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Input Point Cloud Initial Superpoints Progressively Growing Superpoints Prediction by GrowSP Ground Truth
Figure 1. Given an input point cloud with complex structures from S3DIS dataset [2], our GrowSP automatically discovers accurate
semantic classes simply by progressively growing superpoints, without needing any human labels in training.

Abstract

We study the problem of 3D semantic segmentation from
raw point clouds. Unlike existing methods which primarily
rely on a large amount of human annotations for training
neural networks, we propose the first purely unsupervised
method, called GrowSP, to successfully identify complex se-
mantic classes for every point in 3D scenes, without need-
ing any type of human labels or pretrained models. The key
to our approach is to discover 3D semantic elements via
progressive growing of superpoints. Our method consists
of three major components, 1) the feature extractor to learn
per-point features from input point clouds, 2) the superpoint
constructor to progressively grow the sizes of superpoints,
and 3) the semantic primitive clustering module to group
superpoints into semantic elements for the final semantic
segmentation. We extensively evaluate our method on mul-
tiple datasets, demonstrating superior performance over all
unsupervised baselines and approaching the classic fully-
supervised PointNet. We hope our work could inspire more
advanced methods for unsupervised 3D semantic learning.

1. Introduction
Giving machines the ability to automatically discover se-

mantic compositions of complex 3D scenes is crucial for
many cutting-edge applications. In the past few years, there
has been tremendous progress in fully-supervised semantic
segmentation for 3D point clouds [14]. From the seminar
works PointNet [40] and SparseConv [12] to a plethora of
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recent neural models [21, 27, 41, 55, 60], both the accuracy
and efficiency of per-point semantic estimation have been
greatly improved. Unarguably, the success of these meth-
ods primarily relies on large-scale human annotations for
training deep neural networks. However, manually annotat-
ing real-world 3D point clouds is extremely costly due to
the unstructured data format [3, 20]. To alleviate this prob-
lem, a number of recent methods start to use fewer 3D point
labels [19, 69], cheaper 2D image labels [59, 77], or active
annotations [22,63] in training. Although achieving promis-
ing results, they still need tedious human efforts to annotate
or align 3D points across images for particular datasets, thus
being inapplicable to novel scenes without training labels.

In this paper, we make the first step towards unsuper-
vised 3D semantic segmentation of real-world point clouds.
To tackle this problem, there could be two strategies: 1) to
naı̈vely adapt existing unsupervised 2D semantic segmen-
tation techniques [4, 7, 24] to 3D domain, and 2) to apply
existing self-supervised 3D pretraining techniques [17, 66]
to learn discriminative per-point features followed by clas-
sic clustering methods to obtain semantic categories. For
unsupervised 2D semantic methods, although achieving en-
couraging results on color images, they can be hardly ex-
tended to 3D point clouds primarily because: a) there is
no general pretrained backbone to extract high-quality fea-
tures for point clouds due to the lack of representative 3D
datasets akin to ImageNet [46] or COCO [29], b) they are
usually designed to group pixels with similar low-level fea-
tures, e.g. colors or edges, as a semantic class, whereas such
a heuristic is normally not satisfied in 3D point clouds due
to point sparsity and spatial occlusions. For self-supervised
3D pretraining methods, although the pretrained per-point
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features could be discriminative, they are lack of seman-
tic meanings fundamentally because the commonly adopted
data augmentation techniques do not explicitly capture cat-
egorical information. Section 4 clearly demonstrates that all
these methods fail catastrophically on 3D point clouds.

Given a sparse point cloud composed of multiple seman-
tic categories, we can easily observe that a relative small
local point set barely contains distinctive semantic infor-
mation. Nevertheless, when the size of a local point set is
gradually growing, that surface patch naturally emerges as
a basic element or primitive for a particular semantic class,
and then it becomes much easier for us to identify the cat-
egories just by combining those basic primitives. For ex-
ample, two individual 3D points sampled from a spacious
room are virtually meaningless, whereas two patches might
be easily identified as the back and/or arm of chairs.

Inspired by this, we introduce a simple yet effective
pipeline to automatically discover per-point semantics, sim-
ply by progressively growing the size of per-point neigh-
borhood, without needing any human labels or pretrained
backbone. In particular, our architecture consists of three
major components: 1) a per-point feature extractor which
is flexible to adopt an existing (untrained) neural network
such as the powerful SparseConv [12]; 2) a superpoint con-
structor which progressively creates larger and larger su-
perpoints during training to guide semantic learning; 3) a
semantic primitive clustering module which aims to group
basic elements of semantic classes via an existing clustering
algorithm such as K-means. The key to our pipeline is the
superpoint constructor together with a progressive growing
strategy in training. Basically, this component drives the
feature extractor to progressively learn similar features for
3D points within a particular yet growing superpoint, while
the features of different superpoints tend to be pushed as
distinct elements of semantic classes. Our method is called
GrowSP and Figure 1 shows qualitative results of an indoor
3D scene. Our contributions are:

• We introduce the first purely unsupervised 3D semantic
segmentation pipeline for real-world point clouds, with-
out needing any pretrained models or human labels.

• We propose a simple strategy to progressively grow su-
perpoints during network training, allowing meaningful
semantic elements to be learned gradually.

• We demonstrate promising semantic segmentation results
on multiple large-scale datasets, being clearly better than
baselines adapted from unsupervised 2D methods and
self-supervised 3D pretraining methods. Our code is at:
https://github.com/vLAR-group/GrowSP

2. Related Works
Learning with Strong Supervision: With the advance-

ment of 3D scanners, acquiring point clouds becomes easier

and cheaper. In past five years, the availability of large-scale
human-annotated point cloud datasets [2, 3, 10, 16, 20, 28,
52, 57] enables fully-supervised neural methods to achieve
remarkable 3D semantic segmentation results. These meth-
ods generally include: 1) 2D projection-based methods [9,
25, 36, 62] which project raw point clouds onto 2D images
followed by mature 2D neural architectures to learn seman-
tics; 2) voxel-based methods [8, 12, 26, 35, 78] which usu-
ally voxelize unstructured point clouds into regular spheres,
cubes, or cylinders followed by existing convolutional net-
works; 3) point-based methods [13,21,27,34,41,55,64,76]
which primarily follows the seminal PointNet [40] to di-
rectly learn per-point features using shared MLPs. The per-
formance of these methods can be further improved by the
successful self-supervised pre-training techniques in recent
studies [5,18,23,38,42,54,58,67,71,75]. Although achiev-
ing excellent accuracy on existing benchmarks, they require
densely-annotated 3D data for training. This is extremely
costly and prohibitive in real applications.

Learning with Weak Supervision: To alleviate the cost
of human annotations, a number of works have started
to learn 3D semantics using fewer or cheaper human la-
bels in training. These weak labels primarily include: 1)
fewer 3D point labels [19, 31, 33, 49, 56, 65, 69, 73], and
2) sub-cloud/seg-level/scene-level labels [6, 30, 43, 53, 61].
The performance of these weakly-supervised methods can
also be boosted by self-supervised pre-training techniques
[18, 67, 74, 75]. Apart from these weak labels, supervision
signals can also come from other domains such as labeled
2D images [32, 44, 50, 68, 70, 79] or pretrained language
models [15, 45, 72]. Although obtaining encouraging re-
sults, these methods still need tedious human efforts to an-
notate or align data points. Fundamentally, they still cannot
automatically discover semantic classes.

Unsupervised Semantic Learning: The work [48]
learns point semantics by recovering voxel positions after
randomly shuffling 3D points, and Canonical Capsules [51]
learns to decompose point clouds into object parts via self-
canonicalization. However, both of them can only work
on simple object point clouds. Technically, existing self-
supervised 3D pretraining techniques [17, 66] can be used
for unsupervised semantic segmentation, just by learning
discriminative per-point features followed by clustering.
However, as shown in Section 4.5, the pretrained point fea-
tures are actually lack of semantic meanings and fail to be
grouped as classes. For 2D images, a number of recent
works [4, 7, 11, 24, 37] tackle the problem of unsupervised
2D semantic segmentation. However, due to the domain gap
between images and point clouds, there is no existing work
showing their applicability in 3D space. In fact, as demon-
strated in Section 4, both the representative 2D methods
IIC [24] and PICIE [7] fail catastrophically on point clouds,
while our method achieves significantly better accuracy.
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Figure 2. The general learning framework of our GrowSP. It mainly consists of three components: 1) the feature extractor which learns
per-point features, 2) the superpoint constructor which progressively grows the sizes of superpoints, and 3) the semantic primitive clustering
module which aims to group superpoints into semantic elements. Note that, the superpoint constructor is no longer needed in testing.

3. GrowSP
3.1. Overview

Our method generally formulates the problem of unsu-
pervised 3D semantic segmentation as joint 3D point fea-
ture learning and clustering in the absence of human labels.
As shown in Figure 2, from a dataset with H point clouds
{P 1 · · ·P h · · ·PH}, given one single scan P h with N
points as input, i.e., P h ∈ RN×6 where each point has a lo-
cation {x, y, z} with color if available, the feature extrac-
tor firstly obtains per-point features F h ∈ RN×K where
the embedding length K is free to predefine, e.g. K = 128.
We simply adopt the powerful SparseConv architecture [12]
without any pretraining step as our feature extractor. Imple-
mentation details are in Appendix.

Having the input point cloud P h and its point features
F h at hand which are not meaningful in the very beginning,
we will then feed them into our superpoint constructor
to progressively generate larger and larger superpoints over
more and more training epochs, as detailed in Section 3.2.
These superpoints will be fed into our semantic primitive
clustering module, generating pseudo labels for all super-
points, as discussed in Section 3.3. During training, these
pseudo labels will be used to optimize the feature extractor.

3.2. Superpoint Constructor

This module is designed to divide each input point cloud
into pieces, such that each piece as whole ideally belongs
to the same category. Intuitively, compared with individ-
ual points, a single piece is more likely to have geometric
meanings, thus being easier to extract high-level semantics.
In order to construct high-quality superpoints and aid the
network to automatically discover semantics, here we ask
two key questions:

• First, what strategy should we use to construct super-
points? Naturally, if a superpoint keeps small, it can be
highly homogeneous but lack of semantics. On the other
hand, a larger superpoint may have better semantics but is
error-prone if not constructed properly. In this regard, we
propose to gradually grow the size of superpoints from
small to large over more and more training epochs.

• Second, how to partition a point cloud into satisfactory
pieces at the beginning, such that the network training can
be bootstrapped effectively? Considering that point neu-
ral features are virtually meaningless in the early stage
of network training, it is more reliable to simply leverage
classic algorithms to obtain initial superpoints based on
geometric features, e.g. surface normal or connectivity.

With these insights, we introduce the following mechanism
to construct superpoints.

Initial Superpoints: As shown in the yellow block of
Figure 2, at the beginning of network training, the initial
superpoints are constructed by VCCS [39] followed by a re-
gion growing algorithm [1]. They jointly take into account
the spatial/normal/normalized RGB distances between 3D
points. For a specific input point cloud P h, its initial su-
perpoints are denoted as {p̃h

1 · · · p̃
h
m0 · · · p̃h

M0} where each
superpoint p̃h

m0 consists of a small subset of original point
cloud P h. Note that, for different point clouds, the number
of their initial superpoints M0 are usually different. Im-
plementation details are in Appendix. Figure 3 shows an
example of initial superpoints for an indoor room.

Progressively Growing Superpoints during Training:
Assuming the feature extractor is trained for epochs using
Algorithm 1 which will be detailed in Section 3.4, the per-
point features are expected to be more meaningful. In this
regard, we turn to primarily use neural features to progres-
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Figure 3. An example of initial superpoints constructed by VCCS
and region growing. Each colored patch represents a superpoint.

sively construct larger superpoints for future training. As
illustrated in Figure 4, each dot represents the neural em-
bedding of a 3D point, and a red circle indicates an initial
superpoint. The blue circle represents a larger superpoint
absorbing one or multiple initial superpoints.

Initial Superpoints

Growing

Larger Superpoints

Figure 4. An illustration of progressively growing superpoints.

In particular, for a specific input point cloud P h, we
have its neural features F h ∈ RN×K and initial super-
points {p̃h

1 · · · p̃
h
m0 · · · p̃h

M0}. Firstly, we will compute the
mean neural features for initial superpoints, denoted as
{f̃

h

1 · · · f̃
h

m0 · · · f̃
h

M0}:

f̃
h

m0 =
1

Q

Q∑
q=1

fh
q , fh

q ∈ R1×K (1)

where Q is the total number of 3D points within an initial
superpoint p̃h

m0 , and fh
q is the feature vector retrieved from

F h for the qth 3D point of the superpoint.
Secondly, having these initial superpoint features, we

simply use K-means to group the M0 vectors into M1 clus-
ters, where M1 < M0. Each cluster represents a new and
larger superpoint. In total, we get new superpoints:

{p̃h
1 · · · p̃

h
m1 · · · p̃h

M1} Kmeans←−−−− {f̃
h

1 · · · f̃
h

m0 · · · f̃
h

M0}

Note that this superpoint growing step is conducted inde-
pendently on each input point cloud. The much smaller M1,
the more aggressive this growing step.

After every a certain number of training epochs, i.e. one
round, we will compute the next level of larger superpoints
by repeating above two steps. Given T levels of growing,
the number of superpoints for an input point cloud will be
reduced from M1 →M2 →M t until to a small value MT .
In each epoch, all superpoints of the entire dataset will be
fed into the semantic primitive clustering module.

3.3. Semantic Primitive Clustering

For every epoch, each input point cloud will have a num-
ber of superpoints, each of which representing a particular
part of objects or stuff. As to the whole dataset, all super-
points together can be regarded as a huge set of basic se-
mantic elements or primitives, such as chair backs, table
surfaces, etc.. In order to discover semantics from these su-
perpoints, two issues need to be addressed:

• First, how to effectively group these superpoints? A
straightforward way is to directly cluster all superpoints
into a number of object categories using an existing clus-
tering algorithm. However, we empirically find that
this is excessively aggressive, because many superpoints
belonging to different categories are similar and then
wrongly assigned to the same semantic group at the early
training stage, and it is hard to be corrected over time. In
this regard, we opt to constantly group all superpoints into
a relatively large number of clusters in all training epochs.

• Second, are the neural features of superpoints discrimina-
tive enough for semantic clustering? Again, considering
that the neural features of 3D points as well as superpoints
are meaningless at the beginning of network training, it is
more reliable to explicitly take into account point geom-
etry features such as surface normal distributions to aug-
ment discrimination of superpoints. To this end, for each
superpoint, we simply stack both its neural features and
the classic PFH feature [47] for clustering.

As shown in the blue block of Figure 2, taking the
first epoch as an example, given all H point clouds in the
whole dataset {P 1 · · ·PH}, we have all initial superpoints(
{p̃1

1 · · · p̃
1
m0 · ·} · · · {p̃H

1 · · · p̃
H
m0 · ·}

)
and their features(

{f̂
1

1 · · · f̂
1

m0 · ·} · · · {f̂
H

1 · · · f̂
H

m0 · ·}
)
. Each superpoint’s

features are geometry augmented:

f̂
1

m0 = f̃
1

m0 ⊕ f̈
1

m0 (2)

where the neural features f̃
1

m0 are obtained by Equation 1
and concatenated with 10-dimensional PFH features f̈

1

m0 .
We simply adopt K-means to cluster all these superpoint
features into S semantic primitives:

S primitives Kmeans←−−−−
(
{f̂

1

1 · · · f̂
1

m0 · ·} · · · {f̂
H

1 · · · f̂
H

m0 · ·}
)

Loss Function: Naturally, each superpoint and individ-
ual 3D points within it will be given an S-dimensional one-
hot pseudo-label. For all S primitives, we use the corre-
sponding centroids (PFH simply dropped) estimated by K-
means as a classifier to classify all individual 3D points,
obtaining S-dimensional logits. Lastly, the standard cross-
entropy loss is applied between logits and pseudo-labels to
optimize the neural extractor from scratch.
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Algorithm 1 The training pseudocode of our GrowSP. Given a dataset with H point cloud scans {P 1 · · ·P h · · ·PH}. Ê is
a predefined number of epochs for periodically and progressively growing superpoints. The hyperparameters M1 is set as
80, S as 300, Ê as 10 in all experiments.

Epoch 0: Initial superpoints construction.
•Apply VCCS [39] followed by region growing algorithm [1] on each point cloud scan, and obtain all initial superpoints:
P̃0 =

(
{p̃1

1 · · · p̃
1
m0 · · · p̃1

M0} · · · {p̃h
1 · · · p̃

h
m0 · · · p̃h

M0} · · · {p̃H
1 · · · p̃

H
m0 · · · p̃H

M0}
)
;

Note: the number of initial superpoints for different point cloud scans are usually different. We use the same M0 to
avoid an abuse of notation.

• Load superpoints P̃← P̃0 for training;
• Predefine the number of superpoints at total T levels: {M1 · · ·M t · · ·MT } where M0 > M1 > M t > MT ;
Note: for simplicity, we choose consecutive integers in all experiments, i.e. MT = MT−1 − 1 = · · · = M1 − (T − 1).
• Initilize superpoint level t = 0;

for training epoch e in {1, 2, · · ·E} do
if e%Ê != 0: To optimize the neural network
• Feed all H point clouds into the feature extractor, and obtain neural features {F 1 · · ·F h · · ·FH};
• Obtain neural features according to Equation 1 and PFH features [47] for all superpoints P̃;
• Apply K-means to cluster all superpoints of the entire dataset into S semantic primitives, where each superpoint

and individual 3D points within it will be assigned a one-hot pseudo label;
• The centroids of S semantic primitives estimated by K-means are used as a classifier to classify all individual 3D

points of the dataset. Cross-entropy loss is applied between the logits and pseudo labels to optimize the whole network.

if e%Ê == 0: To progressively grow superpoints
• Update superpoint level t = t+ 1, and get the corresponding predefined superpoint number M t;
• For each point cloud, obtain the latest neural features for each initial superpoint, and then apply K-means to cluster

these initial superpoints into M t new superpoints. For simplicity, we use the same value M t for all H point clouds:
P̃t =

(
{p̃1

1 · · · p̃
1
mt · · · p̃1

Mt} · · · {p̃h
1 · · · p̃

h
mt · · · p̃h

Mt} · · · {p̃H
1 · · · p̃

H
mt · · · p̃H

Mt}
)
;

• Update superpoints P̃← P̃t

3.4. Implementation

Training Phase: To better illustrate our GrowSP, Al-
gorithm 1 clearly presents all steps of our pipeline during
training. Notably, our method does not need to be given the
actual number of semantic classes in training, because we
simply learn semantic primitives.

Testing Phase: Once the network is well-trained, we
keep the centroids of S semantic primitives estimated by
K-means on training split. In testing, these centroids are di-
rectly grouped into C semantic classes using K-means. The
newly obtained centroids for the C classes are used as the
final classifier. Given a test point cloud, all per-point neural
features are directly classified as one of C classes, without
needing to construct superpoints anymore. For the final
evaluation metrics calculation, we follow [7] to use Hungar-
ian algorithm to match predicted classes with ground truth
labels. Implementation details are in Appendix.

4. Experiments
Our method is mainly evaluated on two large-scale in-

door datasets and one challenging outdoor LIDAR dataset:
S3DIS [2], ScanNet [10] and SemanticKITTI [3]. We also
conduct cross-dataset experiments to evaluate the general-

ization ability on unseen scenes, and results are supplied
in Appendix. For evaluation metrics, we report the stan-
dard mean Intersection-over-Union (mIoU), Overall Accu-
racy (OA), mean Accuracy (mAcc) of all classes. More
quantitative and qualitative results are in Appendix.
Table 1. Quantitative results of our method and baselines on the
Area-5 of S3DIS dataset [2]. Only 12 classes are evaluated. The
performance standard deviations of unsupervised methods are cal-
culated over the last five checkpoints during the final 50 epochs.

OA(%) mAcc(%) mIoU(%)

Supervised
Methods

PointNet [40] 77.5 59.1 44.6
PointNet++ [41] 77.5 62.6 50.1
SparseConv [12] 88.4 69.2 60.8

Unsupervised
Methods

RandCNN 23.3±2.6 17.3±1.1 9.2±1.2
van Kmeans 21.4±0.6 21.2±1.6 8.7±0.3

van Kmeans-S 21.9±0.5 22.9±0.4 9.0±0.2
van Kmeans-PFH 23.2±0.7 23.6±1.7 10.2±1.4

van Kmeans-S-PFH 22.8±1.7 20.6±0.7 9.2±0.9
IIC [24] 28.5±0.2 12.5±0.2 6.4±0

IIC-S [24] 29.2±0.5 13.0±0.2 6.8±0
IIC-PFH [24] 28.6±0.1 16.8±0.1 7.9±0.4

IIC-S-PFH [24] 31.2±0.2 16.3±0.1 9.1±0.1
PICIE [7] 61.6±1.5 25.8±1.6 17.9±0.9

PICIE-S [7] 49.6±2.8 28.9±1.0 20.0±0.6
PICIE-PFH [7] 54.0±0.8 36.8±1.7 24.4±0.6

PICIE-S-PFH [7] 48.4±0.9 40.4±1.6 25.2±1.2
GrowSP(Ours) 78.4±1.5 57.2±1.7 44.5±1.1
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Table 2. Quantitative results of 6-fold cross validation on S3DIS
dataset [2]. Only 12 classes excluding clutter are evaluated.

OA(%) mAcc(%) mIoU(%)

Supervised
Methods

PointNet [40] 75.9 67.1 49.4
PointNet++ [41] 77.1 74.1 55.1
SparseConv [12] 89.4 78.1 69.2

Unsupervised
Methods

RandCNN 23.1 18.4 9.3
van Kmeans 20.0 21.5 8.8

van Kmeans-S 20.0 22.3 8.8
van Kmeans-PFH 23.9 24.7 10.9

van Kmeans-S-PFH 23.4 20.8 9.5
IIC [24] 32.8 14.7 8.5

IIC-S [24] 29.4 15.1 7.7
IIC-PFH [24] 29.5 13.2 6.7

IIC-S-PFH [24] 26.3 13.6 7.2
PICIE [7] 46.4 28.1 17.8

PICIE-S [7] 50.7 30.8 21.6
PICIE-PFH [7] 55.0 38.8 26.6

PICIE-S-PFH [7] 49.1 40.5 26.7
GrowSP (Ours) 76.0 59.4 44.6

4.1. Evaluation on S3DIS

The S3DIS dataset [2] consists of 6 large areas with 271
rooms. Each point belongs to one of 13 categories. We find
that the clutter class across different rooms does not have
consistent geometric patterns and semantic meanings. In
the absence of human labels, to automatically discover such
diverse geometries as a common category is challenging
and also unreasonable. Therefore, in the final testing stage,
we only group all points except clutter into 12 classes. The
clutter points are excluded (masked) for metrics calculation.
Note that, in training, all points including clutter are fed
into the network, but clutter points are not used for cluster-
ing and loss computation. We use the standard 6-fold cross
validation in our experiments. MT is set as 20 which is
slightly larger than the actual 12 semantic classes.

Since there is no existing unsupervised method for se-
mantic segmentation on 3D point clouds, we implement
the following four baselines: 1) RandomCNN which uses
K-means to directly cluster the per-point features into 12
classes, where the features are obtained from the randomly
initialized backbone as ours; 2) vanilla K-means which di-
rectly clusters raw 3D points (xyzrgb) into 12 classes; 3)
IIC [24] which is adapted from the existing unsupervised
2D method, where we change to use the same backbone as
ours; 4) PICIE [7] which is also adapted from 2D domain
with the same backbone as ours. For an extensive com-
parison, we also adopt the same semantic primitive clus-
tering module on baselines, denoted as van Kmeans-S/IIC-
S/PICIE-S. The PFH features are also applied to them,
denoted as van Kmeans-S-PFH/IIC-S-PFH/PICIE-S-PFH.
Additionally, three classic fully-supervised methods Point-
Net [40], PointNet++ [41], and SparseConv [12] are also
included for comparison. These baselines are all carefully
trained and evaluated using the same settings as ours. More
details of implementation and experiments are in Appendix.

Analysis: As shown in Tables 1&2, our method clearly

outperforms all unsupervised baselines by large margins.
Basically, the RandomCNN and vanilla K-means fail to ob-
tain any meaningful semantic classes, due to the lack of
meaningful point features. Despite using the same powerful
SparseConv [12] as feature extractor, neither IIC [24] nor
PICIE [7] can obtain high-quality semantic segmentation
results, primarily because neither takes full use of seman-
tics emerging from larger and larger point regions, but in-
stead tends to simply group similar points according to low-
level features. Adding semantic primitive clustering module
can help PICIE get better results, but it is still significantly
worse than our method. Figure 5 shows qualitative results.

4.2. Evaluation on ScanNet

The ScanNet dataset [10] has 1201 rooms for training,
312 rooms for offline validation, and 100 rooms for online
hidden testing. Each point belongs to one of 20 object cate-
gories or undefined background. Since there is no unsuper-
vised result on the hidden test set and uploading baseline
results to online is not allowed, we turn to compare with
the above 4 unsupervised baselines on the validation split.
For this dataset, the hyperparameter MT is chosen as 30
which is slightly larger than 20 categories. During train-
ing, all raw point clouds are fed into neural networks, while
the undefined points are not used for loss computation and
clustering. They will also be masked out during testing.

Table 3. Quantitative results on the validation split of ScanNet
dataset [10]. All 20 categories are evaluated.

OA(%) mAcc(%) mIoU(%)

Unsupervised
Methods

RandCNN 11.9±0.4 8.4±0.1 3.2±0
van Kmeans 10.1±0.1 10.0±0.1 3.4±0

van Kmeans-S 10.2±0.1 9.8±0.3 3.4±0.1
van Kmeans-PFH 10.4±0.2 10.3±0.7 3.5±0.2

van Kmeans-S-PFH 12.2±0.6 9.3±0.5 3.6±0.1
IIC [24] 27.7±2.7 6.1±1.2 2.9±0.8

IIC-S [24] 18.3±2.6 6.7±0.6 3.4±0.1
IIC-PFH [24] 25.4±0.1 6.3±0 3.4±0

IIC-S-PFH [24] 18.9±0.3 6.3±0.2 3.0±0.1
PICIE [7] 20.4±0.5 16.5±0.3 7.6±0

PICIE-S [7] 35.6±1.1 13.7±1.5 8.1±0.5
PICIE-PFH [7] 23.1±1.4 14.0±0.1 8.1±0.3

PICIE-S-PFH [7] 23.6±0.4 15.1±0.6 7.4±0.2
GrowSP (Ours) 57.3±2.3 44.2±3.1 25.4±2.3

Table 4. Quantitative results on the online hidden split of ScanNet
dataset [10]. All 20 categories are evaluated.

mIoU(%)

Supervised Methods
PointNet++ [41] 33.9

DGCNN [60] 44.6
PointCNN [27] 45.8

SparseConv [12] 72.5

Unsupervised Method GrowSP (Ours) 26.9

Analysis: As shown in Table 3, all unsupervised base-
lines fail on this challenging dataset. IIC and PICIE are just
slightly better than RandCNN, demonstrating the level of
segmentation difficulty. By contrast, our GrowSP achieves
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Input Point Cloud Vanilla Kmeans IIC PICIE GrowSP (Ours) Ground Truth
Figure 5. Qualitative results of our method and baselines. The top row is from S3DIS dataset, the row below from ScanNet. Each color
represent one semantic class. Red circles highlight the differences.

very encouraging results. As shown in Table 4, our method
obtains a similar mIoU score on the online benchmark.
Qualitative results are presented in Figure 5.

4.3. Evaluation on SemanticKITTI

The SemanticKITTI dataset [3] consists of 21 sequences
of 43552 outdoor LIDAR scans. It has 19130 scans for
training, 4071 for validation and 20351 for online test-
ing. Each point belongs to one of 19 semantic categories
or undefined background. We set MT as 30, and ex-
clude(masked) undefined background points during testing,
and ignore them in training. Detailed implementations and
results for all categories are in appendix.
Table 5. Quantitative results on the validation split of Se-
manticKITTI dataset [3]. All 19 categories are evaluated.

OA(%) mAcc(%) mIoU(%)

Unsupervised
Methods

RandCNN 25.4±3.3 6.0±0.2 3.2±0.1
van Kmeans 8.1±0 8.2±0.1 2.4±0

van Kmeans-S 10.3±0.3 7.7±0.1 2.6±0
van Kmeans-PFH 11.2±0.6 7.5±0.7 2.7±0.1

van Kmeans-S-PFH 13.2±1.8 8.1±0.4 3.0±0.2
IIC [24] 26.2±1.5 5.8±0.4 3.1±0.3

IIC-S [24] 23.9±1.1 6.1±0.3 3.2±0.2
IIC-PFH [24] 20.1±0.1 7.2±0.1 3.6±0

IIC-S-PFH [24] 23.4±0 9.0±0 4.6±0
PICIE [7] 22.3±0.4 14.6±0.3 5.9±0.1

PICIE-S [7] 18.4±0.5 13.2±0.2 5.1±0.1
PICIE-PFH [7] 46.6±0.2 10.1±0 4.7±0

PICIE-S-PFH [7] 42.7±2.1 11.5±0.2 6.8±0.6
GrowSP (Ours) 38.3±1.0 19.7±0.6 13.2±0.1

Table 6. Quantitative results on the online hidden split of Se-
manticKITTI dataset [3]. All 19 categories are evaluated.

mIoU(%)

Supervised Methods
PointNet [40] 14.6

PointNet++ [41] 20.1
SparseConv [12] 53.2

Unsupervised Method GrowSP (Ours) 14.3

Analysis: As shown in Tables 5&6, all unsupervised
baselines fail on this outdoor dataset. Our method achieves
satisfactory segmentation results on par with the fully-
supervised PointNet [40]. Nevertheless, our method cannot
automatically discover the minor classes such as bike, cy-
clist, etc., which can be seen from the full category results

in appendix. We hypothesize that the failure is caused by
the extreme sparsity of minor classes and the lack of dis-
criminative raw features such as RGB colors.

4.4. Ablation Study

To evaluate the effectiveness of each component of our
pipeline and the choices of hyperparameters, we conduct
the following ablation experiments on Area-5 of S3DIS [2].

(1) Only removing superpoint constructor. In this set-
ting, no superpoint will be constructed and there is no pro-
gressive growing mechanism as well. All per-point features
will be directly clustered into 300 semantic primitives in
training. Other settings are the same as the full method.

(2) Only removing semantic primitive clustering. In
this setting, the semantic primitive number S is directly set
as 12 (the actual number of classes). In both training and
testing, all superpoints will be grouped as 12 categories.

(3) Only removing PFH feature in semantic primitive
clustering. This aims to evaluate the benefits of explicitly
including geometry features for semantic primitive cluster-
ing. All other settings are kept the same.

(4)∼(6) Sensitivity to different voxel sizes of initial su-
perpoints. When constructing initial superpoints for each
point cloud, here we select 3 sizes of voxel grids for VCCS
algorithm, i.e. {25cm, 50cm, 75cm}. Note that, in all ex-
periments of our full method, we constantly set voxel size
as 50cm. Intuitively, the smaller grid size, the more homo-
geneous initial superpoints, and the less semantics reserved.

(7)∼(11) Sensitivity to different choices of M1. Since
M0 is determined by VCCS and we empirically find that
the average number of initial superpoints across S3DIS is
about 160, i.e. M0 ≈ 160, here we select 4 groups for M1,
i.e. {160, 120, 80, 40}. In our full method, we always set
M1 as 80 (Algorithm 1).

(12)∼(15) Sensitivity to different choices of MT . MT

is the ending value of M during progressive growing, we
conduct 4 ablations for MT , i.e. {60, 40, 20, 12}. In our
full method, we always set MT as 20 (Algorithm 1).

(16)∼(19) Sensitivity to decreasing speeds. We con-
duct 4 ablations for the decreasing speed of superpoint num-
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Figure 6. Qualitative results of learned semantic primitives for two
classes in S3DIS: chair/table.

bers in the growing process. After every {40, 13, 5, 3}
epochs, the number of superpoints M t is reduced by 1 in
training. In our full method, we set it as 13 (Algorithm 1).

(20)∼(23) Sensitivity to different choices of S. The
choice of semantic primitive number S also controls how
aggressive our method aims to learn semantics. Here we
select 4 different values for comparison, i.e. {100, 200, 300,
500}. Our full method always sets S as 300 (Algorithm 1).

Analysis: As shown in Table 7, we can see that: 1) With-
out superpoint constructor, the method nearly fails with an
mIoU score of just 20%, unarguably demonstrating the key
role it plays in automatically discovering complex semantic
classes. 2) The simple semantic primitive clustering module
is also critical, if not the same important as superpoint con-
structor, showing that learning semantic elements instead
of classes can effectively alleviate the difficulty. 3) Explic-
itly adding geometry based PFH features can indeed aid the
network to get better results. 4) Our method is extremely
robust to different choices of all hyperparameters such as
M1,MT , S, the voxel size for initial superpoints, and the
decreasing speed. Figure 6 shows examples of learned se-
mantic primitives. From this ablation study, we clearly see
how the proposed components complement each other to
achieve excellent performance without any human labels.

4.5. Comparison with Self-supervised Learning

We further compare with existing self-supervised pre-
training methods PointConstrast [66] (PC) and Contrastive
Scene Contexts [17] (CSC) in the following two groups of
experiments. Note that, PC has two versions: InfoNCE and
Hardest Contrastive, denoted as PC-I/PC-H.

• Group 1: All PC-I/PC-H/CSC/GrowSP are well-trained
on the ScanNet training set. In fact, we simply reuse the
official pre-trained models of PC-I/PC-H/CSC released
by authors. All these trained networks are frozen, fol-
lowed by K-means to group output features into semantic
categories on both ScanNet (val set) and S3DIS (Area 5).

• Group 2: We add a single linear classifier to each of
the four pre-trained models, and only train the classi-
fiers using full supervision until convergence (about 150
epochs for each method) on both ScanNet (training set)
and S3DIS (Areas 1/2/3/4/6). After that, all four models

Table 7. The mIoU scores of all ablated networks on Area-5 of
S3DIS based on our full GrowSP.

mIoU(%)

(1) Remove Superpoint Constructor 20.3±0.4
(2) Remove Semantic Primitive Clustering 25.4±1.0
(3) Remove PFH feature 38.9±0.9

(4) 25cm voxels for initial superpoints 41.3±1.8
(5) 50cm voxels for initial superpoints 44.5±1.1
(6) 75cm voxels for initial superpoints 43.2±0.7

(7) M1 = 160 for progressive growing 43.3±1.3
(8) M1 = 120 for progressive growing 41.3±3.2
(9) M1 = 80 for progressive growing 44.5±1.1
(10) M1 = 40 for progressive growing 43.1±2.0

(12) MT = 60 for progressive growing 42.4±1.1
(13) MT = 40 for progressive growing 43.0±0.8
(14) MT = 20 for progressive growing 44.5±1.1
(15) MT = 12 for progressive growing 38.9±3.0

(16) Decreasing speed 40 for progressive growing 42.2±2.4
(17) Decreasing speed 13 progressive growing 44.5±1.1
(18) Decreasing speed 5 for progressive growing 43.2±0.9
(19) Decreasing speed 3 progressive growing 42.2±1.0

(20) S = 100 for semantic primitive clustering 41.4±1.2
(21) S = 200 for semantic primitive clustering 43.5±0.9
(22) S = 300 for semantic primitive clustering 44.5±1.1
(23) S = 500 for semantic primitive clustering 43.8±1.4
(24) The Full framework (GrowSP) 44.5±1.1

are directly tested on both ScanNet (val set) and S3DIS
(Area 5). Basically, this is to evaluate the quality of
learned point features via linear probing.

Table 8. OA / mAcc / mIoU (%) scores of Groups 1&2.
Group 1 (K-means) Group 2 (Linear Probing)

ScanNet S3DIS ScanNet S3DIS

PC-I [66] 27.6 / 10.1 / 5.1 43.8 / 18.6 / 10.4 57.1 / 19.6 / 13.3 64.3 / 32.6 / 23.1
PC-H [66] 29.5 / 12.5 / 5.8 42.8 / 17.5 / 11.3 62.6 / 18.8 / 13.3 63.4 / 36.3 / 25.9
CSC [17] 44.9 / 11.8 / 7.7 43.3 / 22.4 / 13.5 69.3 / 29.5 / 21.8 78.2 / 43.6 / 35.3
Ours 62.9 / 44.3 / 27.7 56.4 / 43.1 / 28.6 73.5 / 42.6 / 31.6 80.1 / 55.4 / 44.7

Analysis: As shown in Table 8: 1) All existing self-
supervised methods completely fail to estimate semantics
using K-means, while our method is significantly better. 2)
Given an additional layer for linear probing, our method
also shows clearly better segmentation results. We can see
that the existing self-supervised pre-trained features actu-
ally do not have rich semantic category information, while
our method can directly learn semantics.

5. Conclusion
We demonstrate that multiple 3D semantic classes can

be automatically discovered using a purely unsupervised
method from real-world point clouds. By leveraging a sim-
ple progressive growing strategy to create larger and larger
superpoints over time, our method can successfully learn
meaningful semantic elements. Extensive experiments
validate the effectiveness of our approach.
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