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Abstract

Self-supervised pretraining on large unlabeled datasets
has shown tremendous success in improving the task per-
formance of many 2D and small scale 3D computer vi-
sion tasks. However, the popular pretraining approaches
have not been impactfully applied to outdoor LiDAR point
cloud perception due to the latter’s scene complexity and
wide range. We propose a new self-supervised pretrain-
ing method ISCC with two novel pretext tasks for LiDAR
point clouds. The first task uncovers semantic information
by sorting local groups of points in the scene into a glob-
ally consistent set of semantically meaningful clusters using
contrastive learning, complemented by a second task which
reasons about precise surfaces of various parts of the scene
through implicit surface reconstruction to learn geomet-
ric structures. We demonstrate their effectiveness through
transfer learning on 3D object detection and semantic seg-
mentation in real world LiDAR scenes. We further design
an unsupervised semantic grouping task to show that our
approach learns highly semantically meaningful features.

1. Introduction
Robust and reliable 3D LiDAR perception is critical for

autonomous driving systems. Unlike images, LiDAR pro-
vides unambiguous measurements of the vehicle’s 3D en-
vironment. A plethora of perception models have arisen in
recent years to enable a variety of scene understanding tasks
using LiDAR input, such as object detection and semantic
segmentation. However, training these models generally re-
lies on a large quantity of human annotated data, which is
tedious and expensive to produce.

Recently, self-supervised learning has attracted signifi-
cant research attention [5, 7, 16–18], as it has the potential
to increase performance on downstream tasks with limited
quantities of annotated data in the image domain. However,
self-supervised learning has shown less impact for outdoor
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Figure 1. With frame t as input, we 1) apply contrastive cluster
learning to reason about unsupervised semantic clustering and also
enforce feature consistency across different views, and 2) conduct
implicit surface reconstruction in randomly cropped out regions.

3D point clouds. A core difficulty stems from the rela-
tive difficulty in designing appropriate pretext tasks used
for self-supervision. In the image domain, the ImageNet
dataset [35] provides millions of canonical images of ev-
eryday objects, allowing for straightforward manipulations
to generate pretext tasks that lead to strong object-centric or
semantic group-centric feature learning. While large-scale
unlabeled outdoor LiDAR datasets are relatively easy to col-
lect, the data samples exhibit a high level of scene complex-
ity, sparsity of measurements, and heavy dependency on the
observer positioning and sensor type. These factors pose
great challenges for creating useful pretext tasks.

Recent works have proposed 3D-specific self-supervised
learning, starting with scene-level contrastive learning [44,
49], followed by the work of [30] and [47], which use finer,
region-level granularity to better encode individual compo-
nents of large scale LiDAR point clouds. However, these
techniques do not explicitly make use of regularities in 3D
shapes and surfaces.

In our work, we propose ISCC (Implicit Surface Con-
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trastive Clustering) which consists of two new pretext tasks
to automatically learn semantically meaningful feature ex-
traction without annotations for LiDAR point clouds. The
first task focuses on learning semantic information by sort-
ing local groups of points in the scene into a globally consis-
tent set of semantically meaningful clusters using the con-
trastive learning setup [5]. This is augmented with a second
task which reasons about precise surfaces of various parts
of the scene through implicit surface reconstruction to learn
geometric regularities. A high level overview is found in
Figure 1. Furthermore, we showcase a novel procedure to
generate training signals for implicit surface reasoning in
the absence of dense 3D surface meshes which are difficult
to obtain for large scale LiDAR point clouds.

Using the large real world KITTI [13] and Waymo [37]
datasets, we show that our approach is superior to re-
lated state-of-the-art self-supervised learning techniques in
downstream finetuning performance in semantic segmenta-
tion and object detection. For example, we see a 72% gain
in segmentation performance on SemanticKITTI versus the
state-of-the-art [48] when fine-tuned with 1% of the anno-
tations, and exceeds the accuracy achieved by using twice
the annotations with random initialized weights. As well,
we analyze the semantic consistency of the learned features
through a new unsupervised semantic grouping task, and
show that our learned features are able to form semantic
groups even in the absence of supervised fine-tuning.

2. Related work
We aim to push the boundaries of self-supervised fea-

ture learning for large-scale 3D LiDAR point clouds in the
autonomous driving setting. We draw inspiration from nu-
merous existing methods for related tasks.

Self-supervised feature learning Automatically learning
to extract features using deep neural networks has attracted
significant attention, pioneered by researchers in the natural
language processing domain [10, 12, 27], followed by no-
table achievements using camera images [5, 7, 16–18]. In
this setting, the goal is to learn general purpose feature ex-
tractors which can be finetuned to tackle a variety of tasks,
such as understanding and generation for language, or clas-
sification, segmentation, and detection for images. The core
component of these approaches is the design of pretext tasks
(and its accompanying solution) which can be automatically
generated from unlabeled data. The features learned by the
network while attempting to solve these tasks have been
shown to transfer well to the desired downstream tasks.

While these works have demonstrated significant capa-
bilities in the language and images, the drastically different
modality of large-scale 3D LiDAR point clouds have given
rise to a related but distinct line of work [8, 19, 44, 49].
These works use differently augmented views of the same

scene or temporally different frames of the same sequence
to construct pretext tasks and learn features using con-
trastive objectives. More recently, [47] samples a limited
number of points from the scene and considers their spheri-
cal neighborhoods as region proposals, and then apply local
and global contrastive loss on those region features. Unlike
these approaches, we introduce the 3D geometry-inspired
pretext task of local surface reasoning to improve our self-
supervised feature extraction.

Self-supervised task-specific learning for 3D point
clouds There exist cases where a surrogate loss function
can be designed to directly train a neural network to solve
the end-goal task. For example, [3, 42] use self-supervision
for LiDAR scene flow estimation, while [11, 23] extend
self-supervised LiDAR motion reasoning to learn suitable
features for detecting other traffic participants. Unlike these
approaches, we note that our technique is driven by seman-
tic reasoning and is thus capable of improving perception
performance over various stationary semantic regions.

Learning surface representations from 3D point clouds
Previously, [2, 28, 40, 50] explored numerous models and
output parameterization for converting a relatively sparse
input point cloud into a denser representation. In our tech-
nique, we further leverage 3D geometric learning as a com-
ponent of its pretext task to learn useful local point cloud
feature extraction, instead of as an end goal in itself. Our
approach leverages the implicit surface [24, 34] concept
where the presence of the surface is represented by the char-
acterization of distinct points near or on the surface. How-
ever, unlike the existing work which generally require dense
ground truth, our objective is simpler and uses automati-
cally generated targets for its prediction.

Unsupervised semantic clustering Lastly, our work
draws inspiration from the existing work on using unla-
beled data to automatically discover semantically meaning-
ful groupings within a data sample. Previously, this task has
been studied extensively in the image domain by works in-
cluding [20, 21, 39, 41]. In the 3D domain, a recent work
[30] targets self-supervised semantic reasoning over point
clouds by applying heuristics-based methods to isolate in-
dividual objects (segments) in 3D LiDAR sweeps. They
extract segment-specific features and apply contrastive ob-
jective over each segment to learn to distinguish from each
other. Our method proposes an additional objective over the
segments to learn to sort the segments into a predetermined
number of semantic clusters.
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Algorithm 1 Training Framework for ISCC
Input Network encoder Fθ and momentum encoder Fm;

Point cloud frames D = {X}Ni=1; Pre-computed point
group labels {V }Ni=1; Global feature queues Fg ∈ RC×d;

Output Pre-trained weight for the network encoder Fθ

for xi in X do
- Sample a different frame xj from D
- Generate two augmented versions x̂i and x̂j
- For shared point groups V between x̂i and x̂j , apply

random cropping and create query points Q1 for x̂i
- Feature embeddings: h1 = Fθ(x̂i), h

2 = Fm(x̂j)
- Point group features: f1 = avg pool(h1, V ), f2 =

avg pool(h2, V )
- Global contrastive clustering loss: Lc(f

1, f2, Fg)
- Local occupancy prediction loss: Lo(h

1, Q1)
- Update Fg with f2 and update Fθ

end for

3. Method
We introduce a new self-supervised pretraining frame-

work ISCC for outdoor LiDAR point clouds. The main ap-
proach is outlined in Algorithm 1, and visualized in Figure
1. We propose two pre-text tasks for self-supervised learn-
ing: contrasting cluster assignments and occupancy predic-
tion. We first describe the steps for local point group gener-
ation and the formulation of the contrastive clustering task
in Section 3.1. Then we show how to generate supervisions
for the occupancy prediction task and how to perform the
prediction in Section 3.2. Finally, we list the implementa-
tion details in Section 3.3.

3.1. Contrasting Semantic Cluster Assignments

Outdoor LiDAR point clouds usually contain large and
complex scenes with numerous objects within each sample.
Unlike most previous self-supervised learning approaches
that reason at the sample level, a single global vector en-
coding is incapable of describing the attributes and loca-
tions of the various objects in the scene. Thus, we perform
representation learning on local point group features. This
pretext task is based on two ideas: 1) point group features
should be sorted into consistent semantic clusters across the
dataset for semantic reasoning, and 2) the features of differ-
ent point groups should be descriptive and distinct to cap-
ture their unique attributes and discourage feature collapse.

3.1.1 Point Group Generation

We start by grouping points in the scene to produce a
tractable number of entities. In a typical scene, foreground
objects classes (such as cars, pedestrians and cyclists) are
spatially well-separated, while the ground plane is relatively
easy to identify. Due to this data characteristic, we remove

the ground plane points and apply unsupervised geometric
clustering to group the remaining points, similar to [14, 30].
Additionally, with sequential data streams, we make use of
temporal pairs of LiDAR frames and form consistent clus-
ters across multiple frames for multi-frame reasoning.

For each frame Xi in a stream of LiDAR point clouds,
we gather a set of frames {xj} from its neighbouring frames
{xi−ks, ..., xi−s, xi+s, ..., xi+ks} and align the point clouds
with the provided relative ego-vehicle poses, yielding 2k+1
sample frames spaced s frames apart. To balance the desire
for increased view variability with computational efficiency,
we set k = 3 and s = 5. Next, we apply the plane estima-
tion algorithm [22] to remove the ground plane points and
use HDBSCAN [26] to form different point groups. Note
that each groups contains points from xi and {xj}, provid-
ing consistent groups IDs across the various frames. We
denote the generated group IDs as {V }Ni=1. This process is
visualized in a) and b) of Figure 2.

Point group augmentation For a sampled point cloud
pair (xi, xj), we select up to K = 100 shared point groups
between the two frames. We then apply local cropping [49]
on each selected groups in xi. We use 20% as cropping ratio
for our experiments. We keep the original geometry in xj
so that it can propagate dense feature information through
the global cluster reasoning. Then, we apply global random
rotation, translation and scaling as additional data augmen-
tation to produce x̂i and x̂j for use by the pretraining.

Point group feature extraction After the data prepara-
tion, x̂i and x̂j are mapped to feature embeddings by apply-
ing a 3D U-Net. Adapting the method of He et al. [18], we
use an encoder Fθ to extract features for x̂i and a momen-
tum encoder Fm to extract features for the augmented view
x̂j . The weights of the momentum encoder are updated with
an exponential moving average (EMA) from the encoder’s
weights. The update rule is θt ← λθt + (1 − λ)θs with a
fixed λ = 0.999. We then group the per-voxel features by
their corresponding point groups and apply average-pooling
to the last layer’s features to extract the point group features
f1 and also f2 from the momentum encoder. Finally, we
apply a two layer MLP as in [7] and L2 normalization to
compute the cluster embeddings .

3.1.2 Contrastive Clustering Loss

Contrasting cluster assignments has been studied in 2D
computer vision [6]. However, we focus on conduct-
ing cluster assignments on local point groups and reason-
ing across different frames globally. Traditional methods
such as k-means and DBSCAN have proven to be effec-
tive but time-consuming to apply on very large datasets.
Recently, [1, 5] have shown that pseudo-label assignment

21718



Figure 2. Data preparation process: we (a) stack LiDAR frames in global coordinates for multiple frames, remove ground points [22], and
apply geometric clustering to generate linked point group IDs (b) across multiple frames to enable the contrastive semantic clustering task.
For each component, we further apply crop augmentation in one frame, and use the cropped out points for the implicit surface reasoning
task (c).

can be formulated as an optimal transport problem, where
the Sinkhorn-Knopp algorithm [9] can be used for efficient
clustering. We follow a similar approach for our unsuper-
vised feature clustering.

Global feature queue We first build a global feature
queue Fg ∈ RC×d to store local point group features over
multiple data instances. We set queue size C to 1M and
feature dimension d to 100 for our experiments. The global
feature queue is created with cluster features f2 from the
momentum encoder.

Global feature clustering For building global clusters,
we follow the same method proposed by Asano [1]. Dur-
ing training, given query point group features f2 and global
feature queue Fg , we first concatenate them and then ap-
ply a classification head hg : Rd → RC to convert the
feature vectors to class (cluster ID) scores. C is number
of classes and we set it to 100 for our experiments. We
then map them to class probabilities via a softmax operator:
Pg = softmax(concat(f2, Fg) · hg). We find the class la-
bel assignments Y for the query features f2 by performing
iterative Sinkhorn-Knopp updates [9].

Global contrastive clustering loss After extracting the
class label assignments Y , we directly map it to f1 using the
paired correlation between f1 and f2. Using the query fea-
tures to find the cluster assignments introduces additional
data augmentation since it provides a different view of the
local points from a different timestamp.

Given a pair of point group features f1, f2 and their class
label assignments Y , we apply the classification head hg to
f1 and softmax to compute the predicted class probabilities:
P c = softmax(f1 · hg). We use multi-class cross-entropy
loss to learn the global constrastive clustering:

Lg(P
c, Y ) = −

M∑
m=1

ym log(pcm) (1)

where M is the number of point groups. We set the upper

bound of M to 1k for our experiments. To encourage the
network learning to form more distinct semantic clusters,
we also add a local contrastive loss, which is a modified
InfoNCE loss to conduct contrastive learning between dif-
ferent point groups of the same point cloud:

Ll = −
∑
i∈K

log
exp(f1i · f2i /τ)∑

j∈K exp(f1i · f2j /τ)
(2)

τ is a temperature parameter [43]. Note that the positive ex-
amples are two point group features from different frames,
while negative examples are from other point groups un-
der different frames. This local contrastive loss enables the
network to learn view consistent features from different Li-
DAR frames. Combining the two losses, we have the global
contrastive clustering loss: Lc = Lg + Ll.

3.2. Occupancy Prediction

While implicit representation has been widely used for
scene and object level reconstruction, we study its po-
tential as a pretext task for pretraining. Although recent
works [31, 45] have shown some success of using this pre-
text task, it has not been studied with large scale LiDAR
point clouds. There exists several challenges for occupancy
prediction in outdoor LiDAR point clouds. Due to the point
cloud’s scale and sparsity, it is computationally infeasible
to form a dense 3D feature volume for occupancy predic-
tion and during training as uniform query point sampling
across the scene is extremely inefficient. Most of the query
points will be lying in empty voxels or near background
points, such as road. Moreover, ground truth surface in-
formation for learning surface reconstruction is difficult to
obtain as manual generation of watertight surface meshes is
cost prohibitive, while moving objects pose issues for auto-
matic surface reconstruction.
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Figure 3. Implicit surface pretext task: we remove a part of a point
cloud, and generate features of queried points using neighborhood
interpolation to predict the semantic label of the point if it is on
the surface, or not a surface point otherwise.

Occupancy Label Generation We generate the query
points Q1 = {q1k}Kk=1 near K sampled local point groups.
We apply local cropping to the point groups in xi, while
sampling 100 points from the cropped regions as q1k. We
add random translation noise with a maximum norm of 1m
to 50 points with the assumption that the result is highly
unlikely to remain valid surface points. As such, we as-
sign them with zero occupancy probability. The remaining
50 points are assigned with full occupancy probability. We
visualize this procedure in part c) of Figure 2.

Sparse Feature Aggregation Due to extensive computa-
tional complexities, we directly aggregate features for query
points from a sparse volume representation h1. As illus-
trated from Figure 3, we first apply k-NN to find k neigh-
bouring voxel centers for each query point. Then we in-
terpolate the selected voxel features weighted by the in-
verse distance norms between the query point and the se-
lected voxel centers. We denote the aggregated features as
ϕ(h1, Q1). In order to encode the position information, we
calculate the offsets between the query point and neighbor
voxel centers and project them to feature space with one-
layer MLP. We also interpolate the position embeddings
with the inverse distance norms, and denote them as f1q .

Semantic Aware Reconstruction Following the practice
from [29, 32], we apply an occupancy network to extract the
final embedding: f1o = ψ(f1q , ϕ(h

1, Q1)), where ψ contains
one ResNet fully connected block [32]. Since there are un-
supervised cluster assignments for all point groups, we as-
sign the labels Y to the K sampled point groups and add one
more class for the points with zero occupancy probabilities

to construct label Z. We apply the multi-class cross entropy
loss to predict the semantic aware occupancy points:

Lo(P
o, Z) = −

K∑
m=1

zm log(pom) (3)

where K is the number of sampled point groups, and P o =
softmax(f1o ). We visualize this in Figure 3.

3.3. Implementation Details

In our experiments, we use a standard SGD optimizer
with momentum 0.9, and we use a cosine learning rate
scheduler [25] which decreases from 0.06 to 0.00006 and
train the model for 500 epochs with a batch size of 80.

4. Experimental results
A key goal of self-supervised learning is to learn general

features using unlabeled datasets and provide better pre-
trained models for different downstream tasks, especially
when the quantity of task-specific annotations is limited.
The generalizability of the learned features to different tasks
improves the usability of the trained models and reduces the
need for task-specific method design.

In this section, we first describe the datasets and network
architectures used during pretraining in Section 4.1. Then,
we discuss the baseline methods in Section 4.2, followed by
present quantitative improvements in the downstream tasks
of semantic segmentation and object detection. These re-
sults show that the representations learned by our method
generalizes to different applications. Finally, we analyze
the semantic information captured by the learned features
with a new unsupervised semantic grouping task.

4.1. Network pretraining

Pretraining Datasets We use two large scale, well-
established public datasets for pretraining: SemanticKITTI
(SK) [4] and Waymo Open Dataset (WOD) [37]. SK is
based on the original KITTI [13] dataset, which enabled a
tremendous amount of foundational progress in the LiDAR
perception field. It contains 19k training frames over 10 se-
quences with approximately 122k points per scene. Waymo
Open Dataset [37] is recently released and provides a fur-
ther leap in the scale and variability of data by providing
160k training frames from 850 driving sequences, with a
higher point density of 161k points per scene on average.

Network Architecture We use the popular 3D sparse
U-Net as the backbone[15, 51], but note that our tech-
nique is not specific to this backbone. The input point
cloud is voxelized using a regular grid (at a resolution of
0.1×0.1×0.1m for SemanticKITTI and 0.1×0.1×0.15m
for Waymo). To maximize generalizability, we only take the
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% of SK Used for Fine-Tuning % of WOD Used for Fine-Tuning

Self-Supervision Method 1% 2% 5% 10% 1% 2% 5% 10%

No Pre-training 38.9 44.0 51.7 53.4 42.5 45.8 50.4 52.8
PointContrast [44] 41.1(+2.2) 45.0(+1.0) 51.0(-0.7) 52.3(-1.1) 43.8(+1.3) 46.7(+0.9) 49.0(-1.4) 53.4(+0.6)

DepthContrast [49] 39.2(+0.3) 44.7(+0.7) 49.9(-1.8) 52.3(-1.1) 42.7(+0.2) 45.8(+0.0) 50.7(+0.3) 53.0(+0.2)

SegContrast [30] 42.2(+3.3) 45.7(+1.7) 51.0(-0.7) 53.9(+0.5) 43.4(+0.9) 46.2(+0.4) 50.9(+0.5) 53.8(+1.0)

SSPL [48] 42.5(+3.6) 46.4(+2.4) 51.0(-0.7) 53.6(+0.2) 44.8(+2.3) 47.3(+1.5) 51.3(+0.9) 53.5(+0.7)

Ours 45.1(+6.2) 49.0(+5.0) 53.0(+1.3) 55.2(+1.8) 46.0(+3.5) 47.9(+2.1) 51.7(+1.3) 54.1(+1.3)

Table 1. Semantic segmentation fine-tuning performance on SemanticKITTI Dataset and Waymo Open Dataset (mIoU)

Car (Moderate) Pedestrian (Moderate) Cyclist (Moderate)

Self-Supervision Method 5% 10% 20% 50% 5% 10% 20% 50% 5% 10% 20% 50%

No Pre-training 60.2 69.1 74.3 77.8 48.2 58.8 59.7 59.2 44.9 57.6 63.3 70.5
PointContrast [44] 62.2 70.6 66.9 77.4 48.6 58.2 58.6 59.1 46.8 58.4 64.6 70.9
DepthContrast [49] 65.0 72.5 77.1 77.7 48.5 55.1 57.1 57.7 51.9 59.6 65.3 71.8
SegContrast [30] 65.4 73.0 77.0 77.9 48.0 57.2 57.6 58.1 50.6 59.3 65.8 72.0
SSPL [48] 63.3 71.1 76.8 76.8 48.1 55.3 57.0 58.2 48.0 58.8 64.2 71.3

Ours 68.9 74.3 77.3 78.4 48.9 56.5 59.9 59.8 53.2 60.7 69.5 73.8

Table 2. 3D object detection fine-tuning performance on sub-sampled KITTI Dataset (mAP R11)

point coordinates as input data, and ignore other attributes
including intensity. For the semantic segmentation task, we
use the same backbone as [46]. The sparse input voxel grid
is first processed by an input convolution. Next, the fea-
tures are encoded by a sparse U-Net[51] architecture with
6 layers. Each layer uses a convolution and non-linearity
blocks to first transform the incoming features, perform 2x
downsampling, and decode the result by merging features
from the next higher layer. The final output of the network
is reprojected to yield the 64-dimensional per-point features
which are used during pretraining. For the object detection
task, we use a similar U-Net model as in OpenPCDet [38],
which consists of four sparse downsampling blocks for en-
coding and four sparse upsampling blocks for decoding.

4.2. Baseline methods

We select 4 relevant baseline methods for LiDAR-only
self-supervised learning. The first baseline PointContrast
[44] generates point pairs between different views and en-
forces feature consistency between point pairs with con-
trastive learning. We reproduce their approach with 2048
sampled point pairs for each frame during training. Next,
we compare against DepthContrast [49] uses cross repre-
sentation feature consistency for self-superwised learning.
However, they only perform feature learning on a globally-
pooled feature embedding. Similar to our approach, the
baseline of SegContrast [30] also applies ground removal
and DBSCAN clustering to extract point groups, but they
only perform contrastive learning on the point group fea-

tures. The most recent baseline SSPL first crops the entire
scene to few hundreds of occupied volumes and then applies
both local and global contrastive learning on the extracted
volume features. Finally, we compare against random ini-
tialization to quantify the absolute impact of pretraining.

To ensure fairness, we use the same model architectures,
pretraining datasets, and procedures for our method as well
as to reproduce all baseline methods. All training is con-
ducted on systems with 8 NVIDIA V100 GPUs. More de-
tails can be found in the supplementary materials.

4.3. Downstream Task 1: Semantic Segmentation

Our algorithm implicitly reasons about the semantic
identities of groups of points, and is most directly related
to the task of assigning meaningful labels to every 3D point
in the environment. Therefore, we first evaluate our method
on semantic segmentation as the downstream task.

We conduct the pretraining on both SemanticKITTI and
WOD, and finetune with reduced quantities of labeled data.
To avoid the domain adaptation issues due to different sen-
sor configuration, we pretrain and finetune on the same
dataset. In self-supervised learning settings, the dataset
used for pretraining is usually orders of magnitude larger
than the labeled data for downstream tasks. Therefore
we present semantic segmentation results on several frac-
tional subsampled sets of the training data provided by Se-
manticKITTI and WOD. The sets are selected such that
each smaller set is fully contained within all larger sets. The
results are shown in Table 1. Similar to [48], we add a small
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Car Cycle* Truck Ped Cyclist Build Fence Vege Trunk Pole Sign Mean**

GT 89.6 46.9 76.3 64.2 49.6 80.4 42.0 69.2 59.1 48.6 62.6 62.6
No Pretraining 20.8 2.7 4.1 2.1 0.0 42.1 17.4 35.7 7.8 4.1 2.7 12.7
PointContrast [44] 40.0 3.1 7.4 6.5 2.7 39.3 5.6 29.8 15.1 9.9 3.9 14.8
DepthContrast [49] 57.3 2.2 0.4 0.1 0.0 45.1 10.2 47.0 15.9 12.1 0.1 17.3
SegContrast [30] 51.6 2.5 4.8 3.5 4.8 52.7 12.0 48.6 20.7 21.8 5.8 20.8
SSPL [48] 34.6 1.1 12.4 2.1 1.9 51.2 17.2 26.6 5.7 2.6 1.6 14.3
Ours 67.7 4.1 14.7 4.8 3.9 71.1 27.5 51.4 23.6 18.0 5.5 26.6

Table 3. Feature Evaluation: unsupervised semantic grouping on prominent classes in SemanticKITTI Dataset (IoU). * cycle class is the
average of bicycle and motorcycle. ** mean is computed over selected classes. Further details are in the supplementary materials.

decoder with two pointwise layers to transform the fea-
tures produced by the self-supervised backbone, and fine-
tune with annotations until convergence. To reduce noise in
the performance estimation, we report averaged results over
the last 15% of the checkpoints.

As shown in Table 1, our approach significantly im-
proves downstream semantic segmentation when the anno-
tation is limited. Most impressively, we observe that fine-
tuning on only 1% of labeled data with our pretrained model
results in better performance than training from scratch with
2% of labeled data. As well, we observe that competitor ap-
proaches can often produce worse results after fine-tuning
when larger quantities of annotated data (5% and 10%) are
available. This indicates that their learned features can be
helpful in scenarios with very little annotations, but intro-
duce harmful biases in the network initialization that pre-
vent the model from optimally learning from larger quan-
tities of labels. In contrast, our approach consistently sees
performance improvements across all settings.

4.4. Downstream Task 2: 3D Object Detection

The 3D object detection task primarily focuses on identi-
fying foreground objects of interest and proposing a bound-
ing cuboid that encompasses the complete extent of the ob-
ject. However, there are many situations where the object
is heavily obscured by itself or other objects, or otherwise
has only limited perceived points due to its distance to the
LiDAR sensor. As such, this task requires a precise un-
derstanding of the complete shapes of foreground objects.
Our approach directly reasons about the missing informa-
tion via the implicit surface reconstruction, which allows it
to significantly outperform the baseline methods.

Similar to the semantic segmentation task, we pretrain
and finetune on the same dataset. We present the finetuning
results on uniformly subsampled sets of the training data
provided by KITTI. We use the detection framework from
Part-A2 [36] and pretrain the 3D U-Net backbone used by
their method. We follow the same training settings as in
OpenPCDet [38] for finetuning. Likewise, we average the
performance over the last five checkpoints to reduce noise.

As shown in Table 2, our approach significantly im-

proves downstream detection performance, especially when
the annotation is limited. For example, we observe 8.7%
and 8.3% improvements in mAP on car and cyclist, respec-
tively, when annotations for 1% subsets of the full datasets
are provided. These improvements are much more signif-
icant than those gained from the baseline methods, which
shows the effectiveness of our approach.

4.5. Feature evaluation: unsupervised semantic
grouping

To directly examine the features learnt, we propose a
feature evaluation method on LiDAR point clouds: unsu-
pervised semantic grouping. After obtaining the pretrained
networks, we extract the point group features for each scene
and aggregate them globally to perform k-means clustering.
We then assign the generated k-means labels to each cluster.
With the k-means labels and ground truth semantic labels,
we formulate a classic assignment problem where we opti-
mally match each k-means label to one ground truth label to
maximizing the resulting mIoU.

For our experiments, we use 1000 clusters for k-
means and randomly sample 1% (191 frames) from Se-
manticKITTI for this evaluation for computation tractabil-
ity considerations. We use the MIP solver from the Google
Optimization Tools [33] to solve the assignment problem.
With the optimal assignment, we map the cluster IDs to 19
ground truth class IDs defined in SemanticKITTI, and com-
pute the segmentation accuracy.

In Table 3, we show the per-class IoU evaluation on se-
lected classes for baseline methods and our approach. Since
a point group can contain multiple semantic classes, we
also show the upper-bound of per-class IoU by using the
ground truth labels, representing the limitations of HDB-
SCAN. Overall, our approach outperforms baseline meth-
ods in mIoU over most categories, especially for frequent
classes such as building, vegetation and cars, where the per-
formance of our method is close to the upper-bound. It
shows that our approach is able to identify common seman-
tic features across the dataset and cluster them well during
pretraining. However, features corresponding to rarely seen
objects such as pedestrians and cyclists may be considered
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1% 2% 5% 10%

None 38.9 44.0 51.7 53.4
occ-only(8) 40.5(+1.6) 45.7(+1.7) 51.4(-0.3) 52.0(-1.4)

occ-only(16) 43.0(+4.1) 46.1(+2.1) 51.9(+0.2) 54.0(+0.6)

occ-only(32) 43.6(+4.7) 46.0(+2.0) 51.7(+0.0) 54.1(+0.7)

Table 4. Occupancy Prediction Only: We show the relative perfor-
mance gain with only performing the occupancy prediction pretext
task and we show different results for using 8, 16 and 32 neigh-
bouring voxel features respectively.

1% 2% 5% 10%

None 38.9 44.0 51.7 53.4
Single-view 43.7(+4.8) 48.1(+4.1) 51.7(+0.0) 54.4(+1.0)

Multi-view(2) 44.0(+5.1) 48.4(+4.4) 52.8(+1.1) 54.9(+1.5)

Multi-view(5) 45.1(+6.2) 49.0(+5.0) 53.0(+1.3) 55.2(+1.8)

Table 5. Single-view vs Multi-view: We show the relative perfor-
mance gain with single-view alone, multi-view sequences with 2
frames separated and 5 frames separated.

as noisy points during clustering and result in incorrect clus-
ters. Therefore, for those categories, our approach performs
worse than the baseline methods which use less global rea-
soning, such as PointContrast and SegContrast. We believe
that this issue can be solved by applying weights based on
appearance frequency to the clustering loss. Please see the
supplemental materials for evaluation on other classes.

5. Ablation studies
In this section, we analyze the impact of each compo-

nent in our pretraining framework. We use fine-tuning for
semantic segmentation on SemanticKITTI for this analysis.

5.1. Importance of occupancy prediction

We examine the impact of occupancy prediction by re-
moving the objective. As seen in Table 6 where only the
global clustering objective is used, the performance is sig-
nificantly lower than in Table 1, especially when more an-
notations are available during finetuning. It shows that our
approach learns additional features with this local geometry
reconstruction task. Furthermore, Table 4 also shows that
our pretraining method benefits from an increase in neigh-
bouring voxel features used for aggregation, gradually sat-
urating with 16 neighboring features.

5.2. Single-view vs multi-view

Although our method does not directly require multi-
view data as input to the network, it benefits from using
multi-view information as a form of natural data augmen-
tation for the global contrastive clustering task. In Table 5,
we observe that our approach performs best with multi-view

1% 2% 5% 10%

None 38.9 44.0 51.7 53.4
local-only 41.3(+2.4) 45.9(+1.9) 51.7(+0.0) 53.0(-0.4)

global-only 41.7(+2.8) 45.5(+1.5) 51.8(+0.1) 52.5(-0.9)

full(100) 43.6(+4.7) 47.0(+3.0) 51.8(+0.1) 53.1(-0.3)

full(200) 43.5(+4.6) 46.1(+2.1) 51.9(+0.2) 53.6(+0.2)

Table 6. Global Clustering Only: We show the relative perfor-
mance gain with only performing the global clustering pretext
task under different settings: only using the local contrastive loss
(local-only), only using the global culstering loss (global-only),
and full contrastive clustering with 100 and 200 clusters.

data. As the ego-vehicle moves, a larger frame separation
allows elements in the scene to be observed from widely dif-
ferent angles. This increases the difficulty of the contrastive
task, as the object has very different perceived appearance
in the paired frames. However, it is interesting to note that
our approach can already outperform baseline methods in
Table 1 even with single view data.

5.3. Importance of global clustering

Next, we showcase the impact of the global clustering
task. In Table 4, we see that the performance degrades
relative to Table 1 if only the occupancy prediction task
is used. Moreover, if we only apply the local contrastive
loss, the performance improvements are minimal based on
Table 6. If we only apply the global clustering loss, the
number of distinct clusters after Sinkhorn clustering will
reduce, resulting in minimal improvements. Therefore, our
approach reaches the best performance only when applying
the full contrastive loss. We observed that setting the maxi-
mum number of clusters to 100 and 200 have similar results,
showing that the method is robust to the maximum number
of clusters for Sinkhorn clustering.

6. Conclusion and future work

In conclusion, we propose ISCC, a new self-supervised
pretraining approach with two pretext tasks: global cluster-
ing and occpancy prediction. We show that our approach
extracts meaningful features for semantic segmentation and
object detection over different datasets. Due to the special
characteristics of LiDAR pointclouds, our approach con-
tains several components that can only be applied to sim-
ilar data, such as ground plane removal. Additionally, we
only study the in-domain finetunig performance instead of
producing a general purpose foundation model as seen in
images and language understanding. We believe that these
are possible areas for future research. We hope ISCC will
inspire further advances in 3D self-supervised learning.
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[11] Emeç Erçelik, Ekim Yurtsever, Mingyu Liu, Zhijie
Yang, Hanzhen Zhang, Pınar Topçam, Maximilian Listl,
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