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Abstract

Federated Domain Generalization (FedDG) attempts to
learn a global model in a privacy-preserving manner that
generalizes well to new clients possibly with domain shift.
Recent exploration mainly focuses on designing an unbi-
ased training strategy within each individual domain. How-
ever, without the support of multi-domain data jointly in
the mini-batch training, almost all methods cannot guar-
antee the generalization under domain shift. To overcome
this problem, we propose a novel global objective incorpo-
rating a new variance reduction regularizer to encourage
fairness. A novel FL-friendly method named Generaliza-
tion Adjustment (GA) is proposed to optimize the above ob-
jective by dynamically calibrating the aggregation weights.
The theoretical analysis of GA demonstrates the possibility
to achieve a tighter generalization bound with an explicit
re-weighted aggregation, substituting the implicit multi-
domain data sharing that is only applicable to the con-
ventional DG settings. Besides, the proposed algorithm is
generic and can be combined with any local client training-
based methods. Extensive experiments on several bench-
mark datasets have shown the effectiveness of the proposed
method, with consistent improvements over several FedDG
algorithms when used in combination. The source code
is released at https://github.com/MediaBrain-
SJTU/FedDG-GA

1. Introduction

Federated Learning (FL) has recently emerged as a
prevalent privacy-preserving paradigm for collaborative
learning on distributed data [32]. Existing studies mainly
investigate the problem of how to improve the conver-
gence and performance of the source clients’ data distribu-
tion [18, 27, 44]. A more practical problem, how to make
models trained on sites of heterogeneous distributions gen-
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Figure 1. The difference between DG and FedDG is whether the
domains are isolated in training. Specifically, previous SOTA DG
methods that require access to multiple domains in the mini-batch
training are inapplicable to FedDG.

eralize to target clients of unknown distributions, i.e. Feder-
ated Domain Generalization (FedDG) [30], remains under-
explored. While label distribution shift has been considered
in traditional FL, FedDG focuses on the domain shift among
clients and considers each client as an individual domain.
The challenge lies in the domain shift [19] both among the
training clients and from training to testing clients.

While FedDG shares a similar goal as standard Do-
main Generalization (DG) [4,12,40], i.e., generalizing from
multi-source domains to unseen domains, it disallows di-
rect data sharing among clients, as shown in Figure 1,
which makes most existing DG methods hardly applica-
ble. Current methods for FedDG focus on unbiased lo-
cal training within each isolated domain. As the first at-
tempt, Liu et al. [30] propose a meta-learning framework
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with Fourier-based augmentation during the local training
for better generalization. Jiang et al. [17] further pro-
pose constraining local models’ flatness on top of a simi-
lar Fourier-based normalization method. However, only fo-
cusing on an improved local training strategy cannot guar-
antee that the global model is generalizable enough to un-
seen domains. Instead, a common practice for aggregat-
ing local models into a global model is by fixed weights as
in FedAvg [32], assuming that each client constantly con-
tributes to the global model. Even the subsequent improve-
ments from the federated optimization perspective, e.g.,
FedNova [44], are mainly designed for the statistical het-
erogeneity of the same domain, not for the setting of treat-
ing each client as an individual domain. Yuan et al. [50]
have suggested that domains tend to contribute non-equally
to the global model and ignoring their differences may sig-
nificantly reduce the model’s generalizability.

As one has no clue regarding to the distribution of unseen
domains, it is reasonable to assume that a global model with
fair performance among all clients may lead to better gener-
alization performance. We thus introduce a new fairness ob-
jective measured by the variance of the generalization gaps
among different source domains. The data privacy issue in
the FL setting has prevented direct optimization of the pro-
posed objective. We thus design a novel privacy-preserving
method named Generalization Adjustment to optimize the
objective. At the high level, GA leverages the domain flat-
ness constraint, a surrogate of the intractable domain di-
vergence constraint, to approximately explore the optimal
domain weights. Technically, we use a momentum mech-
anism to dynamically compute a weight for each isolated
domain by tracing the domain generalization gap, which is
then involved in the aggregation of FedDG to enhance the
generalization ability. Because the gap information does
not contain any domain information of each client, GA will
not cause additional risk of privacy leakage. Meanwhile,
the theoretical analysis of our method shows that a tighter
generalization bound is achieved by setting the aggregation
weights inversely proportional to the generalization gaps,
which leads to reduced variance in generalization gaps. The
contribution of our paper is summarized as follows:

• We introduce a novel optimization objective for FedDG
with a new variance reduction regularizer, which can con-
strain the fairness of the global model.

• We design an FL-friendly method named Generalization
Adjustment to tackle the aforementioned novel objective.
Our theoretical analysis has revealed that GA leads to a
tighter generalization bound for FedDG.

• Extensive experiments on a range of benchmark datasets
have shown consistent improvement when combining GA
with different federated learning algorithms.

2. Related Work
2.1. Domain Generalization

Domain generalization aims to train a model from mul-
tiple source domains that can generalize well on unseen do-
mains. Most DG studies follow the domain alignment idea
of minimizing the domain discrepancy across source do-
mains [8, 24, 29, 33, 37, 39, 40, 45] or using a meta-learning
strategy to simulate the domain shift [2,8,22]. These meth-
ods typically require both the shared multi-source domains
and their domain labels. Other DG methods that relax
the constraint of the domain labels still require the multi-
domain data in a mini-batch to achieve cross-domain gen-
eralization, such as data augmentations [15, 42, 47, 52–54],
self-supervised training [5, 45] and heuristics training [16,
23]. Therefore, most of these methods become inapplica-
ble for privacy reasons in FedDG, and the remaining meth-
ods [5, 16, 35, 47] will perform poorly due to the restricted
distribution of training data.

2.2. Federated Learning

Federated Learning has been an attractive paradigm for
multi-site data collaboration in communication efficiency
and privacy preservation [9, 32]. Existing explorations
mainly focus on solving the heterogeneity issue in FL
from the optimization perspective [14, 18, 27, 36, 44]. The
discussed situation is almost the class imbalance among
clients [7, 25, 38, 48, 49] instead of the domain shift prob-
lem. Some works [26, 31, 44] focus on the re-weighting de-
sign but with a different purpose. FedNova [44] aims to cor-
rect the objective inconsistency caused by the different local
steps and still focuses on convergence. FedCSA [31] reallo-
cates weights of the corresponding parameters of the classi-
fier based on the percentage of each class on the client, re-
spectively. Furthermore, ARFL [26] minimizes the weights
on poorly performed clients assuming that clients with high
risks have more corrupted data. Recently, Yuan et al. [50]
propose that there are two gaps in FL. Most existing meth-
ods only consider the out-of-sample gap for unseen client
data with known distribution without discussing the critical
participation gap for unseen client distributions.

2.3. Federated Domain Generalization

Federated Domain Generalization is one emerging re-
search area that considers the generalization ability of the
unknown target client with domain shift. To our best knowl-
edge, there are only a few explorations in this direction.
Liu et al. [30] use the amplitude spectrum on the frequency
domain as the data distribution information and exchange
them among clients. However, the exchange operations can
introduce additional costs and risks of data privacy leakage.
Jiang et al. [17] further propose a flatness-aware optimiza-
tion method for better generalization on local updates. An-
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other method, like [46], trains the personalized models on
each client and selects the most similar personalized local
model for the unseen domains. Unlike these methods im-
proved in the local training, we focus on the global aggre-
gation. And we argue that the generalization ability needs
to be considered in the global optimization of FL.

3. Method
3.1. Preliminaries

Denote the set of all domains as D = {D1, D2, . . . }
and the sampled counterpart for training as D̂ =
{D̂1, D̂2, · · · , D̂M} where M is the number of training
domains (or clients). Let (x, y) denote the sample pair
from one domain, and L denote the loss function mea-
suring the distance between the model prediction f(x; θ)
(parameterized by θ) and the label y. Then, given a do-
main Di ∈ D, we define the expected risk as EDi(θ) =
E(x,y)∈Di

[L(f(x; θ), y)], and given a sampled counterpart
D̂i = {xi

j , y
i
j}

Ni
j=1, we define the empirical risk as ÊD̂i

(θ) =
1
Ni

∑Ni

j=1 L
(
f(xi

j ; θ), y
i
j

)
.

The ideal objective of the FedDG is to minimize the
overall loss function on D. In practice, we usually have the
sampled domains D̂ and the corresponding sampled data
points {xi

j , y
i
j}

Ni
j=1 in each domain D̂i. Thus, instead of the

unknown expected risk, we optimize the following empiri-
cal risk objective:

min
θ

ED(θ) ≈
M∑
i=1

piÊD̂i
(θ) =

M∑
i=1

pi

Ni∑
j=1

L
(
f(xi

j ; θ), y
i
j

)
s.t. pi =

Ni∑M
i′=1 Ni′

.

(1)

We shall note two distinct points in FedDG compared to
the cross-device federated learning [32]. First, FedDG fol-
lows the cross-silo federated learning, and the client/domain
number M is small, while the client number in cross-device
federated learning is large and the client sampling is usually
performed before the global aggregation. Second, although
the local data of each client in cross-device federated learn-
ing is heterogeneous, they are all from the same overall dis-
tribution. In contrast, one client corresponds to one domain
in FedDG and the data is not only heterogeneous but from
different domains. These make FedDG more challenging
than ordinary federated learning. Therefore, in the FedDG
scenarios, the global objective in Eq. (1) can easily incur
conflicts among local models, and the local training process
tends to overfit the local data distribution of each client do-
main, both of which reduce the generalization performance
of the global model.

3.2. Motivation

In centralized learning, generalizable optimization tech-
nique, such as invariant risks [1], robust optimization [20],

Global Objective New Global Objective with Fairness Regularizer

Generalization 
AdjustmentServer

Unseen Domain

Domain 3Domain 1 Domain 2

(b) Generalization Adjustment

Unseen Domain

Domain 3Domain 1 Domain 2

FixedServer

(a) FedAvg

Figure 2. The overall structure of (a) FedAvg and (b) General-
ization Adjustment. The colored models θi and weights ai are
learnable and the weights pi are fixed during training (i = 1, 2, 3).
The global model θnew will broadcast to each domain in the next
round. GA has a new global objective with a fairness regularizer
which will be optimized by dynamically calibrating the weights.

fairness and flatness [6, 10], has been well studied,. How-
ever, all of them require data from multiple domains in-
volved in a mini-batch, which is not applicable in FedDG
due to its privacy-preserving nature that each domain is iso-
lated into each client. Fortunately, we notice that the flat-
ness of each domain can be reflected by the generalization
gaps between the global model and the local model, which
is defined as

GD̂i
(θ) = GD̂i

(
∑

j ajθ
∗
j ) = ÊD̂i

(
∑

j ajθ
∗
j )− ÊD̂i

(θ∗i ),

where θ∗i means the local optimal on domain D̂i and θ =∑
j ajθ

∗
j . Based on the above generalization gaps and the

design inspiration from [20], we propose a new global ob-
jective for FedDG that considers the variance of generaliza-
tion gaps among local clients to guarantee the flatness of the
optimal global model on all domains. The global objective
of our method is shown in the following.

min
θ1,...,θM ,a

ÊD̂(θ) =
M∑
i=1

aiÊD̂i
(θ) + βVar({GD̂i

(θ)}Mi=1)

s.t.

M∑
i=1

ai = 1, θ =

M∑
i=1

ai · θi, and ∀i, ai ≥ 0.

(2)

Here we denote the learnable client/domain weights as
a = (a1, a2, · · · , aM ), and β ∈ [0,∞) controls the bal-
ance between reducing global risk and enforcing the fair-
ness among generalization gaps, with β = 0 recovering the
FedAvg algorithm, and β → ∞ only making the generaliza-
tion gaps equal. Different from the V-REx objective in [20],
we use the generalization gaps other than the risks, and the
V-REx can be seen as a particular case of our method when
the optimal local risk E∗

Di
is zero. Another method, Fed-

SAM [36], has a similar motivation that constrains the flat-
ness during local training. However, the flatness on the local
objectives cannot guarantee the flatness of the overall global
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objective. Unlike the FedSAM, our objective can improve
the flatness of the global model.

3.3. Generalization Adjustment for FedDG

In Eq. (2), a and θi cannot be simultaneously opti-
mized under the federated learning framework. We ob-
serve that there is a relationship between the aggregation
weight ai and the corresponding generalization gap GD̂i

(θ)
and changing the weights a can influence the variance of
generalization gaps. So we divide the optimization oper-
ations into two phases, the local training phase optimizes
the model parameters θi by gradient descent, and the ag-
gregation phase optimizes the weights ai by our generaliza-
tion adjustment algorithm. The main idea of our proposed
method is shown in Figure 2 that adjusting the weights to
minimize the variance of generalization gaps can obtain a
generalizable global model.

The mechanism of the interaction between ai and
GD̂i

(θ) is shown below. Formally, given a specific domain
k, the relationship between the global parameter θ and the
local model parameter θk can be expressed as follows,

θ = θk +∆θ, where ∆θ = (1− ak)θk +
∑

i ̸=k aiθi.

Let us consider ∆θ as a perturbation on θk. For ÊD̂k
(θ),

if we increase ak, it will correspondingly reduce the per-
centage of {ai}i ̸=k and the degree of perturbation ∆θ will
decline. In this case, θ is closer to the local optimal θk, mak-
ing the loss ÊD̂k

(θ) in domain D̂k decrease. And in the next
round, the new global model θ is used as the initial weight
for all clients, which will result in closer proximity between
θk and ∆θ, making the mean value of gaps slowly decrease
as well. Vice versa if we decrease ak. And the ÊD̂k

(θ∗k) can
be considered as a constant, so GD̂k

(θ) is different under
different ak.

Following the previous notations, assume we have M
clients (i.e., training domains) and the corresponding train-
ing sets is D̂ = {D̂i}Mi=1. Denote the total communication
round by R, the local epoch during each local training step
by E, and the local training algorithm as Alg(θri , D̂i, E)

that indicates the model θri is trained on D̂i dataset for E
epochs on the client i in communication round r. In the
client at the communication round r, before the local train-
ing, GA requires an extra evaluation for the global model
θr first. Formally, the following generalization gap will be
computed.

GD̂i
(θr) = ÊD̂i

(θr)− ÊD̂i
(θr−1′

i ), i = 1, 2, . . . ,M.

Then, after the local training by Alg(θri , D̂i, E), we send
both GD̂i

(θr) and the updated local model parameter θr′i
to the global server. On the server side, we design a mo-
mentum update to compute the generalization weights ar.
Specifically, given the generalization gaps on all domains

Algorithm 1: Generalization Adjustment (GA)

Input: Global model θ = θ0, M clients D̂ =
{D̂1, D̂2, · · · , D̂M}, the initial weights a0 =
( 1
M , 1

M , · · · , 1
M ). ( Hyperparameters: local epoch E,

total communication round R and step size d for GA. )
Output: Global model θR.

1: Server: initialize the local models θ0i by the global
model: θ0i = θ0.

2: for all r in 0 · · ·R− 1 do
3: Client:

Compute GD̂i
(θr) for θr on each client.

Training the local model θri on domain D̂i:
θr′i = Alg(θri , D̂i, E).

Get the empirical loss on local model ÊD̂i
(θr′i ).

4: Server:
Update ar by ar−1 and {GD̂i

(θr)}Mi=1:

ar = GA(ar−1, {GD̂i
(θr)}Mi=1, d

r).

Aggregate θr+1
i with ar to get a new global model:

θr+1 =
∑M

i=1 a
r
i · θr′i .

5: Broadcast θr+1 to all clients θr+1
i = θr+1.

6: end for

{GD̂i
(θr)}Mi=1 and the previous weights ar−1, we compute

ar by the following equations.

ar′i =
(GD̂i

(θr)− µ) ∗ dr

maxj(GD̂j
(θr)− µ)

+ar−1
i , ari =

ar′i∑M
i=1 a

r′
i

, (3)

where µ = 1
M

∑M
i=1 GD̂i

(θr) and dr = (1 − r/R) ∗ d.
d ∈ (0, 1) is a hyperparameter to control the magnitude of
each modification, which can be seen as a substitute for β
in Eq. (2). A linear-decay strategy is applied to stabilize the
training because we empirically find that a fixed step size d
could cause instability of the weights in the later phase of
training due to the progressive reduction among gaps and
also leads to slower convergence at the beginning of train-
ing. The maximum magnitude of each adjustment process
is limited to dr and after the adjustment, we clip the ar′i
greater than 0 and restrain the sum of ar′i to 1. Then, the
global model θr+1 will be aggregated with the generaliza-
tion weights ar. At the end of round r, the global model
θr+1 will be broadcast to every client as the initialized pa-
rameters in the next round. Note that, if the weight at client
i is zero, other domains represent this domain well. The
overall algorithm of GA is presented in Algorithm 1, which
follows the standard implementation of FedAvg [32] and the
pink parks are the improvements of our GA. The pseudo-
code is presented in the supplementary.

In FedDG, the larger the generalization gap of a client,
the worse the global model generalizes in this client, indi-
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cating that the global model has more domain bias toward
other clients. If we increase the weights on the large gap’s
client, the corresponding gap will be reduced. Although
the other domains’ gaps will increase, we observed that for
well-generalized clients, the weights reduction has less im-
pact on the corresponding gaps. Besides, our GA method
can improve the out-of-domain generalization ability on top
of agnostic local training methods with little additional cost
and no additional privacy risk. The GA method dynamically
adjusts the weights only through the generalization gaps
during training, which can better protect the privacy of each
client and prevent the model from biasing to clients with a
larger sampling size. Previous methods [17,36] mainly con-
strain the local models to be stable with the global model or
align the features across clients during local training. In
contrast, our GA pays attention to the aggregation phase in
the server. Actually, GA is orthogonal and compatible with
most existing methods since we do not place a restriction on
the local training phase.

3.4. Theoretical analysis

We first prove that the generalization gap on an un-
seen domain T by the optimal solution on ÊD̂(θ) is up-
per bounded by the generalization gap in source domains in
Theorem 1 (see proof in the supplementary). From Theo-
rem 1, the domain generalization gap on unseen domain T is
bounded by the domain flatness GD̂i

(θ) and the domain di-

vergence dH∆H(D̂i, T ). Conventional DG can optimize the
domain divergence dH∆H by implicit multi-domain align-
ment to tighten the bound, while FedDG cannot directly
implement this due to only one domain available in each
client. In this case, FedDG can actually make the bound
tighter through intervention on a.

Theorem 1. Let θ denote the global model after R round
federated learning, θ∗i and θ∗T mean the local optimal for
each source domain and the unseen target domain, respec-
tively. We use the generalization weights a from Eq.(5). For
any δ ∈ (0, 1), the domain generalization gap for the un-
seen domain T can be bounded by the following equation
with a probability of at least 1− δ.

ET (θ)− ET (θ∗T ) ≤
M∑

i=1

ai

(
GD̂i

(θ) + dH∆H(D̂i, T )

+

√
log d

δ +
√
log Md

δ√
2Ni

)
+ λ

(4)

However, the accurate estimation of a requires knowl-
edge of the domain divergence dH∆H(D̂i, T ) and the par-
tial derivatives ∂ÊD̂(θ)/∂ai on each domain, which is in-
tractable without the information about T in practice. To
overcome this dilemma, we explore the surrogate way to ap-
proximately compute a. According to [6], the global model

can be approximated as the solution of robust risk mini-
mization on client i, i.e., ÊD̂i

(θ) = max||∆θ||≤γ ÊD̂i
(θi +

∆θ). Since the optimal estimation requires the flatness of
all domains should be similar, we can optimize a to pursue
the variance minimization on the flatness of all domains.
Then, the optimal generalization weights a on the domain
divergence term can be approximately obtained by solving
the following variance minimization problem regarding the
domain flatness.

argmin
a

M∑

i=1

aidH∆H(D̂i, T )

≈ argmin
a

Var
({

GD̂1
(θ), . . . , GD̂M

(θ)
}) (5)

As Eq. (5) targets to have a zero variance, we will approx-
imately achieve a constant flatness C for all domains in
the optimal, namely ∀i, GD̂i

(θ) = C. In this case, we

have an equality
∑M

i=1 aiGD̂i
(θ) =

∑M
i=1 piGD̂i

(θ) satis-
fied. Besides, considering a in Eq. (5) is an optimal, we
have another inequality ∀p,min

∑M
i=1 aidH∆H(D̂i, T ) ≤

min
∑M

i=1 pidH∆H(D̂i, T ). Putting them together, we can
conclude that the bound with a in Theorem 1 is tighter
than the bound where we substitute a with the constant
p = {p1, p2, . . . , pM} as in FedAvg. It indicates that the
proposed global objective with GA can achieve a better gen-
eralization on unseen target domains.

4. Experimental Results
4.1. Dataset and implementation details

We evaluate our proposed method on four widely used
DG benchmarks. Namely, PACS [21] (9,991 images,
four domains), OfficeHome [41] (15,588 images, four do-
mains), TerraInc [3] (24,788 images, four domains) and
DomainNet [34] (569,010 images, six domains). We carry
out leave-one-domain-out evaluations for all benchmarks,
which means, by turn, we select one domain as the unseen
client, and all the left domains are used as the source clients
for training. The split of train and validation set within each
source domain is kept the same as that in [13, 16, 47] for
PACS, OfficeHome and TerraInc and [28] for DomainNet,
and the whole target domain is used for testing.

As for the local training, we follow the protocols used
in [47] and [13]. Specifically, we use the ImageNet pre-
trained ResNet18 for PACS and OfficeHome, ResNet50
for TerraInc and AlexNet for DomainNet (the same model
structure as in [28]). For fairness, the batch size and learn-
ing rate are set to 16 and 0.001 during local training in all
the experiments. To guarantee that the local model con-
verges within the local training phase of each round, we set
the number of local epochs E to 5, and the number of total
communication rounds R to 40. The step size of our GA
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Table 1. Results on three benchmarks (PACS, OfficeHome, TerraInc) under the FedDG setting. The results on each dataset are the
average of four leave-one-domain-out cases. “+GA” represents aggregation with our generalization weight ai.

Method
PACS OfficeHome TerraInc

P A C S Avg. P A C R Avg. L38 L100 L43 L46 Avg.
Avg.

ARFL 92.10 76.25 75.79 80.47 81.15 73.89 56.98 53.18 73.16 64.30 56.83 40.04 41.58 30.81 42.32 62.59
FedAvg 92.77 77.29 77.97 81.03 82.26 72.72 57.60 52.28 73.88 64.12 52.66 40.56 41.56 36.91 42.92 63.10

+GA 93.97 81.28 76.73 82.57 83.64 73.39 58.57 54.39 74.73 65.27 54.36 41.66 48.68 40.43 46.28 65.06
FedCSA 91.88 77.00 76.79 80.84 81.63 72.96 56.08 52.51 72.79 63.58 54.33 41.08 41.52 33.51 42.61 62.61

+GA 94.12 79.30 77.69 81.62 83.18 72.96 57.58 53.99 73.98 64.63 54.91 44.74 46.90 38.53 46.27 64.69
FedNova 94.03 79.93 76.39 79.26 82.40 73.72 58.81 49.89 73.33 63.94 56.80 38.96 42.49 31.99 42.56 62.97

+GA 94.13 81.30 77.73 80.30 83.37 72.58 57.89 54.25 73.86 64.65 55.15 41.55 47.05 35.25 44.75 64.26
FedProx 93.15 77.72 77.73 80.77 82.34 73.37 58.76 52.67 73.88 64.67 54.00 39.84 43.90 38.31 44.01 63.67

+GA 94.91 80.24 77.20 81.48 83.46 73.81 58.28 54.03 74.80 65.23 54.03 40.93 49.28 38.84 45.77 64.82
FedSAM 91.20 74.45 77.77 83.35 81.69 73.58 55.34 54.75 73.74 64.35 57.21 38.24 40.21 31.24 41.73 62.59

+GA 92.87 77.76 77.86 85.16 83.41 73.29 55.21 56.82 74.49 64.95 60.04 38.95 48.39 37.43 46.20 64.85
HarmoFL 90.99 74.51 77.43 81.73 81.16 73.89 57.44 53.42 74.95 64.93 60.04 38.57 39.21 33.87 42.92 63.01

+GA 93.83 77.39 77.07 82.51 82.70 73.76 58.14 54.44 75.74 65.53 61.81 38.53 46.65 37.96 46.24 64.82
Scaffold 92.50 78.09 77.23 80.67 82.12 72.16 59.00 52.78 73.22 64.29 54.10 37.28 45.09 38.38 43.71 63.37

+GA 94.79 80.14 76.91 82.12 83.49 73.45 57.93 54.42 74.62 65.10 55.40 39.74 50.08 39.68 46.22 64.94

AM 93.29 80.86 77.62 81.05 83.20 73.24 58.76 51.87 73.84 64.42 57.36 37.43 45.00 33.60 43.35 63.66
+GA 94.03 83.19 76.85 82.93 84.25 73.67 58.80 54.28 74.72 65.37 56.30 40.55 49.42 38.08 46.08 65.23

RSC 92.67 77.98 77.80 82.90 82.91 73.26 57.44 50.31 73.42 63.61 54.25 41.61 43.94 35.55 43.84 63.45
+GA 93.79 81.69 77.23 82.75 83.87 72.35 58.55 51.42 75.01 64.33 54.87 43.93 50.08 39.04 46.98 65.06

method is set to 0.05 by default. All the reported results are
averaged over three runs.

Table 2. Results on the DomainNet benchmarks under the
FedDG setting. “+GA” represents using weight ai by our GA.

Method C I P Q R S Avg.
ARFL 69.93 31.32 60.68 57.45 67.76 60.62 57.96
FedAvg 67.92 32.77 60.27 52.90 68.72 61.15 57.29

+GA 71.86 34.40 63.25 57.50 67.26 67.15 60.24
FedCSA 68.94 33.67 61.66 58.25 67.25 61.15 58.49

+GA 70.34 33.71 64.22 56.85 66.06 67.33 59.72
FedNova 68.45 32.95 61.70 59.05 67.21 61.57 58.49

+GA 73.29 34.09 64.38 57.05 68.08 65.25 60.36
FedProx 68.55 32.12 60.79 55.63 68.17 61.20 57.75

+GA 69.39 33.26 63.25 57.15 67.50 65.79 59.39
FedSAM 66.47 34.97 56.90 51.11 66.28 55.82 55.26

+GA 72.62 36.30 64.62 57.75 69.35 65.43 61.01
HarmoFL 71.39 34.70 61.23 57.50 67.01 56.77 58.10

+GA 72.81 35.77 63.73 59.30 68.08 64.35 60.67
Scaffold 68.04 33.20 60.60 54.39 67.32 60.88 57.41

+GA 71.67 34.93 62.20 57.70 67.46 66.97 60.16

AM 71.91 32.54 63.70 56.87 67.80 69.42 60.37
+GA 74.33 35.31 64.54 58.55 68.61 72.02 62.23

RSC 70.96 34.25 60.31 55.20 66.91 63.84 58.58
+GA 71.96 35.62 62.52 56.95 67.13 64.98 59.86

4.2. Main results

Compared methods We select several representative
methods in the area of DG and FL for comparison. The
baseline method is FedAvg [32], which acts as a strong
baseline under the FedDG paradigm. As for the existing

methods from the domain generalization perspective, we
choose two methods. A regularization-based DG method
called RSC [16] that can be migrated to FedDG and a
powerful Fourier-based augmentation method named Am-
plitude Mix (AM). AM is widely used in many DG meth-
ods [43,47,51] and the main component of FedDG-ELCFS
proposed by [30] (We remove the loss designed for the
segmentation task). As for the federated learning meth-
ods designed for data heterogeneity, we select several ap-
proaches. Four methods, FedProx [27], HarmoFL [17],
Scaffold [18] and FedSAM [36] which are all initially pro-
posed to solve the heterogeneous issue across clients, and
three re-weight methods: ARFL [26] is also a dynamic
re-weighting method that focuses on the convergence un-
der corrupted data sources and is unable to combine with
our GA; FedCSA [31] aims to calibrate the class-imbalance
problem among clients; FedNova [44] tries to correct the
objective inconsistency caused by the different local update
steps for better convergence.

Comparison with existing methods We report the over-
all performance on four FedDG benchmarks in Table 1 and
Table 2. According to the comparison, our GA achieves sig-
nificant and consistent improvements when combined with
different algorithms on different datasets. We observe that
when equipped with our GA method, the domain gener-
alization performances could be largely improved in most
cases, regardless of the type of algorithms on four bench-
marks in Table 1 and Table 2. These results demonstrate the
superiority and generalizability of our GA method, com-
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Figure 3. Comparison of the generalization gap on each source domain. We show the mean (the first row) and standard derivation (the
second row) of the source domains’ generalization gaps at the end of the training process. The results with our GA are shown in the light
pink part of each bar, which is significantly smaller than the base method.

pared to the conventional FedAvg that might overfit in the
local training phase. DG algorithms like AM and RSC en-
joy a relatively more significant performance improvement
when equipped with GA than the FL algorithms. It indi-
cates that our GA can better complement the unbiased local
training strategy involved in classic DG solutions. Those
FL methods like FedProx and Scaffold improve the con-
vergence consistency and speed of the global model while
reducing the generalization during the local training. Fed-
Nova can improve convergence under challenging tasks in
the DomainNet benchmark, but there is no significant help
for the generalization ability under domain shift. Especially
the results of FedSAM and HarmoFL are also poor, which
means the operation to improve the flatness during the local
training process cannot guarantee flatness and generaliza-
tion under domain shifts. However, our GA can effectively
unlock their potential with significant improvements on un-
seen domains. Moreover, the re-weight based methods Fed-
CSA and ARFL cannot handle the domain shift problem
in the FedDG because of the different weight adjustment
objectives. Notably, as an FL-friendly model aggregating
mechanism, GA could be easily applied to any existing DG
or FL algorithms at a relatively low cost, which makes our
method a general technique for FedDG.

4.3. Ablation studies

Ablation studies of the step size and linear decay strat-
egy. We provide the ablation studies on different step sizes
and the linear-decay strategy in Table 3. According to the
results, the aggregated global model shows a more favorable
performance when equipped with the linear-decay strategy.

Table 3. Ablation study on the step sizes and the linear-decay
strategy in GA. (with (w.) or without (wo.) decay). Note that step
size 0 makes the decay no effect; in this case, the weights degener-
ated to the uniform on each domain. “Fix” means the aggregation
with the original weight pi that follows the sample ratio in each
domain and is not uniform. The experimental backbone algorithm
is FedAvg.

Step
PACS OfficeHome TerraInc Avg.

w. / wo. w. / wo. w. / wo. w. / wo.

0.2 82.83/83.19 65.22/65.23 46.19/45.24 64.75/64.55

0.1 83.81/83.07 64.88/64.71 46.40/45.60 65.03/64.46

0.05 83.64/83.35 65.27/64.88 46.28/46.39 65.06/64.87

0.01 83.64/83.23 64.54/65.17 45.78/46.78 64.65/65.05

0 82.44 64.56 44.38 63.79
Fix 82.26 64.12 42.92 63.10

Besides, we observe that the improvement of GA is not sen-
sitive to the specific choices of step size and is consistent
with or without the linear decay strategy, which shows the
stability of our method. More surprisingly, we observe that
with step size 0, the domain weights in GA will degener-
ate to ( 13 ,

1
3 ,

1
3 ), which can still achieve better performance

than fixed pi which is the sample number percentage. It
demonstrates that the original weights in federated learning
are not proper for FedDG. GA utilizes the approximately
optimal weights to affect the aggregation, which makes the
global model achieves a better generalization.

Comparison of the domain generalization gaps. We
illustrate the mean and the standard deviation of the gener-
alization gap on each source domain with or without GA in
Figure 3. The short dark red parts represent the gaps by the
generalization weights, and the much longer bars represent
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Figure 4. Loss surfaces w.r.t. model parameters on the PACS dataset for each target domain. We plot three local models θi and the
corresponding global model θ on the target domain’s loss surface. The first and second rows represent the loss surfaces of FedAvg with
Fixed and FedAvg with GA weights. GA significantly reduces the gaps between θi and θ and induces a flatter area on the unseen test
domain. (Best viewed in color)

the gaps with originally fixed weights pi from baselines. It
can be seen that our method has a significant effect on the
gap reduction. Both the mean and the standard deviation
are decreased after training with our GA, which corrobo-
rates our analysis and empirically validates the gap-aware
generalization adjustment is an effective way to avoid the
domain bias during the aggregation in FedDG, as shown
in Eq.(4). It also corresponds to the intuition that smaller
gaps can increase the generalization ability on the unseen
domain. Especially in Figure 3 (c), we find that the gap re-
duction on the TerraInc is very significant. Correspondingly
the performance improvement in the generalization ability
is the largest among the three benchmarks.
Loss surface visualization. We visualize the loss sur-
faces on the test domain for the PACS benchmark dataset in
Figure 4, which takes the global model θ as the anchor and
locates the local models (θ1, θ2, θ3). The first row of Fig-
ure 4 represents the vanilla FedAvg method, and the second
row is our FedAvg with GA. We use the same visualization
technique in [11].

We observe that in all cases, our GA method induces a
more generalizable solution on the target domain, as both
the global and local models converge in the flatter area of
the loss surfaces. It confirms our theoretical motivation that
the weights minimizing the variance of the domain gaps
make us achieve a tighter generalization bound. Note that
the loss surfaces are drawn in the unseen target domains,
which indicates better convergence, consistency and gener-
alization of global models with our GA method. Moreover,
we can see that length of the dashed lines, i.e., the gaps
between global and local models, are much smaller for Fe-
dAvg with GA. It shows the advantage of GA in maintain-
ing a more consistent optimization objective among differ-
ent clients, which is critical for heterogeneous data under

diverse domains.

5. Conclusion and Discussion

In this paper, we propose a new method to solve the
FedDG problem that adjusts the aggregation weights to pur-
sue better out-of-domain generalization. Specifically, we
propose a new global optimization objective that encour-
ages flatness and fairness by reducing the variance of gener-
alization gaps for the FedDG and then design an FL-friendly
method named Generalization Adjustment to dynamically
calibrate the weights for achieving the proposed objective.
Our theoretical analysis shows that our new objective and
GA method can achieve a tighter generalization bound on
top of other methods. Extensive experiments on several
FedDG benchmarks prove the generic of our GA method
and also show the effectiveness of minimizing the source
domains’ generalization gap. However, it is still an open
problem to evaluate the optimal generalization weights by
optimization directly, and our GA method that approxi-
mately estimates the generalization weights might not be
the best. GA may be over-confident in the domains that
are easy to fit and have inconsistent gradients. We hope
this study can promote more practical progress for FedDG
and the broader out-of-domain generalization tasks under
the privacy-preserving context.
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