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Abstract

Recent cascade Multi-View Stereo (MVS) methods can
efficiently estimate high-resolution depth maps through nar-
rowing hypothesis ranges. However, previous methods ig-
nored the vital geometric information embedded in coarse
stages, leading to vulnerable cost matching and sub-optimal
reconstruction results. In this paper, we propose a ge-
ometry awareness model, termed GeoMVSNet, to explic-
itly integrate geometric clues implied in coarse stages for
delicate depth estimation. In particular, we design a two-
branch geometry fusion network to extract geometric pri-
ors from coarse estimations to enhance structural feature
extraction at finer stages. Besides, we embed the coarse
probability volumes, which encode valuable depth distri-
bution attributes, into the lightweight regularization net-
work to further strengthen depth-wise geometry intuition.
Meanwhile, we apply the frequency domain filtering to mit-
igate the negative impact of the high-frequency regions
and adopt the curriculum learning strategy to progres-
sively boost the geometry integration of the model. To in-
tensify the full-scene geometry perception of our model,
we present the depth distribution similarity loss based on
the Gaussian-Mixture Model assumption. Extensive exper-
iments on DTU and Tanks and Temples (T&T) datasets
demonstrate that our GeoMVSNet achieves state-of-the-art
results and ranks first on the T&T-Advanced set. Code is
available at https://github.com/doubleZ0108/GeoMVSNet.

1. Introduction

Multi-View Stereo (MVS) reconstructs the dense ge-
ometry representation of a scene from multiple overlap-
ping photographs, which is an influential branch of three-
dimensional (3D) computer vision and has been extensively
studied for decades. Learning-based MVS methods aggre-
gate cost volume from different viewpoints and use neu-
ral networks for cost regularization, which achieve superior
performance compared with traditional methods.

Recently, cascade-based architectures [7, 14, 54] have
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been widely applied. They compute different resolution
depth maps in a coarse-to-fine manner and progressively
narrow hypothesis plane guidance to reduce computational
complexity. However, these approaches do not take ad-
vantage of valuable insight contained in early phases and
only consider the pixel-wise depth attribute. Some meth-
ods, e.g. deformable kernel-based [47] and transformer-
based [4, 8,22,27,46], introduce finely designed external
structures for feature extraction but do not fully exploit the
geometric clues embedded in the MVS scenarios.

Unlike existing works, we propose to explore the ge-
ometric structures embedded in coarse stages for delicate
estimations in finer stages. In particular, we build a two-
branch fusion network to integrate geometric priors con-
tained in coarse depth maps with ordinary features extracted
by the classic FPN [23], and the fused geometry awareness
features can provide solid foundations for robust aggrega-
tion. Meanwhile, coarse probability volumes with abundant
geometric structures are embedded into the regularization
network, and we replace the heavy 3D convolution with en-
hanced 2D regularization without degrading the quality of
depth-wise correlation, resulting in lightweight but robust
cost matching. However, MVS networks tend to produce
severe misestimation at high-frequency clutter textures due
to confused matching in coarse stages, which inevitably af-
fects explicit geometry perception. We are inspired by the
human behavior that a nearsighted person can still perceive
a scene well without glasses, even if the texture details can-
not be seen clearly. Based on the observation, we refer to
the idea of curriculum learning [2] to embed coarse geo-
metric priors into finer stages from easy to difficult. Specif-
ically, we utilize the frequency domain filtering strategy
to effectively alleviate redundant high-frequency textures
without producing more learning parameters and leverage
geometric structures embedded in different hierarchies of
frequency for gradually delicate depth estimation.

In addition, depth ranges of MVS scenarios are often
concentrated in several intervals, for this, we adopt the
Gaussian-Mixture Model to simulate full-scene depth dis-
tribution and PauTa Criterion [31] allows us to depict loca-
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tions that are too close or too far hidden in the long tailing of

the depth distribution curve, e.g. sky. The depth distribution

loss is proposed finally for full-scene similarity supervision.
In summary, the main contributions are as follows.

* We propose the geometric prior guided feature fusion
and the probability volume geometry embedding ap-
proaches for robust cost matching.

* We enhance geometry awareness via the frequency do-
main filtering strategy and adopt the idea of curriculum
learning for progressively introducing geometric clues
from easy to difficult.

* We model the depth distribution of MVS scenarios us-
ing the Gaussian-Mixture Model assumption and build
the full-scene geometry perception loss function.

* The proposed method is extensively evaluated on the
DTU dataset and both intermediate and advanced sets
of Tanks and Temples benchmark, all achieving brand-
new state-of-the-art performance.

2. Related Works

Learning-based MVS Methods. Existing MVS methods
can be classified into four categories: volumetric [20, 39],
direct point cloud-based [11, 21], mesh-based [10], and
depth map-based [3, 12, 36,37, 50]. Among them, depth
map-based methods decouple the complicated reconstruc-
tion task into per-view estimation and multi-view fusion,
which have stronger flexibility. Recently, learning-based
methods have shown remarkable progress over traditional
methods. MVSNet [56] constructs the cost volume by ag-
gregating deep features and camera parameters, and uses
3D CNN for regularization. And to reduce memory con-
sumption, many follow-up works have been developed. R-
MVSNet [57] adopts GRUs to regularize the cost volume in
a sequential manner but leading to increased run-time. Cas-
MVSNet [14], UCS-Net [7], and CVP-MVSNet [54] adopt
cascade cost volumes or cost volume pyramid to estimate
depth maps in a coarse-to-fine manner.

Improvements for MVS in Post-pyramid Era. Starting
from [7, 14, 54], the improvement of learning MVS has
entered the era of the pyramid model. Similar ideas are
later explored to lower the GPU cost of 3D regularization
or increase depth quality, such as coarse-to-fine depth opti-
mization [27, 28, 32,43,45,49, 51-53, 61], attention-based
feature aggregation [25, 47, 55, 59, 60, 62, 63], and patch
matching-based methods [13, 24, 44]. In addition, several
other innovations have been applied to solve the MVS prob-
lem [22,29,48]. MVSNet++ [6] integrates the curriculum
learning framework into the training process. TransMVS-
Net [8], EPP-MVSNet [27], and MVSTER [46] either put
forward a feature matching transformer to aggregate long-
range context information or use the epipolar transformer to

learn semantics and spatial associations. MVSFormer [4]
proposes a pre-trained vision transformer to enhance the
network. Although the popularity of the transformer [42]
has inspired lots of downstream tasks, the fine-tuning vi-
sion transformer is sophisticated and does not fully explore
the identities of the MVS problem. In this paper, we explore
embedding geometric priors from coarse stages to analyze
and exploit full-scene geometry awareness explicitly.

3. Methodology

Input a set of unstructured calibrated images, let Iy be the
reference image and {I;}¥ ; as source images. GeoMVS-
Net estimates the depth map D with width W and height H
alignment with I through the collaboration of {7;}V .

The overall architecture of our network is illustrated in
Fig. 1. Along the horizontal data flow, deep image fea-
tures { F;} N, extracted from input images are first warped
into the fronto-parallel planes of the reference camera frus-
tum, denote as {V;} . Then multiple feature volumes are
aggregated into a single cost volume C' € REXM*HXW,
where G is the group-wise correlation channel [15]. Af-
terward, lightweight cost regularization is applied to C' to
obtain the probability volume P € RM*HXW which rep-
resents the possibility of a pixel “sticking” to a depth plane.

Below, we first focus on the problem of robust cost
matching and propose the geometric prior guided feature
fusion and the probability volume geometry embedding in
Sec. 3.1. We further extend the geometric clues in the fre-
quency domain and continually enhance geometry percep-
tion through curriculum learning in Sec. 3.2, and finally
describe the depth distribution similarity loss based on the
Gaussian-Mixture Model in Sec. 3.3 and Sec. 3.4.

3.1. Geometry Awareness for Robust Cost Matching

The aggregation and regularization processes of cost
matching in MVSNet [56] and related extension works [44,
55, 57] are much more robust than traditional MVS meth-
ods [3, 37, 50] which utilize normalized cross-correlation
(NCC) to measure image patch similarity. However, in the
most popular cascade MVS schemes [14, 54], image fea-
tures and cost volumes of different stages often share the
same constituents which do not fully explore the extensive
geometric information supplied by early phases. Unlike ex-
isting works that rely on onerous external dependencies, we
propose to explicitly fuse the geometric priors from coarse
depth estimations and embed coarse probability volumes of
coarser stages into cost matching at finer stages.

Geometric prior guided feature fusion. Take the ¢ and
£+1 level as an example, the geometric prior guided feature
of the reference image in the finer stage is formulated as

Branch(z) = B([D§, B([Ig", D)), (D)
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Figure 1. Illustration of GeoMVSNet. Structural features are extracted first by the geometry fusion network (Sec. 3.1) in finer stages,
and W&A which denotes homography warping and aggregation is used to construct cascade cost volumes. The coarse probability volumes
in coarse stages are embedded into the lightweight regularization network for geometry awareness (Sec. 3.1). And the frequency domain
filtering equipped with curriculum learning strategy (Sec. 3.2) and depth distribution similarity loss (Sec. 3.4) based on Gaussian-Mixture
Model (Sec. 3.3) are applied for full-scene geometry enhancement. The geometric prior output from the previous stage is used to guide the
geometry perception for finer stages as shown by the numerical labels (0) ~ (2).

F”l( ) = Fusion{F, ”1( ) @ Branch(z)}, (2)

where z denotes image pixel, [:,:] and @ represent the
concatenation and element-wise addition operation respec-
tively. Two-branch network architecture is well studied in
depth completion tasks [17,38], and here we fuse the texture
of the reference image and the upsampled geometric prior in
the previous coarse depth by two neural submodules B and
@, and term the combination as Branch in Equ. 1. Then,
the feature "' from classic FPN [23] is merged through
the Fusion network. The architecture of the geometry fu-
sion network for structural feature extraction is presented in
Fig. 2. We can clearly see that the geometric prior aligned
with the reference image is explicitly encoded into the basic
FPN feature, and the geometric fused reference feature can
be robustly matched with anisotropy source features.

Probability volume geometry embedding. As aforemen-
tioned, the probability volume P represents the possibility
that the depth of a certain pixel attaches to a depth hypothe-
sis. Existing pyramid-based methods do not take advantage
of a great deal of insight contained in { P;}¥,, but only use
the coarse depth map it derived to reduce the computational
consumption of denser space divisions. Since the scale and
spatial extent of probability volumes vary from different
stages, we use {P;}Y as the 3D “position maps” [9] em-

bedding in the cost regularization network, without frag-
menting them into the cost volume construction like what
feature fusion does. In particular, we reduce the convolu-
tion kernel size from k X k X kto 1 X k X k in the 3D
cost regularization network, where the first dimension rep-
resents depth orientation. Meanwhile, the deficit caused by
the lack of bulky but capable 3D convolutions in the depth
direction is compensated by the explicitly coarse probabil-
ity volume embedding. P* from the previous coarse stage is
first passed through several 3D Maxpooling layers to con-
struct the geometry perception pyramid with different spar-
sity rates. They are then explicitly encoded into different
large receptive field hunting and skip connections layers of
the U-Net [35] shape lightweight regularization network to
build the fused spatial correlation. The 3D geometry posi-
tion embedding can be mathematically expressed as

¥ = (u —qu)Z
v — (v -0z : 3)
fy

Z = Prob({m} < M)

in which (u,v) are the pixel coordinates of a voxel in m-
th candidate hypothesis from M pre-defined total depth
planes, and ug, vo, fs, fy are part of camera intrinsic pa-
rameters. The geometry embedding of probability volumes
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Figure 2. The architecture of the geometry fusion network. The
coarse depth is used as the geometric prior of two branches. Spe-
cific data structures and parameters can be found in Supp. 1I.1.

from coarse-to-fine stages is shown in Fig. 3, where ge-
ometry embedding slices along the depth direction encode
spatial perception about the overall structure of the scene,
rather than just providing pixel-level “confidence”. Fine-
grained geometry awareness is continuously passed through
the network for robust cost matching.

Geometric prior guided feature fusion strengthens the
discrimination and structure of deep features at finer stages
without introducing external complex dependencies, lay-
ing a solid foundation for robust aggregation. Embedded
probability volumes not only provide voxel coordinates and
depth-aware positional encoding for robust cost volume reg-
ularization but also introduce full-scene depth distribution
characteristics into the depth perception of finer layers.

3.2. Geometry Enhancement in Frequency Domain

Coarse depth map fusion and probability volume embed-
ding can effectively integrate progressively enhanced ge-
ometry awareness into cost matching. Despite of this, se-
vere misestimations at clutter textures inherent in the coarse
depth map, e.g. infinite sky in the frame and areas near the
edge of the image where reprojection is extremely prone to
out of bounds, inevitably increase the learning burden of the
Fusion network and cost regularization network.

To fix severely erroneous depth values, we attempt to use
the pre-trained RGB-guided depth refinement modules [64].
The plug-in depth optimization module can indeed polish
the depth map visually, especially at the object contours.
However, performing a spectral analysis of the depth map in

Ref. image
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Figure 3. Visualization of the probability volume geometry em-
bedding on the Tanks and Temples dataset [19]. (a) Summary
of the coarse-to-fine embedding process; (b) basics of geometry
awareness derived from probability volumes of different stages.
More examples are presented in Supp. I1.3.

Fig. 4 (a), we find that the polished depth has significantly
higher frequency information, which burdens the network
learning [26,51]. More importantly, the seemingly accurate
“refinement” operation reduces the satisfaction of geomet-
ric consistency constraints, leading to significantly deterio-
rated overall quality for the point cloud (0.200 v.s. 0.704).
The main reason is that RGB-guided depth optimization
tends to fit depth distributions in the dataset, while MVS
estimates geometrically consistent depths by matching.

In contrast, we approach the problem using frequency
domain filtering [33] via the Discrete Fourier Transform
(DFT) [40]. We regard the coarse depth map as a 2D dis-
crete signal and transform it to the frequency domain by
Equ. 4, where j is the imaginary unit.

W-1H-1

Flluw)= 30 % Di(ay) e 27 G+ . 4)

=0 y=0

B 1 W—-1H-1 ~
DXa,y) = g D D Flluw) 2T (5)

u=0 v=0

After FFT-shift [1], a basic ideal rectangular low-pass
filter [41] is used to eliminate high-frequency information
from the coarse depth map as shown in Fig. 4 (b), and Equ. 5
is used for inverse domain transfer. The simple but effective
frequency filtering ingeniously removes the complex and
incomprehensible knowledge from the explicitly modeled
coarse geometry embedding while avoiding producing more
learning parameters. Meanwhile, severe misestimation and
high-frequency burden signals are alleviated without using
hand-labeled visual masks, allowing the network to focus
more on the full-scene geometry perception.

We also refer to the idea of curriculum learning [2], in-
crementally teaching difficult depth embedding samples to
the Flusion network and cost regularization network. Let d*
define the random variable of estimated depth map D* at
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Figure 4. Analysis of geometry enhancement in the frequency domain. (a) The experiment results of the depth map refinement module
on the DTU dataset [18]; (b) schematic flow chart of the frequency domain filtering on the BlendedMVS dataset [58]; (c) curriculum
learning parameter configuration on the advanced set of Tanks and Temples dataset [19], coordinate spaces are unified for visualization.

the /-th stage, and the target distribution of the scenario is
N. Let 0 < W¥(d") < 1 be the weight applied to example
d" in the curriculum sequence. The training distribution is

QY (dY) cc WHdY N(d") , d* € D*. (6)

We adjust the monotonically increasing weight W* by
modulating the cutout kernel ratio of frequency domain fil-
ter, denoted as p, and leave the geometric clues untrimmed
(p = 1) at the last stage of the coarse-to-fine scheme
[14,54]. The curriculum learning strategy as shown in Fig. 4
(c) introduces a better geometric clues consumption pattern
for the cost regularization network, effectively enhancing
the full-scene geometry awareness for the MVS network.

3.3. Mixed-Gaussian Depth Distribution Model

Given a pre-estimated depth range [din, dmas] from
sparse reconstruction by classic structure-from-motion al-
gorithms [5, 36], existing learning-based MVS methods
[14, 56] always follow the uniform depth distribution as-
sumption that divides the reference camera frustum into M
depth hypothesis planes. CIDER [51] proposes to parti-
tion the hypothesis planes in the inverse depth space, and
Yang et al. [53] introduce the multi-modal depth distri-
bution. However, these methods only consider pixel-wise
depth characteristics and do not model the full-scene depth
distribution, which is pivotal for geometry perception.

The scenarios to be reconstructed in current studies can
be divided into three categories: a) centered object and or-
biting camera; b) surrounding object and self-rotating cam-
era; c) aerial photograph. Fig. 5 visualizes the image and

Reference image

Depth GT Full-scene depth distribution

Num. o

Figure 5. Full-scene depth distribution of scenarios in three
categories on the BlendedM VS dataset [S58]. Most scenarios can
be modeled by the GMM with K < 2, and the details about dis-
tribution histograms and fitting curves can be found in Supp. I.

depth distribution for each category. The depth range of
natural scenes is often concentrated in several certain areas,
and locations that are too close and too far are hidden in the
long trailing of the depth distribution curve.

Based on the observation, we assume the random vari-
able depth value d follows the Gaussian-Mixture Model
(GMM) distribution [34]. The sample distribution can be
modeled as N (d; ;, 02), where 0; = {j1;,0;} are the mean
and standard deviation of the i-th Gaussian component re-
spectively. And the probability density function is given by
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p(d| Q) = sz

1 (d — pi)®
o) ®
where Q = {w;}, i = (1,2,..., K) is the set of prior distri-
butions modeling the probability that variable d falls in the
approximate estimation interval, satisfying the constraints

(d]6:) (7

a(d] 6:) =

K
0<w; <1 and Zwizl. )

i=1
We find that most scenarios are well portrayed at K =1
or 2, and only a few scenarios are modeled by the distribu-
tion at K > 3 (see Supp. I). And the PauTa Criterion [31]
allows us to depict the depth distribution of the whole scene
well within the combination of several (u; — 304, y; + 30;)
intervals. The long-standing burden of infinite points (e.g.
sky) will not bring a negative impact on learning under the
GMM with PauTa Criterion, and we can better use the full-

scene depth distribution to enhance spatial perception.

3.4. Loss Functions

Pixel-wise classification modeling [47,52] is more suit-
able for our representation since regression mode [14, 56]
and recently published unification mode [32] tend to fall
into a local optimal solution at early stages. The cross-
entropy loss for pixel-wise supervised is

Losspy = Z(—PGT(Z) log[P(2)]), (10)
zev

where U denotes the set of valid pixels with ground truth
precision, and Pg is the ground-truth probability volume.
Moreover, the perception of the full-scene depth distri-
bution is the focus of this paper. We calculate the similar-
ity of sample distribution between filtered depth estimation
and ground-truth depth using the Kullback-Leibler Diver-
gence [16] metric. The depth distribution similarity loss is

M/
Loss ggs = Z p(2) (log p(z) — log Nar(2)), (11)
m=0,zeY
K
Y= J{(ui — 305, i + 303)} (12)
i—1

where p(:) denotes the filtered depth distribution, and we
slice the depth space of each scene into M’ = 48 discrete
intervals to calculate the similarity of the depth distribution.

The overall loss is a weighted sum of Loss, and

Lossgqs in Equ. 13, where A\ = 0.8, A5 = 0.2 among
each stage in our experiments.
L
Loss = Z(Af Losspy + NS Loss qs) - (13)
£=0

4. Experiments
4.1. Datasets

DTU [18] is an indoor dataset consisting of 124 different
objects, each scene is recorded from 49 views with 7 bright-
ness levels. It contains ground-truth point clouds collected
under well-controlled laboratory conditions for evaluation.
Tanks and Temples (T&T) [19] dataset contains a more
challenging realistic environment with large-scale varia-
tions and illumination changes. It contains an intermediate
subset of 8 scenes and an advanced subset of 6.

BlendedMVS [58] dataset is a recently published large-
scale synthetic dataset. It consists of over 17000 high-
resolution rendered images with 3D structures.

4.2. Implementation Details

Following the common practice, we train the GeoMV S-
Net on the DTU [18] training set and evaluate it on the DTU
evaluation set while adopting the same data split and view
selection as defined in [56] and [14] for a fair comparison.
And we train our model on the BlendedMVS dataset [58]
and test on both intermediate and advanced sets of the Tanks
and Temples benchmark [19].

Training. The number of input images is set to N = 5 with
a resolution of 640 x 512 for the DTU, and N = 7 with
768 x 576 images for the BlendedMVS. We use L = 4 layer
pyramids and the number of hypothesis planes M is set to
8,8,4,4 for each level respectively. The depth sampling
range is 425mm ~ 935mm for DTU and (u;, 0;) are self-
calculated according to each scene. The cutout filter kernel
ratio p is set to 9,4,2,1 as shown in Fig. 4 (c), and the
weight allocation for loss items is mentioned in Equ. 13. We
use PyTorch [30] for implementation and train the model
with the Adam optimizer for 16 epochs from a start learning
rate of 0.001 on 2 NVIDIA Tesla V100 GPUs.

Evaluation. Other settings are consistent with the train-
ing process, except for input image properties. We crop
the image to 1600 x 1152 and also use N = 5 for the
DTU evaluation. We resize the height of the T&T images to
1024 while remaining the width to 1920 or 2048 unchanged
according to different testing scenes and use N = 11 in-
put views. Our model consumes 0.26s and 5.98G memory
for the full-resolution DTU depth estimation and 0.47s and
8.85G memory for the T&T. As for depth fusion, we use
the open-source 3D data processing library Open3D [65]
for dense point cloud fusion for the DTU, and adopt the
commonly used dynamic fusion strategy [52] for the T&T.
It is worth noting that we do not elaborately tune the fusion
parameters, but fuse the full-scene point cloud using pix-
els with confidence ¢ > 1 — 30 for each scenario on the
assumption of the GMM at K = 1 in Sec. 3.3.

Metrics. For point cloud evaluation, the accuracy and com-
pleteness of the distance metric are adopted for DTU [18]
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Figure 6. Qualitative comparison of the most challenging scan48 and scan77 on the DTU evaluation dataset. The first and third rows
are estimated depth maps while others are point cloud reconstruction results. Our model produces remarkable accuracy and completeness.

while the accuracy and completeness of the percentage met-
ric for T&T [19]. Besides, there is an official website for
online evaluation of Tanks and Temples [19] benchmark.

4.3. Benchmark Performance

DTU. We compare our results with traditional methods and
recent learning-based methods. The qualitative results are
shown in Fig. 6. GeoMVSNet estimates significantly ac-
curate depths and complete point clouds, especially for the
geometry structures of the subject, and high-frequency clut-
ter textures are well suppressed. Meanwhile, scan48 and
scan77 with drastic illumination changes and reflections are
considered as two most difficult scenes on the DTU evalua-
tion set, which further proves the robustness of our method.
For quantitative evaluation, we report accuracy and com-
pleteness using official MATLAB codes as shown in Tab. 1.
Our approach outperforms all current methods in complete-
ness and raises the overall metrics to a new altitude.
Tanks and Temples. We further validate the generaliza-
tion ability of our proposed method on the T&T dataset.
Fig.7 shows the error comparison of the reconstructed point
clouds, our method has higher precision and recall, espe-
cially in geometrically informative regions. And the quan-
titative results on both intermediate and advanced sets are
reported in Tab. 2, our method achieves state-of-the-art per-
formance among all existing MVS methods and yields first
place in most scenes. In particular, we rank first among all
submissions on the advanced set, demonstrating our robust-
ness and generalization performance on large and challeng-

Table 1. Quantitative comparison on the DTU dataset. *
means that GBi-Net [29] is re-tested with the same post-processing
threshold on all scans for fair comparisons with other methods.
means MVSTER [46] is trained on full-resolution images.

Method Acc. (mm) Comp. (mm) Overall] (mm)
Gipuma [12] 0.283 0.873 0.578
COLMAP [36] 0.400 0.664 0.532
R-MVSNet [57] 0.383 0.452 0417
CasMVSNet [14] 0.325 0.385 0.355
CVP-MVSNet [54] 0.296 0.406 0.351
EPP-MVSNet [27] 0.413 0.296 0.355
CER-MVS [28] 0.359 0.305 0.332
£  RayMVSNet [48] 0.341 0.319 0.330
: Effi-MVSNet [45] 0.321 0.313 0.317
g CDS-MVSNet [13] 0.352 0.280 0.316
E NP-CVP-MVSNet [53] 0.356 0.275 0.315
% UniMVSNet [32] 0.352 0.278 0.315
& TransMVSNet [8] 0.321 0.289 0.305
GBi-Net* [29] 0.312 0.293 0.303
MVSTER* [46] 0.340 0.266 0.303
GeoMVSNet (Ours) 0.331 0.259 0.295

ing MVS scenarios. Visualization of more reconstructed
point clouds can be found in Supp. I11.2.

4.4. Ablation Study

Tab. 3 shows the ablation results of our proposed Ge-
oMVSNet. The baseline [14] method is re-customized ac-
cording to the number of pyramid layers and input view
numbers. However, the geometric clues embedded in coarse
stages are not exploited.

Effect of geometry awareness. The geometry fusion net-
work which utilizes the geometric prior derived from the
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Table 2. Quantitative results on the Tanks and Temples dataset. Bold represents the best while underlined represents the second-best.

Method Intermediat Advanced

Mean?  Family  Francis Horse LH. M60  Panther PG. Train | Meant Aud. Bal. Cou. Mus. Pal.  Tem.
COLMAP [36] 42.14 50.41 22.25 25.63 5643 44.83 46.97 48.53  42.04 27.24 16.02 2523 3470 4151 18.05 2794
CasMVSNet [14] 56.42 76.36 58.45 46.20 5553 56.11 54.02 58.17 46.56 31.12 19.81 3846 29.10 43.87 27.36 28.11
PatchmatchNet [44] 53.15 66.99 52.64 43.24  54.87 52.87 49.54 5421 50.81 32.31 23.69 3773 30.04 41.80 2831 3229
CER-MVS [28] 64.82 81.16 64.21 5043  70.73 63.85 63.99 6590 58.25 40.19 2595 4575 39.65 51.75 3508 4297
Effi-MVSNet [45] 56.88 72.21 51.02 51.78 58.63 58.71 56.21 57.07 49.38 34.39 20.22 4239 3373 45.08 29.81 35.09
UniMVSNet [32] 64.36 81.20 66.43 53.11  63.46 66.09 64.84 62.23 57.53 38.96 2833 4436 39.74 52.89 3380 34.63
TransMVSNet [8] 63.52 80.92 65.83 56.94 62.54 63.06 60.00 60.20 58.67 37.00 2484 4459 3477 4649 3469 36.62
GBi-Net [29] 61.42 79.77 67.69 51.81 6125 60.37 55.87 60.67 53.89 37.32 29.77 42.12 3630 47.69 31.11 3693
MVSTER [46] 60.92 80.21 63.51 5230 61.38 61.47 58.16 58.98 51.38 37.53 26.68 42.14 3565 4937 3216 39.19
GeoMVSNet (Ours) 65.89 81.64 67.53 55.78 68.02 65.49 67.19 63.27 58.22 41.52 30.23 46.53 3998 53.05 3598 43.34
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Figure 7. Point clouds error comparison of state-of-the-art methods on the Tanks and Temples benchmark. 7 is the scene-relevant
distance threshold determined officially and darker means larger error. The first row shows Precision and the second row shows Recall.

Table 3. Ablation results on the DTU evaluation dataset.

Method Sec. 3.1 Sec. 3.2 Sec. 34 Acc.  Comp. Overall|
GFN  PVE | FDF CL | Losspy  Lossdas
baseline (L=4, N=5) v 0.3629  0.3016  0.3323
+ geometry fusion network v v 03520 0.2893  0.3207
+ prob. volume embedding v v 0.3705  0.3053 0.3379
+ fusion & embedding v v v 0.3404 02922 0.3163
+ frequency domain filtering | v v v 0.3663  0.2707  0.3185
+ curriculum learning v v v v 03650 0.2634  0.3142
+ distribution similarity loss v v v v 03346 0.2832  0.3089
proposed v v v v v v 0.3309 0.2593  0.2951

coarse depth map can significantly improve reconstruction
completeness. However, embedding coarse probability vol-
umes as 3D positional maps alone is insufficient to boost
performance significantly. The proposed probability vol-
ume embedding strategy requires structural features as the
foundation to achieve the best reconstruction quality.

Effect of frequency domain geometry enhancement. As
shown in Tab. 3 and Fig. 4 (b), the frequency domain
filtering approach equipped with the curriculum learning
strategy can effectively eliminate clutter textures in coarse
stages, preventing contamination from misestimated em-
bedding and highlighting the effect of geometry awareness.

The full-scene depth distribution perception. Finally, the
depth distribution similarity loss based on the assumption of
the GMM and the combination of explicitly modeled geo-
metric integration bring about an improvement in accuracy
and fully depict the full-scene geometry perception.

5. Conclusion

In this paper, we propose GeoMVSNet which explic-
itly integrates coarse geometry structures into finer depth
estimations, achieving prominent geometry perception for
MYVS scenarios. Specifically, we construct a two-branch
feature fusion network to fuse geometric priors from coarse
stages with basic unstructured features and embed coarse
probability volumes into the lightweight cost regulariza-
tion network for geometry awareness without introducing
complicated external dependencies. In addition, we utilize
frequency domain filtering to suppress high-frequency clut-
ter misestimations and the curriculum learning strategy fur-
ther introduces a better geometric information consumption
pattern for robust cost matching. And the proposed depth
distribution similarity loss based on the Gaussian-Mixture
Model assumption enhances the full-scene depth percep-
tion. We achieve state-of-the-art performance on both DTU
and Tanks and Temples datasets and rank first on the T&T-
Advanced set. In the future, we intend to discover the abil-
ity of explicitly modeled geometry extensions in the field of
unsupervised or self-supervised MVS frameworks.
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