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Abstract

Most existing RGB-based trackers target low frame rate
benchmarks of around 30 frames per second. This setting
restricts the tracker’s functionality in the real world, espe-
cially for fast motion. Event-based cameras as bioinspired
sensors provide considerable potential for high frame rate
tracking due to their high temporal resolution. However,
event-based cameras cannot offer fine-grained texture in-
formation like conventional cameras. This unique comple-
mentarity motivates us to combine conventional frames and
events for high frame rate object tracking under various
challenging conditions. In this paper, we propose an end-to-
end network consisting of multi-modality alignment and fu-
sion modules to effectively combine meaningful information
from both modalities at different measurement rates. The
alignment module is responsible for cross-style and cross-
frame-rate alignment between frame and event modalities
under the guidance of the moving cues furnished by events.
While the fusion module is accountable for emphasizing
valuable features and suppressing noise information by the
mutual complement between the two modalities. Exten-
sive experiments show that the proposed approach outper-
forms state-of-the-art trackers by a significant margin in
high frame rate tracking. With the FE240hz dataset, our
approach achieves high frame rate tracking up to 240Hz.

1. Introduction

Visual object tracking is a fundamental task in computer
vision, and deep learning-based methods [7,9,10,15,35,56]
have dominated this field. Limited by the conventional sen-
sor, most existing approaches are designed and evaluated on
benchmarks [13,24,38,53] with a low frame rate of approx-
imately 30 frames per second (FPS). However, the value
of a higher frame rate tracking in the real world has been
proved [16,21-23]. For example, the shuttlecock can reach
speeds of up to 493km /h, and analyzing its position is es-
sential for athletes to learn how to improve their skills [46].
Utilizing professional high-speed cameras is one strategy
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Figure 1. A comparison of our AFNet with SOTA trackers. All
competing trackers locate the target at time ¢ + At with conven-
tional frames at time ¢ and aggregated events at time ¢t + At as
inputs. Our method achieves high frame rate tracking up to 240Hz
on the FE240hz dataset. The two examples also show the comple-
mentary benefits of both modalities. (a) The event modality does
not suffer from HDR, but the frame does; (b) The frame modality
provides rich texture information, while the events are sparse.

for high frame rate tracking, but these cameras are inac-
cessible to casual users. Consumer devices with cameras,
such as smartphones, have made attempts to integrate sen-
sors with similar functionalities into their systems. How-
ever, these sensors still suffer from large memory require-
ments and high power consumption [49].

As bio-inspired sensors, event-based cameras measure
light intensity changes and output asynchronous events to
represent visual information. Compared with conventional
frame-based sensors, event-based cameras offer a high mea-
surement rate (up to 1MHz), high dynamic range (140 dB
vs. 60 dB), low power consumption, and high pixel band-
width (on the order of kHz) [14]. These unique proper-
ties offer great potential for higher frame rate tracking in
challenging conditions. Nevertheless, event-based cameras
cannot measure fine-grained texture information like con-
ventional cameras, thus inhibiting tracking performance.
Therefore, in this paper, we exploit to integrate the valuable
information from event-based modality with that of frame-
based modality for high frame rate single object tracking
under various challenging conditions.

To attain our objective, two challenges require to be ad-
dressed: (i) The measurement rate of event-based cameras
is much higher than that of conventional cameras. Hence
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for high frame rate tracking, low-frequency frames must be
aligned with high-frequency events to disambiguate target
locations. Although recent works [34, 45,48, 50] have pro-
posed various alignment strategies across multiple frames
for video-related tasks, they are specifically designed for
conventional frames of the same modality at different mo-
ments. Thus, applying these approaches directly to our
cross-modality alignment does not offer an effective solu-
tion. (ii) Effectively fusing complementary information be-
tween modalities and preventing interference from noise is
another challenge. Recently, Zhang ef al. [61] proposed
a cross-domain attention scheme to fuse visual cues from
frame and event modalities for improving the single object
tracking performance under different degraded conditions.
However, the tracking frequency is bounded by the conven-
tional frame rate since they ignore the rich temporal infor-
mation recorded in the event modality.

To tackle the above challenges, we propose a novel end-
to-end framework to effectively combine complementary
information from two modalities at different measurement
rates for high frame rate tracking, dubbed AFNet, which
consists of two key components for alignment and fusion,
respectively. Specifically, (i) we first propose an event-
guided cross-modality alignment (ECA) module to simulta-
neously accomplish cross-style alignment and cross-frame-
rate alignment. Cross-style alignment is enforced by match-
ing feature statistics between conventional frame modality
and events augmented by a well-designed attention scheme;
Cross-frame-rate alignment is based on deformable convo-
lution [&] to facilitate alignment without explicit motion es-
timation or image warping operation by implicitly focusing
on motion cues. (ii) A cross-correlation fusion (CF) mod-
ule is further presented to combine complementary infor-
mation by learning a dynamic filter from one modality that
contributes to the feature expression of another modality,
thereby emphasizing valuable information and suppress-
ing interference. Extensive experiments on different event-
based tracking datasets validate the effectiveness of the pro-
posed approach (see Figure | as an example).

In summary, we make the following contributions:

e Our AFNet is, to our knowledge, the first to combine
the rich textural clues of frames with the high temporal reso-
lution offered by events for high frame rate object tracking.

e We design a novel event-guided alignment framework
that performs cross-modality and cross-frame-rate align-
ment simultaneously, as well as a cross-correlation fusion
architecture that complements the two modalities.

e Through extensive experiments, we show that the pro-
posed approach outperforms state-of-the-art trackers in var-
ious challenging conditions.

2. Related Work
2.1. Visual Object Tracking

Visual object tracking based on the conventional frame
has undergone astonishing progress in recent years, which
can be generally divided into two categories, i.e., corre-
lation filter (CF) trackers [, 4, 18, 33], and deep track-
ers [2,26,39,55,64,65]. CF trackers learn a filter corre-
sponding to the object of interest in the first frame, and this
filter is used to locate the target in subsequent frames. While
mainstream deep trackers estimate a general similarity map
by cross-correlation between template and search images.
However, limited by sensors and benchmarks, those meth-
ods are mainly applied to low frame rate (30FPS) tracking.

The high temporal resolution of event cameras allows
tracking targets at a higher frame rate. Compared with
conventional frame-based tracking, a few attempts have
been made at event-based tracking, which can be generally
classified into cluster-based and learning-based methods.
Litzenberger et al. [28] assigned each new event to a cluster
based on distance criteria, which is continuously updated
for locating the target. Linares et al. [27] used software to
initialize the size and location of clusters, then proposed an
FPGA-based framework for tracking. Piatkowska et al. [41]
extended the clustering method by a stochastic prediction
of the objects’ states to locate multiple persons. However,
these methods involve handcrafted strategies and only apply
in simple situations. Based on the powerful representation
ability of deep learning [30, 52], Chen et al. [5, 6] designed
two different event representation algorithms based on Time
Surface [25] for target location regression. Zhang et al. [59]
combined Swin-Transformer [31] and spiking neural net-
work [12,29, 58] to extract spatial and temporal features
for improving event-based tracking performance. However,
these event-based trackers often fail to locate targets accu-
rately when events are too sparse or insufficient.

To combine benefits from frame and event modalities,
[61] employed attention schemes [36,37,42,43,60] to bal-
ance the contributions of the two modalities. This work is
most closely related to ours, but it does not exploit the high
measurement rate of event-based cameras to accomplish a
higher frame rate tracking, thus the tracking frequency is
constrained by the frame rate in the frame modality. In con-
trast, our approach attains high frame rate tracking under
various challenging conditions by aligning and fusing frame
and event modalities with different measurement rates.

2.2. Alignment between Multiple Frames

Alignment across multiple frames in the same sequence
is essential to exploit the temporal information for video-
related tasks, such as video super-resolution [48, 50] and
compressed video quality enhancement [1 1, 63]. A line of
works [44,47,54] performs alignment by estimating the op-

9782



tical flow field between the reference and its neighbouring
frames. In another line of works [11,45,48], implicit motion
compensation is accomplished by deformable convolution.
Deformable convolution was first proposed in [8], which
improves the ability of convolutional layers to model geo-
metric transformations by learning additional offsets. Al-
though the deformable convolution has shown superiority
in alignment on the conventional frame domain, aligning
on the frame and event modalities brings unique challenges
caused by the different styles. In this paper, we propose a
novel alignment strategy to simultaneously achieve cross-
modality and cross-frame-rate alignment.

3. Methodology
3.1. Events Representation

Event-based cameras asynchronously capture log inten-
sity change for each pixel. An event will be triggered when:

L(z,y,t) — L(x,y,t — At) > pC, (1)

where C' denotes a certain contrast threshold; p is the polar-
ity which means the sign of bright change, with +1 and —1
representing the positive and negative events, respectively.
At is the time since the last event at location (z, )" .
Suppose two sequential conventional frames F; and F;
are captured at times ¢ and ¢ 4 1, respectively. EF; ;41 =
{[xk,yk,tk,pk]}é\;]l contains N events triggered during
the interval [i,4 + 1]. Our goal is to achieve high frame rate
tracking by aligning and fusing conventional frame F; and
E;_,; atany time t € [i,7 + 1]. The apart in time between
dual-modality inputs depends on their frame rates. Specif-
ically, t — i = ’yi where n is an integer in [1, :YY—;] ~. and
s denote the frame rates of event and frame modalities,
respectively. Following [61], we represent events F,;_,; as:

Pr X 0(x — Zp, Y — yr,t — 1) +1
2

x 255,

(2)
where g(z,y) denotes the pixel value of aggregated events
at (z,y)"; & is the Dirac delta function. In this way, the
asynchronous event stream F;_,; is accumulated to a 2D
event frame, denoted E.

g(z,y) = |

3.2. Network Overview

Following DiMP [3], as illustrated in Figure 2 (a), the
overall architecture of our proposed AFNet contains three
components: the feature extractor (i.e., backbone, ECA, and
CF), the target classifier, and the bbox regressor. The fea-
ture extractors of the template branch and the search branch
share the same architecture. Each branch receives an RGB
image F; and aggregated events F; at different times as in-
puts, and corresponding features Iy and F, can be extracted

by the backbone network. ECA and CF are two key compo-
nents of our method. The goal of ECA is to address the mis-
alignment between the conventional frames and aggregated
event frames at different moments. While CF aims to com-
bine the strengths of both modalities by complementing one
modality with information from another. Both target classi-
fier and bbox regressor receive the fused features from fea-
ture extractors. Given a template set of fused features and
corresponding target boxes, the model predictor generates
the weights of the target classifier. Applying these weights
to the features collected from search branch predicts the tar-
get confidence scores. The bbox regressor estimates the loU
of the groundtruth and the predicted bounding box.

3.3. Event-guided Cross-modality Alignment

The ECA module is proposed to align conventional

frames to the reference aggregated events at the feature
level. The key to ECA is designed based on the following
challenges: (i) Cross-style alignment is a challenge. Frames
and events are recorded by different sensors and thus have
different styles, making alignment challenging. (ii) Cross-
frame-rate alignment is another challenge. The frame rate
of aggregated event frames is far higher than that of con-
ventional images, resulting in target location ambiguity that
confuses the tracker’s predictions. As shown in Figure 2 (b),
ECA contains three modules: Motion Aware (MA), Style
Transformer (ST), and Deformable Alignment (DA).
MA. Since event-based cameras respond to changes in light
intensity, they provide natural motion cues that can effec-
tively facilitate multi-modality alignment. We thus first
enhance the valuable motion information of event modal-
ity by visual attention mechanisms. As shown in Figure 2
(b), given event modality features F, € RE>*T*W 'we de-
sign spatial and channel attention schemes to emphasize the
meaningful moving cues while suppressing noise,

FS = o (i1 (1 (RO (FE))Fe, 3)
Ff = ROECHW(F) x REAWVD(S(yy(FL))), (@)

where F? and FY are event features enhanced in the spa-
tial and channel dimensions, respectively. ) denotes the
convolution operation where kernel size is k x k; S and o
denote the softmax and the sigmoid function, respectively;
R(-) is a reshape function with a target shape (-).

ST. ST is responsible for combining the content of conven-
tional frames and the style of events to meet the first chal-
lenge. Specifically, F; is employed to guide the frame fea-
tures I’y to focus on the motion cues that aid in alignment,

F' = o(F)Fy + Fy, 5)

where F§" denotes frame features fused with moving infor-
mation provided by events. Then, we adopt the adaptive
instance normalization (AdalN) [19] to adjust the mean and
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Figure 2. (a) Overview of our AFNet; (b) two key components in the event-guided cross-modality alignment (ECA) module: style
transformer (ST) and deformable alignment (DA); and (c) the cross-correlation fusion (CF) module.

variance of the content input (i.e., frame features) to match
those of the style input (i.e., event features). Formally,

F}' = AdaIN(F}", FY)

Fmo_ :U/( Fm)
c f f
= F
0'( e)( U(F}n)

where F' J?t denotes the output of our ST module, which
combines the content of frame modality and the style of
event modality. p and o are the mean and standard devi-
ation, computed independently across batch size and spatial
dimensions for each feature channel.

DA. To address the second challenge, inspired by [50], we
propose the DA module to adaptively align the conventional
frames and aggregated events at different frame rates with-
out explicit motion estimation and image warping opera-
tions. As shown in Figure 2 (b), DA first predict the offsets
O of the convolution kernels according to F¢ and F'§*,

O = ¢s(1([FE, Fi1)),

where [-] denotes channel-wise concatenation. The learn-
able offsets will implicitly focus on motion cues and explore
similar features across modalities for alignment. With O
and F'f, the aligned feature FJ?“ of the conventional frame
can be computed by the deformable convolution D [&],

(6)

) + pu(FY),

)

F{* = D(Fy,0). ®)

3.4. Cross-correlation Fusion

Our CF is proposed to robustly fuse frame and event cor-
relations by adaptively learning a dynamic filter from one
modality that contributes to the feature expression of an-
other modality. Simply fusing frame and event modalities
ignores circumstance in which one of the modalities does
not provide meaningful information. In an HDR scene, for
instance, the frame modality will provide no useful infor-
mation, yet the event modality still exhibits strong cues.
Conversely, in the absence of motion, event-based cam-
eras cannot successfully record target-related information,
while conventional frames can still deliver rich texture fea-
tures. Therefore, we propose a cross-correlation scheme
to complement one domain with information from another
domain as shown in Figure 2 (c). Specifically, given the
aligned frame feature FJ?“ and enhanced event feature F,
the proposed CF first adaptively estimates a dynamic fil-
ter of high-level contextual information from one modality.
Then, this dynamic filter serves to enhance the features of
another modality. Formally,

Ff=F@®Kc+F,
F = 9(us(FfY)),
Ke = ¢3(A(FY)),

where F]‘? denotes the enhanced feature of the frame modal-
ity based on the dynamic filter K, from event modality; ®

)
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is the depthwise convolution; .A denotes the adaptive aver-
age pooling; ¢ is the Batch Normalization (BN) followed
by a ReLU activation function. Similarly, we can extract
the complementary feature Fef of the event modality based
on the dynamic filter Ky from frame modality. Finally, F§

and Fef are concatenated to build the fused feature F't,,,

Fry = Y1([1(Ff), v1(FD)]), (10)

F¢,, will be fed into the classifier and regressor to locate
the target. The classifier adopts an effective model initial-
izer and a steepest descent based optimizer to predict the
score map. The regressor employs the overlap maximiza-
tion strategy for the task of accurate bounding box estima-
tion. We refer to [3] for details.

3.5. Implementation Details

We adopt the pretrained ResNet18 [17] as the backbone
to extract frame and event features. Following [3,61], the
loss function is defined as:

L= BLcls + Lbb7 (11)

where L is the target classification loss which includes a
hinge function to equally focus on both positive and neg-
ative samples. L, is the bounding box regressor loss
which estimates MSE between the predicted IoU and the
groundtruth. f3 is set to 100.

We implemented our approach in PyTorch [40] and
trained our network for 100 epochs with a batch size of 32
using Adam optimizer with the default parameters. We set
the initial learning rate of the feature extraction network,
the classifier, and the regressor to 2e-4, le-3, le-3, respec-
tively. The learning rate is adjusted by the CosineAnneal-
ingLR strategy [32]. Our network is run on a single Nvidia
RTX3090 GPU with 24G memory.

4. Experiments
4.1. Datasets

We evaluate our AFNet on two event-frame-based
datasets: FE240hz [61] and VisEvent [51]. The FE240hz
dataset has annotation frequencies as high as 240 Hz and
consists of more than 143K images and corresponding
recorded events. With this dataset, our method can accom-
plish a high frame rate tracking of 240Hz. Compared with
FE240hz, VisEvent provides a low annotation frequency,
about 25Hz. However, it contains various rigid and non-
rigid targets both indoors and outdoors. Following [59],
there are 205 sequences for training and 172 for testing.

4.2. Comparison with State-of-the-art Trackers

To demonstrate the effectiveness of our method, we com-
pare AFNet with the nine state-of-the-art trackers. Specifi-
cally, ATOM [9], DiMP [3], PrDiMP [10], STARKSs [56],
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(a) Precision and Success plot on FE240hz dataset
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Figure 3. Results on FE240hz [61] and VisEvent [51] datasets.

TransT [7] and ToMP [35] are conventional frame-based
trackers. For a fair comparison, we extend them to multi-
modality trackers via the following two fusion strategies: (i)
Early Fusion (EF), we first add the aggregated events and
corresponding frame as unified data, and then feed it into
trackers; (ii) Middle Fusion (MF), we first use the back-
bone of these trackers to extract the frame and event fea-
tures separately before feeding the sum of these features
into the regressor. We also compared three original multi-
modality methods: DeT [57], HMFT [62], and FENet [61]
are frame-depth, frame-thermal, and frame-event trackers,
respectively. All approaches are re-trained and tested on
the FE240hz and VisEvent datasets. Following [61], we use
RSR and RPR to evaluate all trackers. RSR and RPR focus
on the overlap and center distance between the ground truth
and the predicted bounding box, respectively.

Figure 3 (a) shows the overall evaluation results on the
FE240hz [61] dataset, which demonstrates the proposed
AFNet offers state-of-the-art high frame rate tracking per-
formance and outperforms other compared approaches in
terms of both precision and success rate. In particular, our
proposed AFNet achieves an 87.0% overall RPR and 58.4%
RSR, outperforming the runner-up by 2.7% and 2.8%, re-
spectively. We further validate the robustness of our AFNet
under five common challenging scenarios: high dynamic
range (HDR), low-light (LL), fast motion (FM), no motion
(NM), and severe background motion (SBM). Among them,
the first three conditions present challenges for tracking in
the conventional frame modality, while the last two scenar-
ios provide difficulties for the event modality. As shown in
Table 1, we can see that AFNet surpasses other approaches
in all conditions. These results validate the effectiveness
of our proposed approach on high frame rate object track-
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Methods Fusion HDR LL FM NM SBM All
Type RSR RPR | RSR RPR | RSR RPR | RSR RPR | RSR RPR | RSR RPR
ATOM [9] EF 26,6 426 | 446 672 | 564 832 | 467 787 | 289 419 | 41.1 622
MF 29.1 484 | 527 78.1 | 454 689 | 60.8 924 | 40.1 603 | 452 68.6
DiMP [3] EF 385 61.0 | 581 86.8 | 53.7 904 | 50.1 86.5 | 47.8 748 | 48.2 772
MF 39.1 614 | 554 83.6 | 594 93.0 | 426 76.6 | 504 78.7 | 48.2 76.1
PrDIMP [10] EF 223 327 | 640 922 | 5311 850 | 569 918 | 350 529 | 469 71.8
MF 393 64.1 | 63.0 893 | 604 957 | 55.0 922 | 479 738 | 51.2 783
STARKS [56] EF 422 731 | 550 905 | 41.6 75.1 | 264 530 | 51.9 845 | 455 788
MF 441 757 | 548 90.0 | 40.7 73.1 | 25,5 505 | 532 852 | 462 794
TransT [7] EF 474 742 | 588 847 | 644 953 | 439 705 | 547 840 | 51.8 79.1
MF 495 747 | 49.1 737 | 574 87.1 | 28.6 493 | 547 83.7 | 493 76.2
ToMP [35] EF 320 506 | 61.8 895 | 563 79.5 | 31.1 47.7 | 43.0 609 | 52.0 76.0
MF 4777 76.8 | 56.6 864 | 61.8 944 | 448 848 | 555 873 | 523 83.1
DeT [57] - 52,5 788 | 573 867 | 659 96.0 | 582 954 | 564 825 | 542 81.2
HMFT [62] - 40.2 67.7 | 514 86.7 | 52.6 87.7 | 469 825 | 549 903 | 49.1 84.6
FENet [61] - 53.1 835 | 582 839 | 625 947 | 472 724 | 578 88.5 | 556 84.3
AFNet (Ours) - 555 849 | 647 938 | 663 964 | 62.0 988 | 60.1 90.3 | 584 87.0
Table 1. Attribute-based RSR/RPR scores(%) on FE240hz [0 1] dataset against state-of-the-art trackers.
Methods Fusion| Rigid |Non-Rigid All our AFNet agaigst ther state-of-the-art methods pn VisEv-
Type |RSR RPR|RSR RPR|RSR RPR ent. As shown in Figure 3 (b), our AFNet obtains 44.5%
ATOM [9] EF [452 58.1|22.4 30.6|36.8 48.0 and 59.3% in terms of RSR and RPR, respectively, surpass-
MF [47.9 61.1|20.7 27.8|37.9 48.9 ing all previous methods. Table 2 reports the evaluation of
DiMP [] EF [49.3 63.6|25.4 36.8|40.5 53.8 various trackers on rigid and non-rigid targets, showing that
MF [50.1 65.5]27.8 39.5|41.9 56.0 AFNet outperforms other competing trackers on these two
PrDIMP [10] EF 146.5 65.3]31.0 45.8]/40.8 58.2 attributes, except the RSR on rigid targets. These results
MF 472 60.9]23.6 33.1|38.5 50.7 validate that our proposed multi-modality approach still re-
STARKS [56] EF 150.0 63.7/26.7 37.2|41.5 54.0 mains effective for low frame rate frame-event tracking.
MF |50.1 64.0(27.4 38.3|41.8 54.6
TransT [7] EF [43.1 59.6|25.4 38.5|36.6 51.9 4.3. Ablation Study
MF |43.9 63.6|26.7 40.3|37.6 55.1 . . .
EE 1452 5731202 27.7136.0 464 Impact of Input Modalities. To validate the effectiveness
ToMP [35] ME 1467 5951230 3181381 494 of fusing frame and event modalities, we design compara-
DeT [57] N 489 6281333 4551432 56.6 tive experiments based only on a single modality: (i) track-
HMET [02] N 500 64.01272 397141.6 55.1 ing with low frame rate conventional frames, then linearly
FENet [01] B 51.0 659323 46.7 442 589 interpolating the results to 240Hz; (ii) tracking with aggre-
AFNet (Ours) - 50.8 66.1133.4 47.6144.5 593 gated events of 240Hz. As shown in the rows A and B of Ta-

Table 2. State-of-the-art comparison of rigid and non-rigid targets
on the VisEvent [51] dataset.

ing. The extended multi-modal methods [3,7,9, 10,35, 56]
lack a well-designed fusion module, preventing them from
efficiently combining the complementary information of
the two domains. While original multi-modality trackers
DeT [57], HMFT [62] and FENet [61] do not address the
misalignment between frame and event data at different
measurement rates, causing ambiguity when locating tar-
gets. Figure 4 further qualitatively shows the effectiveness
of our AFNet in different challenging conditions.

Even though the VisEvent dataset [51] has a low frame
rate annotation, it provides various non-rigid targets that are
absent from the FE240hz dataset. Thus, we also compare

ble 3, when using only frame or event modality as input, the
performance of trackers is 16.2%/26.9% and 43.6%/66.9%
at PSR/PPR, respectively. These results are significantly
worse than our AFNet, which demonstrates the necessity
of multi-modality fusion for high frame rate tracking.

Influence of Event-guided Cross-modality Alignment
(ECA). Our proposed ECA module has two key compo-
nents: style transformer (ST) and deformable alignment
(DA). We thus conduct the following experiments to val-
idate the effectiveness of ECA: (i) without ECA; Inside
ECA, (ii) without ST (ECA w/o ST); (iii) without DA
(ECA w/o DA). We retrain these three modified models,
and the corresponding results are shown in the rows C-
E of Table 3, respectively. We can see that the proposed
ECA module and its components all contribute to the track-
ing performance of AFNet. When the ST is removed, the
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t + 20.83ms

t + 25.00ms

Figure 4. Qualitative comparison of AFNet against SOTA trackers on the FE240hz dataset [61] under five challenging conditions. All
trackers locate the target at time ¢ + At with conventional frames at time ¢ and aggregated events at time ¢ + At as inputs.

Models RSRT OPQ_50 T OP0_75 T RPRT
A. Frame Only 16.2 15.8 34 26.9
B. Event Only 43.6 534 18.6 66.9
C. wlo ECA 55.1 69.3 29.1 82.4
D. ECAw/oST | 55.8 69.8 31.2 83.0
E. ECAw/oDA | 555 70.0 30.9 82.8
F. wloCF 55.9 69.2 31.5 83.7
G. CFwloK 56.2 69.5 31.6 84.3
H. Ours 58.4 73.5 32.6 87.0

Table 3. Ablation study results.

PSR and PPR drop significantly by 2.6% and 4.0%, respec-
tively. This illustrates that combining the frame modality’s
content with the event modality’s style plays a key role
in multi-modality alignment. The performance drops by
2.9%/4.2% at PSR/PPR when the DA is removed. This drop
demonstrates that cross-frame-rate alignment between con-
ventional frames and events indeed decreases target location
ambiguity and enhances the discrimination ability of our
tracker. To further verify cross-modality and cross-frame-
rate alignment capabilities of ECA, we visualize the fea-
ture heatmaps of the frame modality prior to and following
ECA. As shown in Figure 5, the first example shows a target
that is moving upwards. We can see that the frame features
shift the attention to the location of the aggregated events by
our ECA. The second illustration shows that frame features
suffered from the HDR scenario. With our ECA, target lo-

Fi

Figure 5. Visualization of features from the frame modality before
(i.e., Fy) and after (i.e., F{*) alignment by our ECA. F” and E
are the frame modality input and event modality input of the search
branch, respectively. Fr,, denotes the final fused feature.

cation ambiguity is eliminated. The aligned frame features
will be fused with event features to improve the discrimina-
tive ability of our tracker further.

Influence of Cross-correlation Fusion (CF). We assess the
influence of our CF module by replacing it with a concate-
nation operation in our AFNet. As shown in the row F of
Table 3 , the performance drops on PSR and PPR by 2.5%
and 3.3% illustrate that a well-designed multi-modality fu-
sion strategy is essential. We further validate the impact of
cross-correlation between two modalities by removing the
dynamic filter. The results in the row G of Table 3 demon-
strate that complementing one modality with information
from another indeed enhances the feature representation.
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Event Frame Rate (Hz) | 40 80 120 160 200 240
DeT [57] 49.7 52.2 51.3 53.5 543 54.2
FENet [61] 52.4 544 556 52.8 547 55.6
AFNeT 56.1 56.5 58.0 57.4 57.9 58.4

Table 4. RSR of various event frame rates on the top-3 trackers.

Event Representation. We provide ablation on the way
events are converted to frames from two perspectives: (i)
The frame rate of accumulated event frames. We con-
duct experiments with different event frame rates on the
FE240hz dataset. The results in Table 4 indicate that AFNet
performs the best at all six event frame rates. (ii) The start-
ing point of accumulation. We report the performance of
accumulating events since the last event frame (a) and since
the last intensity frame (b), see Table 5. The results of (a)
on the top-3 methods are clearly lower than (b). This is be-
cause the accumulation method (a) leads to too sparse event
frames, while (b) provides more motion cues for tracking.

High Frame Rate Tracking Based on Interpolation. One
question in our mind is whether interpolation on results
or conventional frames still yields satisfactory high frame
rate tracking results. To answer this question, we conduct
two interpolation strategies: (i) We first aggregate events at
the frame rate of conventional frames. Then, these aggre-
gated events and frames are utilized for training and testing
trackers to predict low frame rate results, which are further
linearly interpolated to generate high frame rate bounding
boxes. (ii) We employ the video interpolation approach Su-
perSloMo [20] on conventional frames to predict high frame
rate sequences for evaluation. Take note that the input of the
event branch of all multi-modality trackers is replaced with
interpolated frames. As shown in Figure 6, the results of
interpolating on low frame rate results and on conventional
frames are both noticeably inferior to using high frame rate
aggregated events. These results demonstrate that design-
ing multi-modality alignment and fusion networks to fully
exploit the high temporal resolution of events for achieving
high frame rate tracking is a feasible and significant manner.

(a) since last event frame | (b) since last intensity frame

DeT [57] FENet [61] AENet|DeT [57] FENet [61] AFNet

RSR| 49.8 51.8 54.9 54.2 55.6 58.4
RPR| 755 78.4 83.2 81.2 84.3 87.0

Table 5. Comparison of start times for event accumulation.
4.4. Discussion

Ideally, the tracking frame rate of our AFNet can reach
the measurement rate of an event-based camera. Con-
strained by the existing annotated rates, we verify the ef-
fectiveness of our proposed AFNet on FE240hz at 240Hz
and VisEvent at 25Hz. Our current focus is on exploiting
multi-modality alignment and fusion schemes for effective
and robust high frame rate tracking in various challenging
conditions. However, we have not developed a lightweight
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Figure 6. Comparison of whether to interpolate on the top-7 track-
ers. The blue denotes linearly interpolated performance on low
frame rate tracking results; The green is tracking results on high
frame rate conventional frames interpolated by SuperSloMo [20];
While red represents the results of utilizing aggregated events that
have a higher frame rate than conventional frames.

network or a simple regression mechanism to speed up the
evaluation of our approach. As shown in Table 6, we re-
port the RPR and RSR with respect to the evaluation speed
of the four multi-modality approaches on the FE240hz [0 1]
dataset. We can see that, at nearly equal assessment speeds,
our AFNet offers the best tracking accuracy.

Methods | DeT [57] HMFT [62] FENet [61] AFNet
RSR 542 49.1 55.6 58.4
RPR 81.2 84.6 84.3 87.0

Speed (FPS)| 36.68 34.83 355 36.21

Table 6. Comparison of accuracy and efficiency of multi-modality
approaches on the FE240hz [61] dataset.

5. Conclusion

In this paper, we propose a multi-modality architecture
for high frame rate single object tracking, which is com-
prised of two key components: event-guided cross-modality
alignment (ECA) module and cross-correlation fusion (CF)
module. The novel-designed ECA scheme is able to effec-
tively establish cross-modality and cross-frame-rate align-
ment between conventional frames and aggregated events
at the feature level. After alignment, the CF module fo-
cuses on fusing the advantages of both modalities by com-
plementing one modality with information from another.
Extensive experiments and ablation validation demonstrate
the effectiveness and robustness of our AFNet in various
challenging conditions. The proposed AFNet is the first in
a line of work that jointly exploits frame and event modali-
ties for high frame rate object tracking.
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