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Abstract

Recently, self-attention networks achieve impressive per-
formance in point cloud segmentation due to their superior-
ity in modeling long-range dependencies. However, com-
pared to self-attention mechanism, we find graph convolu-
tions show a stronger ability in capturing local geometry
information with less computational cost. In this paper, we
employ a hybrid architecture design to construct our Graph
Convolution Network with Attentive Filtering (AF-GCN),
which takes advantage of both graph convolution and self-
attention mechanism. We adopt graph convolutions to ag-
gregate local features in the shallow encoder stages, while
in the deeper stages, we propose a self-attention-like mod-
ule named Graph Attentive Filter (GAF) to better model
long-range contexts from distant neighbors. Besides, to fur-
ther improve graph representation for point cloud segmen-
tation, we employ a Spatial Feature Projection (SFP) mod-
ule for graph convolutions which helps to handle spatial
variations of unstructured point clouds. Finally, a graph-
shared down-sampling and up-sampling strategy is intro-
duced to make full use of the graph structures in point cloud
processing. We conduct extensive experiments on multi-
ple datasets including S3DIS, ScanNetV2, Toronto-3D, and
ShapeNetPart. Experimental results show our AF-GCN ob-
tains competitive performance.

1. Introduction
With the rapid development of 3D sensing technolo-

gies (such as LiDARs and RGB-D cameras), 3D point
clouds have demonstrated great potential in many applica-
tions such as robotics, autonomous driving, virtual reality
and augmented reality [10]. Consequently, point cloud seg-
mentation has attracted more and more attention. Unlike
regular pixel grids in 2D images, 3D points in point clouds
are irregular and unstructured, thereby posing significant
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(a) Input (b) Ground Truth

(c) Low-level Features (d) High-level Features

Figure 1. (a) and (b) are the input point cloud and corresponding
semantic labels, respectively. (c) and (d) are the visualization of
the low-level and high-level point features after the first and last
down-sampling, respectively. Differences in color indicate differ-
ences in features. As shown in (c), neighbors in the same object
may have low feature correlations due to the differences in RGB
attributes or geometry structures. As shown in (d), points after sev-
eral down-sampling are sparse and the distant neighbors in high-
level feature aggregation should be filtered because of containing
possible irrelevant information.

challenges for point cloud segmentation.
Several researches [18, 21, 46] adopt graph convolution

networks to utilize the topological structure of point cloud
for segmentation. Graph convolution networks learn fea-
tures from points and their neighbors for better captur-
ing local geometric features while maintaining permuta-
tion invariance, which have intrinsic advantages for han-
dling non-Euclidean point cloud data. Furthermore, many
works [17, 44, 51, 59] improve the graph convolution net-
works by proposing well-designed convolution kernels and
get promising performance in point cloud segmentation.

Recently inspired by the great success of vision trans-
formers [8,11,23,34,56], several works [9,15,36,52,55,58]
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introduce self-attention mechanism into point cloud anal-
ysis for its superiority in modeling long-range dependen-
cies and high-level relations, which obtain significant per-
formance improvement, especially in point cloud segmen-
tation. However, self-attention mechanism exhibits certain
limitations in capturing local geometry information. Com-
pared with graph convolutions, self-attention mechanisms
require additional computation for feature correlations, and
assign large weights to neighbors which have high feature
correlations. As illustrated in Figure 1, points in low-level
feature learning phases are dense and low-level features are
mainly extracted from the colors and geometry structures
(like edges, corners and surfaces). Therefore, self-attention
mechanisms are inefficient in low-level feature aggregation
and may neglect information about neighbors which have
considerable differences in colors or geometry structures.

To exploit the advantages of graph convolution in cap-
turing local geometry information and self-attention mech-
anism in modeling long-range contexts simultaneously, we
design a hybrid network, namely Graph Convolution Net-
work with Attentive Filtering (AF-GCN). In the shallow
stages of the encoder, we adopt graph convolutions to ag-
gregate local geometry information. While in the deeper
stages, we propose a self-attention-like module in the graph
convolution form called Graph Attentive Filter (GAF) to
improve graph representation for point cloud segmentation.
Different from previous studies [9, 15, 36, 50, 58], our pro-
posed Graph Attentive Filter estimates the correlation be-
tween the points from both features and spatial structures in-
formation, then suppresses irrelevant information from the
distant neighbors to better capture high-level relations.

To further improve our graph convolution networks for
point cloud segmentation, we adopt a Spatial Feature Pro-
jection (SFP) module for graph convolutions. The spa-
tial feature projection module projects the spatial informa-
tion of points into the feature space, which helps graph
convolutions with isotropic kernels to model spatial vari-
ations effectively. Moreover, we design a graph-shared
down-sampling and up-sampling strategy to better utilize
the graph structures in the decoder. In general, our key con-
tributions are summarized as follows:

• We construct a hierarchical graph convolution network
AF-GCN with a hybrid architecture design for point
cloud segmentation, which takes advantage of graph
convolution and self-attention mechanism.

• We propose a novel Graph Attentive Filters module to
suppress irrelevant information from distant neighbors
by estimating the correlation between the points from
both features and spatial structure information.

• We employ a Spatial Feature Projection module for
graph convolutions to handle the spatial variation of ir-
regular point clouds. To better exploit the graph struc-

tures, we design a graph-shared down-sampling and
up-sampling strategy.

• Experimental results demonstrate our model achieves
state-of-the-art performance on multiple point cloud
segmentation datasets. Ablation studies also verify the
effectiveness of each proposed component.

2. Related Work
3D representation learning. How to overcome the disor-
der, irregularity and geometric transformation invariance of
point clouds is a hot topic of early research in the field of
3D deep learning. Multi-view-based approaches [4, 16, 20,
40,43] and voxel-based approaches [2,6,26,27,37] process
point cloud into a regularly arranged compact data by geo-
metric computations such as projection or quantization, and
then learn network embedding using 2D or 3D convolution.
Although this processing overcomes the above challenges,
it reintroduces quantification error and heavy calculation.
Therefore, point-based methods are received increasing at-
tention from researchers, which takes the point cloud di-
rectly as the networks’ input and alleviates the obstructions
of the point cloud through a sophisticated network design.

Point-based methods. For different network structure
designs, point-based methods can be broadly subdivided
into three categories, i.e., MLPs-based methods [31,
32], convolution-based methods [14, 19, 47], and graph
convolution-based methods [17, 21, 46]. The MLPs-
based methods perform global or hierarchical local fea-
ture extraction and aggregation of point cloud inputs
through permutation-invariance MLPs and pooling opera-
tors. Convolution-based methods obtain convolution ker-
nels applicable to irregularly arranged and unordered data
in predefined or learning ways and obtain representations
of the point cloud by multiple convolutions in local re-
gions. The graph convolution-based approach treats the
points as the vertices of the graph and implements graph
convolution by considering features on both vertices and
edges, thus maintaining the topological relationship of the
graph over the features. Along with the considerable re-
search on the network structure of point-based methods,
some works [12, 18, 24, 33, 35, 42, 44, 51, 57, 59] further ex-
plore how to improve existing frameworks to capture more
solid semantic representations. Owing to the success of at-
tention on 2D visual tasks, alternative approaches [9, 58]
attempt to introduce it into point cloud learning. We collec-
tively refer to such works as attention-based methods.

Attention-based methods. Attention mechanism is pro-
posed in the field of natural language processing to capture
long dependencies in textual contexts [45]. In recent years,
self-attention [11, 34, 56], as well as Transformer [8, 23],
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Figure 2. The framework of our proposed model. A hybrid architecture design is employed: In the shallow stages of the encoder, we adopt
GCN blocks to aggregate local geometry information. In the deeper stages, we adopt GAF blocks to suppress irrelevant information from
distant neighbors. Graph-shared down-sampling and up-sampling layers are utilized for better exploiting the multi-scale graph structures.
GAF: Graph Attentive Filter. SFP: Spatial Feature Projection. FPS: Farthest Point Sampling.

have been introduced to 2D vision tasks, enabling features
to be more focused on the regions of interest in the task.
As a result, many works attempt to utilize attention mech-
anism for feature aggregation on 3D vision tasks such as
semantic segmentation [9, 52], object detection [3, 25, 53],
target tracking [39], etc., while demonstrating the generaliz-
ability and capability of attention mechanism on 3D vision
tasks. PointTransformer [58] utilizes vector self-attention to
achieve point features aggregation within a local region on a
U-Net structure network with skip connections. An almost
parameter-free cross-scale attention mechanism is designed
and introduced into the model for fusing point representa-
tions at multiple scales [29]. In order to enlarge the range
of effective receptive fields, Stratified Transformer [15] pro-
poses a stratified strategy for sampling keys in self-attention
module. RPNet [36] explores an attention-like group rela-
tion aggregator to consider both geometric relations and se-
mantic relations within a local region. FPT [30] and Patch-
Former [55] further investigate how to design a lightweight
Transformer for 3D scene understanding that reduces the
time for model training and inference.

Although these methods demonstrate that the attention
mechanisms have great potential in 3D representation learn-
ing, they indiscriminately use the attention module at all
stages of the networks, thus incurring extra computational
costs and weakening the local information. Differently, our
method design a hybrid architecture to take advantage of
both graph convolutions and self-attention mechanisms.

3. Methods
In this section, we introduce our proposed Graph

Convolution Network with Attentive Filtering termed AF-
GCN. We first give preliminaries of the proposed model,
then we give elaborations of the components that build our
model. Finally, we describe the specific architectures.

3.1. Preliminaries
Graph construction. We construct a directed graph G =
(V, E) to represent the structures of point clouds, where
V = {1, . . . , n} and E ⊆ V × V are the vertices and edges
respectively. In our model, we construct the graph G by
applying a ball query to each point in point clouds. We for-
mulate the process as follows:

E = {(i, j) | ∥pi − pj∥ ≤ r, ∀i, j ∈ V}, (1)

where pi and pj are the corresponding coordinates, r is the
ball query radius. For computational efficiency, we set the
maximum number of edges per point to K. We can also
represent the graph G = (V, E) as an adjacency matrix A ∈
Rn×n, where Aij = {1, if (i, j) ∈ E ; 0, if (i, j) /∈ E}. The
graph G is reconstructed after every down-sampling and up-
sampling and the radius changes accordingly.

Graph convolutions. The standard graph convolution is
formulated as follows:

F l+1 = AF lW l, (2)
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Figure 3. Architectures of the proposed GCN Block and GAF
Block. Zoom in for a better view.

where F l is the input features of the l-th layer, F l+1 is
the output features. W l is the weight matrix of the l-th
graph convolution. Equation 2 describe the graph convolu-
tions which use sum pooling to aggregate edge features and
contain linear feature transformation only. In practice, non-
linear feature transformation is important, and max pooling
is also suitable for feature aggregation adopted in many pre-
vious works. We give a more general formulation of graph
convolutions for a better understanding of our method:

F l+1 = A ⋄ Φ(F l), (3)

where ⋄ is the graph aggregation operation to generate
graph features F l+1 and F l+1

ij = Pooling(Aik Φ(F
l)kj).

Φ is the non-linear feature transform function.

3.2. Hybrid Architecture Design

The proposed AF-GCN model is a hierarchical graph
convolution network including an encoder and a decoder.
During gradual down-sampling and feature aggregation by
the encoder, the receptive field of each point continues to
expand. We design a hybrid architecture for the encoder to
fit the variance of the receptive field in each encoder block.
As shown in Figure 2, the encoder of our model is split into
two phases. We consider that the encoder layers in low-
level feature learning phase capture the local patterns, and
the encoder layers in high-level feature learning phase cap-
ture the more abstract features and long-range contexts. We
adopt graph convolutions in the low-level features learning
phase. In the high-level feature learning phase, we propose
a feature aggregation module named Graph Attentive Filter
to empower the graph convolutions with the superiority of
self-attention mechanism in modeling long-range contexts.

Graph Attentive Filter We design a novel graph con-
volution module called Graph Attentive Filter as shown
in Figure 3. Compared with regular graph convolutions,
our proposed Graph Attentive Filter estimates the correla-
tions between points to their neighbors before feature ag-
gregation. By applying the estimated edge correlations, our
module could filter the irrelevant information from distant
neighbors for better modeling long-range contexts. Inspired
by the previous self-attention mechanism study in image
recognition and point cloud analysis [8, 56, 58], we esti-
mate the preliminary point-to-point feature correlation by
subtraction for computational efficiency. We formulate the
correlation matrix R ∈ RN×N×C as follows:

Rij = ϕ(fi)− ψ(fj), (4)

where fi and fj are the corresponding point features, ϕ and
ψ are two separated linear functions to project the point
features into metrics space. However, the correlation ma-
trix R only takes into account of feature-level correlations.
We consider that spatial and structural correlations are also
significant in graph learning. Intuitively, we use the point-
to-point distance to update the ball query based adjacency
matrix A. We formulated the updated adjacency matrix Ã
as follows:

Ãij = Aij · e−∥pi−pj∥2
2 , (5)

where pi and pj are the corresponding point positions.
Point pairs that have smaller distances have bigger edge
weights in the updated adjacency matrix Ã. Then we nor-
malize Ã by the diagonal degree matrix D, which is formu-
lated as:

Â = D− 1
2 ÃD− 1

2 ,

Dii = ΣjÃij .
(6)

As Equation 6, the symmetric adjacency matrix Â is calcu-
lated based on the topological relations of the graph and the
point-to-point distances, which could embody both spatial
and structural correlations. Then we integrate the correla-
tion matrix R into the graph convolution form:

F l+1 = σ(FFN(R · Â)) ⋄ Φ(F l), (7)

where FFN is a feed-forward network to further learn the
correlations, · represents element-wise multiplication for
each channel. ⋄ is the graph aggregation operation. Φ rep-
resents the non-linear feature transformation and σ is a nor-
malization operator. In practice, we use the softmax func-
tion as normalization. As Equation 7, our graph attentive fil-
ter suppresses irrelevant information by estimating the cor-
relation from both features and spatial structures. We give a
detailed description in the supplementary material.

Graph-Conv with Spatial Feature Projection We adopt
graph convolutions in down-sampling layers and feature ex-
tractors in our GCN blocks to aggregate the point features.
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Figure 4. (a) shows two decoder illustrations of previous works.
(b) shows the graph structures (left) and the architecture of the
decoder (right) in our AF-GCN. The yellow points are the down-
sampled points and the hollow points are the up-sampled points.

Previous GCNs works in point cloud analysis [51, 59] have
pointed out that isotropic kernels in the standard graph con-
volution neglect space and feature correspondences. These
works give various designs of dynamic graph convolution
kernels that aim to model the relationship between point-
to-point distance and features. Unlike these dynamic kernel
generation methods, we adopt a simpler way to model the
feature with spatial information in our graph convolutions.
We consider spatial information is essential in point cloud
analysis and should be emphasized during down-sampling
and feature aggregation. Simply concatenating spatial in-
formation and features will reduce the validity of spatial in-
formation when the feature dimension increases. Thus, we
employ a spatial feature projection module to project the
relative spatial information into the feature space and add it
to point features as shown in Figure 3. Then we formulate
graph convolutions in our models the as:

F l+1
i = MaxPooling

(i,j)∈E
Φ(F l

j + δ(pj − pi)), (8)

where F l+1
i , F l

j are the output features and input features
of corresponding points. pi and pj are the corresponding
spatial information. Φ is a non-linear feature transformation
function, and δ is the Spatial Feature Projection Module im-
plemented by a feed-forward network.

3.3. Graph-shared Down-sampling & Up-sampling

Previous GCNs works in point cloud analysis [49, 51,
58, 59] mostly use two types of decoder illustrated in Fig-
ure 4 (a) to generate the final point feature at the same res-

olution as input, which neglecting the graph structure in
the encoder. Inspired by [5], we propose the graph-shared
down-sampling and up-sampling GCN layers to fully utilize
the multi-scale graph structure information.

As Figure 2, in the down-sampling GCN layers, we first
use Furthest Point Sampling (FPS) to select down-sampled
points. For the down-sampled points, we use ball query in
the original point sets to generate graph G = A. Then we
use a graph convolution with spatial feature projection to
aggregate the point features. In the up-sampling GCN lay-
ers, we define the shared graph Ĝ = A⊤, then we perform
the graph de-convolution based on the shared graph, formu-
lated as follows:

F l
d = A⊤ ⋄ Φ(F l+1

up ), (9)

where F l
d is the de-convolution output. For clarity, we de-

note output features of the l-th decoder stage as F l
up. For a

model including n stages, Fn+1
up = Fn+1. In practice, we

find that not every point feature is aggregated in the down-
sampling GCN layers. It means the graph de-convolution
mentioned above will generate empty features in some up-
sampled points, which affects the predictions. We illus-
trated the phenomenon in Figure 4 (b). To supplement the
empty points, we add the trilinear interpolation to the de-
convolution output, and the final up-sampling can be for-
mulated as follows:

F l
up = MLP(

[
F l+1

d + interp(F l+1
up ),F l

]
), (10)

where F l+1
up is the input low-resolution features and F l+1

d

is the de-convolution output. F l
up is the final up-sampled

features. We concatenate the high-resolution features F l

from the encoder to implement skip connections.

3.4. Network Architecture

In this section, we give instructions on our network ar-
chitecture for object part segmentation task and scene seg-
mentation task. As shown in Figure 2, our model consists
of a U-Net-like [38] feature extractor and a classifier as
the segmentation head. We stacked GCN blocks and GAF
blocks in the encoder of our model. The feature dimension
in the blocks doubles after each down-sampling layer and
halves after each up-sampling layer.

For scene segmentation tasks, four stages are constructed
in our model. Following [33], the number of blocks in each
stage is set to [2, 4, 2, 2]. We split the first two stages into the
low-level feature learning phase (using GCN blocks) and
the last two stages into the high-level feature learning phase
(using GAF blocks). The initial feature dimension is set to
32. The segmentation head is a simple MLP with Batch-
Norm, ReLu and Dropout layer. To explore the potential
of performance in big parameters, we also construct a large
version of our model. The initial feature dimension is set to
64 and the number of blocks is set to [3, 6, 3, 3].
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Method Cat. mIoU Ins. mIoU
PointNet [31] 80.4 83.7
PointNet++ [32] 81.9 85.1
DGCNN [46] 82.3 85.2
PointCNN [19] 84.6 86.1
PVCNN [24] - 86.2
KPConv [44] 85.0 86.2
3D-GCN [21] 82.7 85.3
PAConv [51] 84.6 86.1
AdaptConv [59] 83.4 86.4
CurveNet [49] - 86.8
PointTrans. [58] 83.7 86.6
Strantified Trans. [15] 85.1 86.6
ScatterNet [22] - 86.7
Ours 85.3 87.0

Table 1. Results on ShapeNetPart for part segmentation.

For part segmentation tasks, four stages are constructed
in our model. Due to the relatively small input point cloud,
no GCN blocks are adopted, and only one GAF block is
adopted in the third stage. The part segmentation head is
constructed following CurveNet [49]. The initial feature di-
mension is set to 64 and the sampling rate in each stage is
set to 2. A detailed illustration is included in the supple-
mentary material.

4. Experiments
We evaluate our proposed AF-GCN on the object part

segmentation task and 3D semantic segmentation task. For
part segmentation, we use ShapeNetPart [54]. For semantic
segmentation, we use three indoor/outdoor datasets, includ-
ing S3DIS [1], ScanNetV2 [7] and Toronto-3D [41].

4.1. Part Segmentation
Datasets. We perform part segmentation on ShapeNet-
Part [54]. The ShapeNetPart dataset consists of 16,881 3D
shapes from 16 categories, with 14,006 shapes for training
and 2,874 for testing. There are 50 part categories in total
and each 3D shape contains 2-6 parts.

Implementation. Following the previous works, we sam-
ple 2048 points from each shape in ShapeNetPart. The ini-
tial radius r is set to 0.1m and is enlarged by 2.5× after each
down-sampling. The maximum number of edges K is set
to 32. We train our model for 300 epochs in four NVIDIA
GeForce RTX3090 GPUs.

Comparison result. We compare our model with recent
state-of-the-art methods and use category mean IoU and in-
stance mean IoU for evaluation. As shown in Table 1, our
method outperforms others both in category mIoU and in-
stance mIoU in ShapeNetPart. We also give a visualization
of our method in Figure 5.
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Figure 5. Visualization on ShapeNetPart. From left to right are
aeroplane, chair, guitar, lamp and motorbike.

Method Input Val mIoU Test mIoU

PointNet++ [32] point 53.5 55.7
PointCNN [19] point - 45.8
PointConv [47] point 61.0 66.6
KPConv [44] point 69.2 68.6
MinkowskiNet [6] voxel 72.2 73.6
PointASNL [52] point 63.5 66.6
SegGCN [17] point - 58.9
RandLA-Net [12] point - 64.5
JSENet [13] point - 69.9
Mix3d [28] voxel 73.6 78.1
PointTrans. [58] point 70.6 -
CBL [42] point - 70.5
RepSurf-U [35] point - 70.0
FastPointTrans. [30] point 72.4 -
PTV2 [48] point 75.4 75.2

Ours† point 73.4 71.8

Table 2. Quantitative results on ScanNetV2 for semantic segmen-
tation. More results are included in the supplementary material.

4.2. Semantic Segmentation
Datasets. We evaluate our method on S3DIS [1], Scan-
NetV2 [7] and Toronto-3D [41] for semantic segmentation.
S3DIS is a challenging large-scale dataset for indoor scene
segmentation, which includes 271 rooms in 6 areas. 273
million points are scanned in total, in which each point is
annotated with one semantic label from 13 categories. The
ScanNetV2 dataset consists of 1513 indoor point clouds for
training and 100 point clouds for testing. It annotates each
point with 21 categories. 242 million points are scanned
by RGB-D cameras. We report implementation details and
result for Toronto-3D in the supplementary material.

Implementation. For S3DIS, input points are grid sam-
pled with the grid size set to 0.04m following previous
work [58]. The sampling rate in each stage is set to 4. The
initial radius r is set to 0.1m, and it doubles after each down-
sampling. For ScanNetV2, input points are grid sampled
with the grid size set to 0.02m. The initial radius r is set
to 0.05m. For all datasets mentioned above, the maximum
number of edges K is set to 32. Our models are trained for
100 epochs in four NVIDIA GeForce RTX3090 GPUs.
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Method Input S3DIS 6-fold S3DIS Area-5
mIoU mAcc OA mIoU mAcc OA

PointNet [31] point 47.6 66.2 78.5 41.1 48.9 -
PointNet++ [32] point 59.9 66.1 87.5 56.0 61.2 86.4
PointWeb [57] point 66.7 76.2 87.3 60.2 66.6 86.9
KPConv [44] point 70.6 79.1 - 67.1 72.8 -
MinkowskiNet [6] voxel - - - 65.4 71.7 -
PointASNL [52] point 68.7 79.0 88.8 62.6 68.5 87.7
RandLA-Net [12] point 70.0 82.0 88.0 62.4 71.4 87.2
PAConv [51] point 69.3 78.6 - 66.5 73.0 -
PointTrans. [58] point 73.5 81.9 90.2 70.4 76.5 90.8
CBL [42] point 73.1 79.4 89.6 69.4 75.2 90.6
RepSurf-U [35] point 74.3 82.6 90.8 68.9 76.0 90.2
PointNeXt-XL [33] point 74.9 83.0 90.3 71.1 77.2 91.0
Ours point 77.7 85.1 91.7 72.3 77.9 91.1
Ours† point 78.4 86.2 91.8 73.3 79.3 91.5

Table 3. Quantitative results of semantic segmentation on S3DIS datasets (6-fold cross-validation and evaluation on Area 5). We com-
pare with different methods in terms of mean per-class IoU (mIoU), mean per-class accuracy (mAcc), and overall accuracy (OA). Ours†

represent the large version of our model. We reported the best performance for comparison, and more detailed results are included in the
supplementary material.

Comparison result. For S3DIS, we evaluate our method
by 6-fold cross-validation and on Area-5. In Table 3, our
proposed method outperforms previous methods in both
Area-5 and 6-fold cross-validation. Performance achieved
by the large version also shows the potential of our method
in big parameters. As the qualitative results visualized in
Figure 6, our method obtains a better performance, espe-
cially in the edges and corners. To further demonstrate the
generalization of our proposed AF-GCN, we conduct ex-
tensive experiments on ScanNetV2. For ScanNetV2, our
model achieves reasonable results and outperforms most
point-based methods in the official validation set and on-
line test set as shown in Table 2. PTV2 [48] achieves bet-
ter performance for their partition-based pooling and well-
designed transformer networks but requires more training
time and larger training input.

4.3. Ablation Study

In Table 4, we conduct comprehensive ablation studies
on S3DIS dataset to verify the effectiveness of each compo-
nent in our method.

Graph convolutions with Spatial Feature Projection.
In Table 4, we compare experiment I and II and find our
graph convolutions with Spatial Feature Projection improve
the baseline with 1.1% mIoU and 0.9% mAcc. Comparing
experiment IV and V, we notice our method without SFP
losses 1.9% mIoU and 1.4% mAcc in performance.

Graph-shared down-sampling & up-sampling. Com-
paring experiment II and III, we find adopting graph-shared
down-sampling and up-sampling could provide a perfor-
mance gain of 0.7% mIoU and 0.4% mAcc. Comparing

ID SFP Graph-shared GAF mIoU mAcc
I 69.3 75.7
II ✓ 70.4 76.6
III ✓ ✓ 71.1 77.0
IV ✓ ✓ ✓ 72.3 77.9
V ✓ ✓ 70.4 76.5
VI ✓ ✓ 71.6 77.3

Table 4. Ablation studies conducted on S3DIS Area-5. SFP:
Graph convolutions with Spatial Feature Projection. Graph-
shared: Graph-shared down-sampling and up-sampling. GAF:
Graph Attentive Filter Block. Metric: mIoU, mAcc.

ID\stage 1 2 3 4 mIoU mAcc OA

I • • • • 71.1 77.0 91.0
II • • • ✩ 71.5 77.1 91.1
III • • ✩ ✩ 72.3 77.9 91.1
IV • ✩ ✩ ✩ 69.3 75.2 90.5
V ✩ ✩ ✩ ✩ 70.1 77.1 89.8

Table 5. Ablation study on feature learning phases division. •
denotes GCN Blocks. ✩ denotes GAF Blocks.

experiment IV and VI, our method without graph-shared
down-sampling and up-sampling losses 0.7% mIoU and
0.6% mAcc in performance. Note that the parameters of our
model are only increased by around 4% parameters (0.35M)
using the graph-shared down-sampling and up-sampling.

Graph Attentive Filter. Comparing experiment III and
IV, using Graph Attentive Filter blocks, the model achieves
higher mIoU and mAcc performance. Further, we conduct
ablation experiments on the division of the feature learning
phases in Table 5. We achieve the best performance when
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Input Point Transformer Ours

Figure 6. Visualization of semantic segmentation on S3DIS. We compare our method with the previous self-attention-based SOTA point
transformer [58]. Our method achieves better performance especially in the corners and edges due to better preservation of local geometries.

Method None Jitter. 90◦ 180◦ ×0.8 ×1.2 +0.2

PointNet++ [32] 59.75 59.05 58.15 57.18 56.24 59.74 22.33
PAConv [51] 65.63 65.12 61.66 63.48 64.20 63.94 55.81

PointTrans [58] 70.36 59.67 65.94 67.78 65.73 66.15 70.44

Ours 72.34 72.40 72.27 72.30 72.37 67.98 72.90

Table 6. Robustness study on S3DIS Area-5.

adopting GCN blocks in the first two stages and adopt-
ing GAF blocks in the last two stages. The empirical re-
sults also validate graph convolution is more suitable for
capturing local geometry information compared with self-
attention mechanisms.

4.4. Robustness Study

We conduct evaluations in jitter, rotation, scale and shift
scenarios on S3DIS to verify our model’s robustness to vari-
ous perturbations. As shown in Table 6, our proposed model
is robust to various perturbations compared with previous
methods such as PAConv and PointTransformer.

4.5. Efficiency

We demonstrate the training speed and inference speed
comparison with previous methods such as PAConv [51],
PointTransformer [58] and PointNext-XL [33] in Table 7.
We take 16×15,000 points to evaluate the inference speed in
an NVIDIA GeForce RTX3090 GPU. Note that our method
is 28.4% faster than Point Transformer in inference and
about 5× faster in training, while the large version has a
comparable inference speed to PointNext-XL.

Method Train. Speed Infer. Speed mIoU mAcc(ins./sec.) (ins./sec.)

PAConv [51] - 59.5 66.5 73.0
PointTrans. [58] 7.0 66.8 70.4 76.5

PointNext-XL [33] 32.0 33.4 71.1 77.2

Ours 38.3 85.8 72.3 77.9
Ours† 21.8 37.2 73.3 79.3

Table 7. Efficiency study evaluated on S3DIS Area-5.

5. Conclusion
In this paper, we propose a hybrid network framework

AF-GCN. By using GCN blocks and well-designed GAF
blocks in a phased manner, our framework is able to signif-
icantly preserve the geometric information and efficiently
aggregate the semantic information. In addition, the spa-
tial feature projection module explicitly boosts the validity
of spatial information in feature aggregation, and the graph-
shared down-sampling and up-sampling modules are able to
align the topological information between up-sampling and
down-sampling, thus maintaining a consistent feature rep-
resentation. The experimental results under several generic
segmentation datasets validate the performance and gener-
ality of our proposed AF-GCN. Robustness and efficiency
experiments also verify the superiority of our AF-GCN.
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