAN. The generator G synthesizes class-specific images, conditioned on the combination

of intra-cluster label embeddings:
∑

i u
(i)
z E(cy i). In addition to class-conditional adversarial training via the discriminator Dclass, we

incorporate an additional discriminator Dprompt to distinguish real images from the synthesized ones, conditioned on the combination of

the learnable cluster-specific prompts {ty 1, . . . , ty ky}. By competing with Dclass and Dprompt, G learns to associate the cluster label

embeddings with the underlying visual concepts described by the prompts.

conditional discriminators. There have also been some at-

tempts at improving GANs via unsupervised data partition-

ing [14, 16, 21, 31, 39]. SphericGAN [6] imposed hard par-

titioning on the training data, and aligned the real and syn-

thesized data clusters in a hyper-spherical latent space. The

existing semi-supervised GANs are conditioned on class i-

dentity, while the semantics encapsulated in the class names

is overlooked. This impedes the generative model from

using prior knowledge in natural language as humans do.

Furthermore, only one single label embedding is learnt per

class, which is insufficient to account for large intra-class

variance. To address these issues, we explore intra-class

variation factors by performing soft and finer partitions on

each class and learning cluster-specific prompts to represent

underlying visual concepts as shown in Figure 1.

More specifically, we propose a Learnable Cluster

Prompt-based GAN to facilitate semi-supervised class-

conditional image generation, and our model is referred

to as LCP-GAN. To better match class-specific data distri-

bution, the generator learns to synthesize high-fidelity im-

ages, conditioned on a combination of intra-class cluster la-

bel embeddings. Capturing intra-class variation factors is a

non-trivial task, since the semantics reflected by the clusters

may not be well-defined. Considering that natural language

can express a wide range of visual concepts, we make an

attempt to learn from CLIP [42], which provides an effec-

tive way to understand the content of images. Inspired by

CoOp [56], we can model the cluster-specific context words

with learnable vectors, and further learn a mapping to adapt

the CLIP representation to our generation task. As a re-

sult, the generator is guided to capture cluster semantics in

the adversarial training process. The framework of LCP-

GAN is illustrated in Figure 2. We adopt the state-of-the-

art architectures: BigGAN [2] and StyleGAN2-ADA [23],

and achieve significant improvements over them, suggest-

ing that semi-supervised image generation can benefit from

modeling intra-class variation with the language-vision pre-

training.

The main contributions of this work are summarized as

follows: (a) We associate the intra-class cluster label em-

beddings with the cluster semantics, and the expressiveness

of their combination is higher than that of a single class

label embedding for capturing multiple underlying modes

with diverse visual appearances. (b) To address the issue

that the visual concepts reflected by the clusters may not be

well defined, we leverage the language-vision pre-training

and represent the clusters with learnable prompts. (c) To

guide the generator to capture intra-class variation factors,

the cluster prompts serve as conditional information and are

jointly learnt in the adversarial training process.

2. Related Work
2.1. Generic GAN-based Image Synthesis

GANs have served as the leading models and brought

rapid progress in image synthesis recently [11, 25, 51, 52].

GAN training is based on the minimax theorem and suf-

fers from mode collapse due to optimization difficulties.

There are a variety of approaches that focus on the stabili-

ty of the adversarial training process, including Wasserstein

distance-based distribution alignment [1], Lipschitz conti-

nuity [36, 47], minibatch discrimination [43], architectural

constraints [24, 41, 50], and so on.

To synthesize class-specific images, a straightforward s-
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trategy [35] is to feed the class label into a generator and a

discriminator together with a latent code and the produced

image, respectively. To ensure correct class semantics of the

synthesis results, Springenberg [44] proposed a Categorical

GAN (CatGAN), in which the discriminator was trained to

classify real images while aggregating the synthesized ones

into an additional class. In addition, Odena et al. [40] and

Gong et al. [17] enhanced conditional GANs by incorporat-

ing Auxiliary Classification heads in the discriminator (AC-

GANs). Kang et al. [22] further enhanced ACGAN by im-

posing inter-class separability regularization on the discrim-

inator, and the resulting model is referred to as ReACGAN

(Rebooted Auxiliary Classifier-based GAN). Another strat-

egy is to learn the class-specific normalization parameters

to regularize the generator features, while the discriminator

distinguishes real images from the synthesized ones, condi-

tioned on the learnable class label embeddings [2, 26, 37].

Recently, data augmentation techniques were used to

cover unseen variations and proven to be effective in im-

proving the generation performance of GANs [23, 55].

Chen et al. [5] proposed a self-supervised GAN, in which

the discriminator was required to predict the rotation angles

for the randomly rotated images. To prevent the synthesized

images from matching the augmented data distribution in-

stead of the original one, Zhao et al. [53] imposed multiple

types of differentiable augmentation operations on both real

and synthesized images, and the model could converge to a

better solution. In [54], the augmentation operations were

performed on latent vectors, and consistency regularization

was imposed on the images synthesized from the resulting

vectors. Instead of pre-specified augmentation operations,

Karras et al. [23] adopted a reinforcement learning paradig-

m to optimize a GAN with adaptively augmented data.

2.2. Semi-supervised GANs

Semi-supervised generative learning aims to learn class-

conditional data distribution on partially labeled data, and

the synthesis results are expected to be realistic and reflect

precise class semantics. To address the lack of labeled da-

ta, Li et al. [29] proposed Triple-GAN that incorporates a

classifier to pseudo-label the unlabeled images as accurate-

ly as possible, such that the images can be identified as real

by the class-conditional discriminator. To precisely capture

class semantics, Wu et al. [48] improved Triple-GAN by

imposing feature-semantics matching regularization on the

generator. In Δ-GAN [15], Gan et al. adopted an additional

discriminator to distinguish unlabeled images from the syn-

thesized ones. To improve the discriminator’s capability, the

random regional replacement strategy [49] was leveraged

to construct hard examples in R3-CGAN [32] and MED-

GAN [33], and the discriminator was encouraged to apply

attention on the semantically meaningful regions. Another

group of semi-supervised GANs [10, 13,30, 43] focus more

on image classification tasks, and the synthesized instances

are used to extend the training data [8, 12].

Self-CondGAN [31] and SphericGAN [6] are mostly re-

lated to this work. We summarize the fundamental dif-

ferences as follows: (1) Both Self-CondGAN and Spher-

icGAN performed clustering on all the training data, and

each cluster may partially cover multiple classes. In con-

trast, we perform soft partitioning on each class, which can

explore intra-class variation factors without changing class

semantics. (2) We exploit the language-vision pre-training

to represent the underlying visual concepts reflected by the

clusters. This has not been considered by the two methods.

3. Proposed Method

3.1. Overview

Given a random variable z drawn from a pre-defined

Gaussian distribution and a class index y, the previous

works typically train a class-conditional generator that syn-

thesizes the instances xz ∼ pz(xz|y) to match the y-th class

data distribution pdata(x|y). In this work, we aim to im-

prove the class-conditional generation performance, and our

key idea is to model a set of intra-class clusters denoted by

cy = {cy 1, ..., cy ky
} in the CLIP feature space, such that

the synthesized data xz ∼ pz(xz|cy) can better encapsulate

class semantics, where ky denotes the number of clusters in

class y. In addition to leveraging the semantic information

encapsulated in the class name, we believe that the semanti-

cally meaningful variation factors can be better captured by

learning from language-vision pre-training, and our design

thus lies in how cluster prompts ty = {ty 1, . . . , ty ky} are

learnt and improve the generation process.

LCP-GAN mainly consists of four components: A pre-

dictor C : Rh×w×3 → Y infers the class labels of unlabeled

RGB images with resolution of h×w , where Y denotes the

label space. A conditional generator G : Rm×R
ky×R

ky →
R

h×w×3 synthesizes an image xz = G(z, cy, uz) from a

m-dimensional random vector z ∈ R
m together with clus-

ter labels and a coefficient vector uz ∈ R
ky . A class-

conditional discriminator Dclass : Rh×w×3 × Y → {0, 1}
distinguishes real images from the synthesized ones, con-

ditioned on the class label. An additional discriminator

Dprompt : Rh×w×3 × R
ky × R

ky → {0, 1} performs ad-

versarial training, conditioned on cluster prompt ty . Due

to the lack of well-defined visual concepts on the clusters,

we build Dprompt by incorporating a real-fake classifica-

tion head on top of CLIP. In addition to competing with

Dclass to capture class semantics, G is also trained to de-

ceive Dprompt by matching the semantics of the synthesized

images with the cluster prompts. We judiciously design an

optimization scheme to jointly train the components.

7394



3.2. Cluster-conditional Generation

We model the intra-class clusters and learn the corre-

sponding label embeddings to control the generation pro-

cess. Toward this end, we perform intra-class data parti-

tioning via soft k-means clustering in the feature space of

a ResNet [19] pre-trained on ImageNet [9]. For simplicity,

let x denote a labeled/unlabeled image, and the class label

y is defined as follows:

y =

{
Ground-truth, if x is labeled,
one-hot(C(x)), otherwise,

(1)

where one-hot(·) is the one-hot encoding function for

pseudo-labeling unlabeled images. For class y, the im-

ages are divided into ky clusters denoted by cy =
{cy 1, ..., cy ky

}, and the corresponding prototypes ρy =
{ρy 1, ..., ρy ky} are computed by the weighted mean vec-

tors of the embedded images as follows:

ρy i ← (1− μ)ρy i + μu(i)
x f(x), (2)

where f(·) denotes the pre-trained network features, and the

weighting factor μ controls the rate of moving average. In

the above equation, the degree u
(i)
x to which x belongs to

intra-class cluster i is computed as follows:

u(i)
x =

exp(cos(ρy i, f(x))/δ)∑
j exp(cos(ρy j , f(x))/δ)

, (3)

where δ is a temperature parameter. For image generation,

we simulate the condition by randomly sampling a coef-

ficient vector uz = [u
(1)
z , . . . , u

(ky)
z ] to combine the cluster

label embeddings, based on which the generator synthesizes

an image conditioned as follows:

xz = G
(
z,
∑
i

u(i)
z E(cy i)

)
, (4)

where E(·) denotes the learnable embedding layer.

3.3. Learning Cluster-specific Prompts

It is non-trivial to determine the context words accompa-

nying each intra-class cluster due to the lack of prior knowl-

edge on the underlying visual concepts. To address this is-

sue, we jointly learn the cluster-specific context vectors in

the adversarial training process, such that the generator can

be guided with the supervision from CLIP, which consists

of two encoders, one for producing prompt representation

from context words and the other for mapping images into

the same representation space. In LCP-GAN, the context

words are in the form of continuous vectors that have the

same dimension as the word embeddings. Specifically, we

adopt the prompt form as follows:

ty i = [v
(1)
y i ][v

(2)
y i ] . . . [v

(R)
y i ][class name], (5)

where the context vectors {v(r)y i}Rr=1 are learnable, and the

word embedding vector of the i-th class name is used in the

token position [class name].
The training objective is to pull the representations of

cluster-specific images closer to the corresponding promp-

t. Let Eimg(x) denote the representation extracted by the

CLIP image encoder Eimg , and Etxt(ty i) be the one gener-

ated by the CLIP text encoder Etxt. Maximizing the cosine

similarity between the representations does not guarantee

that the prompts represent the differences among intra-class

clusters, and the generator may fail to capture the variation

factors in this case. We address this issue by performing

the prompt-conditional adversarial training, and the corre-

sponding discriminator Dprompt is built by incorporating a

real-fake classification head on top of the CLIP encoder-

s. The head adopts a two-branch architecture, in which t-

wo learnable light-weight mappings {htxt, himg} are used

to transform the CLIP representations. The real instances

should be distinguished from the synthesized ones in the

task-specific embedding space. The conditional identifica-

tion weight is defined as follows:

wy =
∑
i

u(i)
x htxt

(
Etxt(ty i)

)
, (6)

and the prediction probability is computed as follows:

Dprompt(x, ty, ux) = wy · himg

(
Eimg(x)

)
+ wunc · himg

(
Eimg(x)

)
,

(7)

where wunc represents the unconditional identification

weight. The adversarial training loss is defined as:

Lreal
prompt = Ex[logDprompt(x, ty, ux)],

Lfake
prompt = Ez[log(1−Dprompt(xz, ty, uz))].

(8)

By competing with the generator, the prompts ty are en-

couraged to characterize the intra-class clusters, while at the

same time Dprompt learns to identify real and synthesized

instances, conditioned on ty . The gradient signals are back-

propagated all the way through the generator, such that the

knowledge encoded in the CLIP feature space is used to

guide the generator. Learnable cluster prompts allow intra-

class variation factors to be explored by interpolating the

cluster label embeddings, which lead to a smooth embed-

ding space and in turn improve the synthesis diversity.

3.4. Model Optimization

Considering that CLIP may be insensitive to the fine de-

tails of images, we also incorporate an additional discrim-

inator Dclass to distinguish real samples from the synthe-

sized ones, conditioned on class label, and the correspond-

ing loss is defined as follows:

Lreal
class = Ex[logDclass(x, y)],

Lfake
class = Ez[log(1−Dclass(xz, y))].

(9)
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The predictor C is also jointly optimized in the adversarial

training process. For both the labeled data and synthesized

data, the ground truth labels are available, and C is required

to infer the labels as accurately as possible. For the un-

labeled data, C is encouraged to produce high-confidence

predictions. The training loss of C is defined as follows:

Lreal
label = Ex[φ(C(x), y)] + Exunl [−C(xunl) logC(xunl)],

Lfake
label = Ez [φ(C(xz), y)],

(10)

where xunl represents an unlabeled image, and φ(·, ·) de-

notes the similarity measure between distributions, such as

cross entropy. Based on the above, the overall optimization

formulation of LCP-GAN can be expressed as follows:

min
C

Lreal
label + Lfake

label ,

min
G

Lfake
class + λLfake

prompt + Lfake
label ,

max
Dclass

Lreal
class + Lfake

class,

max
Dprompt,{ty}

Lreal
prompt + λLfake

prompt,

(11)

where λ is a weighting factor for balancing the two types

of adversarial training terms. All the components of LCP-

GAN are jointly optimized from scratch.

4. Experiments
Extensive experiments are performed to assess LCP-

GAN on a variety of class-conditional image synthesis

tasks. We first provide information about the benchmark-

s and experimental settings, which is followed by the in-

vestigation on the advantages of LCP-GAN over the base

models. Furthermore, we provide insights via visualization

and analysis of the adopted strategies, and further compare

LCP-GAN with multiple leading semi-supervised GANs.

4.1. Experimental Settings

Datasets. CUB-200 [45] contains 6k/6k images from

200 bird categories for training/testing. Dogs-120 [27] is a

dog image dataset, which consists of 12k training images

and 9k test images from 120 dog categories. CelebA [34]

is another popular dataset that contains about 202k face im-

ages from 10k celebrities, and we build CelebA-500 by s-

electing the largest 500 classes (10k training images and

5k test images), since the remaining classes contain too

few images for GANs to properly learn class-conditional

data distribution. As a more challenging benchmark, Im-

ageNet [9] contains 1281k/50k training/validation images

from 1k object categories.

Semi-supervised setting. To conduct a fair compari-

son with the competing semi-supervised GANs, we follow

the setting that there are 2.8k/6k/5k/130k randomly sampled

images that are labeled (14/50/10/130 images per class) for

CUB-200/Dogs-120/CelebA-500/ImageNet-1k.

Table 1. Comparison of LCP-GAN and the base models.

CUB-200 CelebA-500

Method FID↓ Intra-FID↓ RA↑ FID↓ Intra-FID↓ RA↑
Semi-BigGAN 24.4 112.83 64.52 25.02 144.61 55.67
LCP-GAN (B) 13.61 88.03 93.24 15.38 136.72 81.60

Semi-StyleGAN 18.17 90.09 56.77 16.23 144.54 35.71
LCP-GAN (S) 10.78 71.39 81.72 14.29 131.78 64.00

Base Models. We consider two state-of-the-art GAN ar-

chitectures: BigGAN [2] and StyleGAN2-ADA [23], due

to its widespread adoption and superior generation per-

formance. We build two baseline models, called Semi-
BigGAN and Semi-StyleGAN, through joint optimization

with an ResNet-50-based image classifier [7], where the

training scheme is the same as Triple-GAN [29]. Further,

we make a number of necessary modifications to build our

models: LCP-GAN (B) and LCP-GAN (S) accordingly.

Hyperparameter. The images of each class are project-

ed into the feature space of a ResNet-50 [7] pre-trained on

ImageNet, followed by k-means clustering. We empirical-

ly find that the intra-class variation can be well modeled by

up to 3 clusters. The clusters with prototype cosine simi-

larity >0.8 are merged. The number of intra-class clusters

can be different for each class. This strategy provides the

flexibility for the cluster setting. For each cluster, we set

the number of learnable context vectors to 4, and randomly

initialize them via a Gaussian distribution with mean 0 and

standard deviation 0.02. LCP-GAN is updated using the

Adam optimizer [28] with a learning rate of 0.0002. There

are 500 training epochs, and the batch size is set to 16.

Evaluation metrics. We quantitatively evaluate the di-

versity and the degree of realism of the synthesized images

in terms of Fréchet Inception Distance (FID) [20] and In-

ception Score (IS) [43]. For our class-conditional image

generation task, it is important to measure the intra-class

diversity and class-semantic accuracy. We compute the FID

score separately for each class, and report the average score

over all classes, which is referred to as Intra-FID [37]. We

also report the Recognition Accuracy (RA %) that is com-

puted from an independent classifier.

4.2. Improvement over Base Models

Diversity and degree of realism. We begin by quan-

titatively comparing LCP-GAN with the baseline models:

Semi-BigGAN and Semi-StyleGAN. As shown in Table 1,

LCP-GAN maintains a significant advantage over the base-

line models in terms of FID and Intra-FID on each target

dataset. In particular, the improvement over Semi-BigGAN

reaches about 25 Intra-FID points on CUB-200. In Figure 3,

we plot the relative improvements obtained by our approach

for the 200 CUB classes over Semi-BigGAN, and find that

the proposed approach brings positive effects on most of the

classes where the reduction in FID reaches over 5 points on
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Figure 3. Per-class relative performance gain of the proposed mod-

el against the base model in terms of FID.

LCP-GAN (B) Semi-StyleGAN LCP-GAN (S)Semi-BigGAN Real

Figure 4. Synthesis results of LCP-GAN and the base models.

146 classes. Although Semi-StyleGAN achieves a low FID

score of 16.23 on CelebA-500, LCP-GAN (S) can still lead

to a performance gain in this case. We consider the correct

modeling of intra-class data structure as an important step

in class-conditional generative learning.

Class semantics. For semi-supervised image genera-

tion, it is challenging to learn a generator to capture precise

class semantics. For both BigGAN and StyleGAN2-ADA

architectures, LCP-GAN is able to achieve noticeably high-

er RA scores than those of the corresponding base models

on each dataset. On CelebA-500, the improvement reaches

above 25 percentage points. The capability to achieve the

improvement suggests that integrating the supervision from

a pre-trained language-vision model is a significant step to-

wards conditional synthesis with precise class semantics. In

Figure 4, we visualize a number of representative synthe-

sized images to demonstrate the consistent improvement in

class semantics across the datasets.

4.3. Intra-class Variation Factors

Although there is no prior knowledge about the intra-

class clusters, we believe that the learnable cluster-specific

prompts benefit from CLIP and are important for model-

ing intra-class data distribution. As a result, LCP-GAN is

able to associate the cluster label embeddings with the un-

derlying visual concepts reflected by the clusters. We per-

form linear interpolation to construct an interpolation path

Figure 5. Interpolation results of LCP-GAN by linearly combining

the paired cluster label embeddings.

Table 2. Results of LCP-GAN and the ablative models.

CUB-200 Dogs-120

Method FID↓ Intra-FID↓ RA↑ FID↓ Intra-FID↓ RA↑
Semi-BigGAN 24.4 112.83 64.52 31.08 97.52 79.68
Semi-BigGAN+LCLIP 17.37 104.82 88.58 18.02 77.86 89.41
Semi-BigGAN+Clusters 18.32 108.38 82.83 18.39 82.83 84.38
LCP-GAN (B) w/o LP 15.03 92.60 91.22 17.89 74.75 91.42

LCP-GAN (B) 13.61 88.03 93.24 15.03 72.06 92.75

between the paired cluster label embeddings, and a set of

class-specific images can be synthesized from the same la-

tent vector, conditioned on the interpolated embeddings. As

shown in Figure 5, the synthesis results have realistic ap-

pearances and hold consistent class semantics. We consider

that LCP-GAN is capable of modeling the intra-class vari-

ation, since the synthesized images correspond to a smooth

transformation along the interpolation path.

4.4. Analysis of the Main Components

To better demonstrate the effectiveness of our model de-

sign, we perform a series of experiments in Table 2.

Is the supervision from CLIP helpful? We first build a

variant ‘Semi-BigGAN+LCLIP ’, in which the class prompt

template ‘A photo of [class name]’ is used to depict the

content of the images from the same class. An addition-

al training goal of the generator is to maximize the cosine

similarity between the synthesized image and correspond-

ing prompt ty as follows:

LCLIP = Ez

[
log

exp(cos(Etxt(ty), Eimg(xz))/δ)∑
y exp(cos(Etxt(ty), Eimg(xz))/δ)

]
.
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Table 3. Comparison of LCP-GAN and competing semi-supervised GANs on various benchmark datasets.

CUB-200 CelebA-500 Dogs-120

Method IS↑ FID↓ Intra-FID↓ IS↑ FID↓ Intra-FID↓ IDS↑ IS↑ FID↓ Intra-FID↓
Real data 5.96±0.05 - - 3.77±0.08 - - - 46.54±1.01 - -

Triple-GAN [29] 3.91±0.05 140.94 - - - - - - - -
ETGAN [48] 3.95±0.06 133.57 - - - - - - - -
Δ-GAN [15] 4.22±0.03 96.42 - - - - - - - -

R3-CGAN [32] 4.46±0.08 88.62 - - - - - - - -
SReGAN [4] 4.84±0.04 19.13 - - - - - - - -
SSC-GAN [3] 4.68±0.04 20.03 91.75 2.70±0.02 49.41 159.69 0.42 33.94±0.22 27.64 94.70
SphericGAN [6] 5.03±0.05 18.87 91.60 2.93±0.03 45.69 171.90 0.42 33.18±0.30 27.19 95.45
MED-GAN [33] 5.54±0.10 16.90 91.41 - - - - - - -
ReACGAN [22] 5.81±0.07 32.29 145.45 2.51±0.02 29.02 154.36 0.35 28.30±0.73 20.48 91.59

LCP-GAN (B) 5.04±0.04 13.61 88.03 3.05±0.03 15.38 136.72 0.44 39.92±0.62 15.03 72.06
LCP-GAN (S) 4.96±0.07 10.78 71.39 3.27±0.03 14.29 131.78 0.43 29.57±0.05 8.71 56.40

Compared with Semi-BigGAN, the variant exploits the se-

mantic information of label texts and improves the perfor-

mance with about 8 Intra-FID/24 RA points on CUB-200

(20/10 points on Dogs-120), suggesting that the supervision

from CLIP is helpful to learn more precise class semantics.

Are the intra-class clusters important? We extend

Semi-BigGAN to model intra-class clusters. Specifically,

we modify the generator and discriminator to be condi-

tioned on the combination of learnable cluster label em-

beddings, and the resulting model is referred to as ‘Semi-
BigGAN+Clusters’. An improvement (about 4/15 Intra-

FID points on CUB-200/Dogs-120) over Semi-BigGAN can

be observed. The result confirms that synthesizing im-

ages with multiple label embeddings can better match class-

specific data distribution. Note that there is still a substantial

performance gap between the variant and LCP-GAN (B).

Are the learnt prompts meaningful? Due to the lack of

prior knowledge on intra-class clusters, we initialize cluster-

specific context vectors and freeze them during training, and

the variant is referred to as ‘LCP-GAN (B) w/o LP’ (Learn-

able Prompts, LP). We find that the variant fails to attain

a strong performance as that of LCP-GAN (B). Specifical-

ly, fixing the context words leads to a negative influence on

the intra-class diversity, and the performance drop reaches

about 5 Intra-FID points on CUB-200. The result confirms

the effectiveness of customizing the prompt representation

to each cluster. We also search for the words that are closest

to the learnt prompts based on the cosine similarity in the

CLIP feature space. The resulting Top-5 words are listed in

Figure 6, and one can find that most of them are somewhat

relevant to the synthesized images.

4.5. Comparison to State-of-the-Arts

To demonstrate the advantages of LCP-GAN with re-

spect to state-of-the-art semi-supervised GANs, we perfor-

m extensive comparison on diverse image generation tasks.

The results of the competing methods are detailed in Ta-

ble 3. The results suggest that the proposed approach out-

performs all the competing methods in terms of both FID

1.  Blond Hair
2.  Pale Skin
3. Smiling
4. Brown Hair
5. Heavy Makeup

1.  Male
2.  Wearing Hat
3. Eyeglasses
4.  Big Nose
5. Mustache

1.  Blue Crown
2.  Green Wings
3.  Orange Chest
4.  Red Breast
5.  Black Eyes

1. Gray Wing
2. Yellow Bill
3. Black Tail
4. Long Leg
5. White Throat

Figure 6. The class-specific nearest words and synthesized images.

and Intra-FID across all datasets. In particular, LCP-GAN

(B) achieves FID 13.61 on CUB-200, which appears to be a

new state-of-the-art result, and outperforms the second best

method (MED-GAN, FID 16.90) by about 3 points. On

Dogs-120, the advantage of LCP-GAN (B) is also notice-

able, and the Intra-FID score is 72.06, which is consider-

ably lower than that of ReACGAN by about 20 points. On

CelebA-500, we measure the IDentity similarity (IDS) be-

tween class-specific real and synthesized face images via

CosFace [46]. Compared to SphericGAN and ReACGAN,

we achieve a higher IDS score. We believe that this is pri-

marily due to a more accurate modeling of the underlying

intra-class data structure.

4.6. Further Analysis

Amount of labeled data. We are also interested to

know whether LCP-GAN has stable performance when the

amount of labeled data decreases. To compare with the ex-

isting methods, the experiments are conducted on CUB-200

and FaceScrub-100 [38], and the number of labeled images

per class is limited in the ranges: {3, 6, 9, 12, 14, 28} and

{13, 26, 39, 52, 65, 130}, respectively. Figure 7 shows that

our design significantly enhances the model robustness to

the amount of labels. In contrast, the results of the base

model and competing methods are unsatisfactory, especially

for the case of <9 labeled images per class. It is surprising

to find that LCP-GAN achieves a FID score of 15.15 when

using only 26 labels per class, while the FID score of the

fully supervised BigGAN is 15.51 on FaceScrub-100. We
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Figure 7. Comparison between LCP-GAN and the competing

methods on CUB-200 (left) and FaceScrub-100 (right).

Real Synthesized
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Figure 8. The cluster-specific images synthesized by LCP-GAN.

conjecture that CLIP provides wider supervision for captur-

ing visual concepts, compared to the strong base model.

Semantically meaningful clusters. LCP-GAN is con-

ditioned on the combination of intra-class cluster label em-

beddings. By assigning a one-hot coefficient vector, our

model is able to synthesize cluster-specific images. In Fig-

ure 8, we visualize the synthesized images for a number of

semantically meaningful clusters, and observe that the clus-

ters are associated with pose, appearance, viewpoint, and

so on. Note that the intra-class clustering does not guaran-

tee that the resulting clusters are semantically meaningful,

and they may not necessarily correspond to the subordinate

categories. In general, LCP-GAN is independent of the un-

derlying clustering algorithm used.

4.7. Results on ImageNet

In this example, we focus on a more challenging dataset:

ImageNet. In Figure 9, we plot the FID scores of LCP-GAN

and Semi-BigGAN in the training process. One can find that

LCP-GAN converges to a lower FID than the baseline, and

matches its best result up to 2 times faster. More results

are summarized in Table 4. LCP-GAN achieves significant

performance improvement against Semi-BigGAN, and the

Figure 9. Convergence properties of LCP-GAN and the base mod-

el on ImageNet.

Table 4. Comparison of LCP-GAN and Semi-BigGANs on Ima-

geNet.

Method IS↑ FID↓ Intra-FID↓ RA↑
Semi-BigGAN 44.27 21.45 185.94 53.59
Semi-BigGAN+DiffAug 73.32 12.95 160.27 58.02
LCP-GAN (B) 94.91 10.94 142.15 82.41

improvement of about 44 Intra-FID points on ImageNet is

noteworthy. DiffAug [53] and LCP-GAN aim to facilitate

generative learning in different settings. We attempt to build

a strong base model by adopting DiffAug. LCP-GAN can

even outperform Semi-BigGAN+DiffAug [53]. We believe

that the results serve as strong evidence of the LCP-GAN’s

capability of complex class-conditional image synthesis.

5. Conclusion
We have investigated the possibility of modeling intra-

class data structure to facilitate semi-supervised generative

learning. We extend a semi-supervised GAN framework to

learn from intra-class clusters, and enable class-specific im-

age synthesis to be conditioned on the combination of clus-

ter label embeddings. This design enhances our framework

to model large intra-class variance. Due to the lack of pri-

or knowledge about the clusters, we leverage the language-

vision pre-training and jointly learn cluster-specific prompt-

s through prompt-conditional adversarial training. The pro-

posed model is able to discover a wide range of semantically

meaningful intra-class variation factors and achieve superi-

or performance on multiple semi-supervised image synthe-

sis tasks. We hope the insights presented can be useful for

facilitating semi-supervised generative learning.
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