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Abstract

Learning to leverage the relationship among diverse im-
age restoration tasks is quite beneficial for unraveling the
intrinsic ingredients behind the degradation. Recent years
have witnessed the flourish of various All-in-one methods,
which handle multiple image degradations within a single
model. In practice, however, few attempts have been made
to excavate task correlations in that exploring the underly-
ing fundamental ingredients of various image degradations,
resulting in poor scalability as more tasks are involved. In
this paper, we propose a novel perspective to delve into the
degradation via an ingredients-oriented rather than pre-
vious task-oriented manner for scalable learning. Specif-
ically, our method, named Ingredients-oriented Degrada-
tion Reformulation framework (IDR), consists of two stages,
namely task-oriented knowledge collection and ingredients-
oriented knowledge integration. In the first stage, we con-
duct ad hoc operations on different degradations according
to the underlying physics principles, and establish the cor-
responding prior hubs for each type of degradation. While
the second stage progressively reformulates the preceding
task-oriented hubs into single ingredients-oriented hub via
learnable Principal Component Analysis (PCA), and em-
ploys a dynamic routing mechanism for probabilistic un-
known degradation removal. Extensive experiments on var-
ious image restoration tasks demonstrate the effectiveness
and scalability of our method. More importantly, our IDR
exhibits the favorable generalization ability to unknown
downstream tasks.

1. Introduction

Image restoration aims to recover the high-quality im-
ages from their degraded observations, which is a general
term of a series of low-level vision tasks. In addition to
achieving satisfactory visual effects in photography, image
restoration is also widely used in many other real world
scenarios, such as autopilot and surveillance. Complex
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Figure 1. An illustration of our proposed ingredients-oriented
degradation reformulation principle. Instead of previous task-
oriented paradigm where each tasks are learned exclusively, we
perform an ingredients-oriented paradigm to explore the correla-
tion among diverse restoration tasks for scaleable degradation re-
formulated learning, where the Conv., Add. and Mul. means the
convolution, addition and multiplication.

environments put forward higher requirements for image
restoration algorithms, when considering the variability and
unknowability of the corruption types. Since most exist-
ing methods have been dedicated into single degradation re-
moval, such as denoising [15,24,61], deraining [20,52,55],
debluring [8, 40, 42], dehazing [26, 44, 45], low-light en-
hancement [14, 34, 50], etc., which do not satisfy the ap-
plications in real world scenarios.

Recently, all-in-one fashion methods have been com-
ing to the fore, which handle multiple image degradations
within a single model. These methods can be roughly
categorized into two families, i.e., corruption-specific and
corruption-agnostic. Representative studies of the former
[2, 28] deal with different degradations via separate sub-
networks, which demands pre-specification of corruption
types, limiting the scope of further application. While the
efforts in latter [25, 47] release the model from the prior
of the corruption types, improving the flexibility in prac-
tice. However, both of them suffer from poor scalability as
more tasks are involved, indicating that the diverse degrada-
tions are learned exclusively under the potential capability
bottleneck, without touching the intrinsic correlation among
them, which we referred as task-oriented paradigm.
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To solve the above problem, we ask two questions: i)
’whether there are commonalities between different degra-
dations?’ During past decades, few of works have been
devoted to this field, [10] presented the interrelationship
between image dehazing and low-light image enhancement.
Going a step further, we envision that such association are
widespread in various degradations, such as directionality
in deblurring and deraining, unnatural image layering in
deraining and denoising. Therefore, it is of great interest
to consider the correlation among various restoration tasks
for learning the intrinsic ingredients behind the degrada-
tion, which we referred as ingredient-oriented paradigm. ii)
’Whether an corrupted image definitely ascribed to only one
type of degradation?’ In real world scenarios, it is hard
to determine as multiple degradations may occur simul-
taneously, such as heavy rain typically accumulated with
mist, or low-light combined with blur in night-time surveil-
lance [63]. Therefore, it is inappropriate to learn each
restoration task exclusively.

In this paper, we propose Ingredients-oriented Degrada-
tion Reformulation framework (IDR) for all-in-one image
restoration, which provides a novel perspective via delving
into the degradation and concentrating on the underlying
fundamental ingredients. Specifically, the learning proce-
dure of IDR consists of two stages, namely task-oriented
knowledge collection and ingredients-oriented knowledge
integration. We perform the above reformulation in the
meta prior learning module (MPL) with the collaboration
of both degradation representation and degradation opera-
tion, while the backbone network can be any transformer-
based architecture. In the first stage, we conduct ad hoc
operations for different degradations depending on the un-
derlying physics principles, which pre-embedding the pri-
ors of disparate physics characteristics respectively. Mean-
while, separate task-oriented prior hubs are established for
each type of degradation, responsible for excavating the
specific degradation ingredients for compositional represen-
tation. While the second stage progressively reformulates
the proceeding task-oriented hubs into single ingredients-
oriented hub via learnable Principal Component Analysis
(PCA), striving for commonalities among multiple degrada-
tions in terms of the ingredient-level, while preserving re-
spective variance information as much as possible. Besides,
a dynamic soft routing mechanism is employed in MPL for
probabilistic unknown1 degradation removal, according to
the operation priors embedded in the first stage.

The contributions of this work are summarized as below:

• We rethink the current paradigm of all-in-one fashion
methods, and propose to delve into the degradation for
intrinsic ingredients excavation, in that improving the
scalability of the model.

1Namely, the degradation types are not available in the second stage.

• We propose the Ingredients-oriented Degradation Re-
formulation framework (IDR) for image restoration,
which consists of two stages, i.e., task-oriented knowl-
edge collection and ingredients-oriented knowledge
integration, collaborating on both degradation repre-
sentation and degradation operation.

• Extensive experiments are conducted to verify the ef-
fectiveness of our method. As far as we know, IDR is
the first work to perform up to five image restoration
tasks in an all-in-one fashion.

2. Related work
2.1. Image Restoration

Image restoration aims to restore degraded images to
their clean counterparts, in that mitigating adverse circum-
stances of device or environment during imaging. Re-
cent years have witnessed a great paradigm shift from
conventional restoration methods to learning-based meth-
ods, due to their impressive performance on various im-
age restoration tasks, such as denoising [15, 24, 61], derain-
ing [20, 52, 55], debluring [8, 40, 42], dehazing [26, 44, 45],
low-light enhancement [14, 34, 50], etc. Moreover, numer-
ous general image restoration methods have also been pro-
posed. [3] proposed a simple baseline for image restora-
tion, which is a nonlinear activation free network. [4] de-
liberated the potential of normalization in low-level vision
tasks. [43,58,59] proposed the collective goals of maintain-
ing contextual information and spatial details. [13, 38] for-
mulate the image restoration via unfolding strategy to deep
into the rationality. With the flourish of vision transformers,
their global modeling capability as well as the adaptability
to input content have spawned a series of image restoration
works, such as window-attention based [29, 49] , channel-
interaction based [57] and latent-attention based [5].

Recently, all-in-one fashion methods have been preva-
lent, dealing with multiple degradations within a single
model. [2] proposed a transformer based multi-head multi-
tail framework for multiple degradation removal. [28]
proposed a multi-encoder single-decoder network endowed
with neural architecture search for several bad weather pro-
cessing. [25] proposed a prior free network with contrastive
learning that required none of task-specific heads or tails.
[47] proposed to utilize weather type queries to deal with
multiple degradation problems via single encoder decoder
transformer. [30] proposed to learn task-agnostic prior for
handling various image restoration tasks.

2.2. Multi-Task Learning

Multi-task learning [1] was introduced before the rise of
deep learning, and has been applied to a series of fields,
such as computer vision [31, 37], natural language process-
ing [16], speech synthesis [51] and reinforcement learn-
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Figure 2. Overview of the proposed IDR. (a) The optimization procedure of the IDR which consists of two stages. (b) The architecture
of the Meta-Prior Learning module. (c) High-level view of the IDR which ban be integrated into any transformer backbone networks via
embedded Meta-Prior Learning modules (upward arrow) and collaboration with corresponding prior hub P (curved arrow).

ing [17]. As multi-task learning typically accompanied with
optimization conflicts, a range of studies have been de-
veloped. [6] proposed to utilize gradient magnitudes to
balance the loss functions for each task. [22] proposed
a weighting mechanism by considering the homoscedastic
uncertainty of each task. [54] formulated the meta learn-
ing with multiple objectives as multi-objective bi-level op-
timization problem, and devised a gradient-based optimiza-
tion algorithm to find a common descent direction.

The particular bonus of multi-task learning lies in the re-
lational exploitation of multiple tasks. [19, 21] proposed
to cluster tasks into groups, resulting in a convex optimiza-
tion formulation for multi-task learning. [32, 37] proposed
to construct relationship networks and cross-stitch networks
to discover the task relationships and learn optimal combi-
nation of shared and task-specific representations.

3. Method

In this section, we start with the formulation princi-
ples of various image degradations, and then introduce
the core component of our IDR, i.e. meta-prior learning
module, which can be explicitly embedded into any trans-
former architecture for practicability (Sec. 3.1). The opti-
mization of IDR comprises a two-stage learning procedure:
(a) Task-oriented knowledge collection (Sec. 3.2) and (b)
Ingredients-oriented knowledge integration (Sec. 3.3). The
optimization object is briefly presented in Sec. 3.4.

Degradation Formulation. In the literature, the image
degradation process is generally defined as

y = ϕ(x;A) +N, (1)

where ϕ(·) denotes the dergadation function and A repre-
sents its parameters, N represents the additive noise, y and
x denote the degraded observation and latent clean image,
respectively. When ϕ(·) is the element-wise addition, the
Eq. (1) can be reformulated as

y = A+ x+N = Â+ x (2)

which is the general term of image deraining [48] and im-
age denoising [9], and A represents the rain streak and i.i.d.
zero-mean Gaussian noise, respectively. When ϕ(·) is the
element-wise multiplication,

y = A · x+N = A · x+ ϵ · x = Â · x, (3)

which is the general term of image dehazing [45] and low-
light enhancement [50], according to the atmosphere scat-
tering model [36, 41] and the Retinex theory [23]. And A
represents the transmission map and illumination map, re-
spectively. When ϕ(·) represents the convolution,

y = A ∗ x+N = A ∗ x+ ϵ ∗ x = Â ∗ x, (4)

which is the general term of image deblurring [60], and A
represents the blur kernel. Note that we re-param the noise

5827



term in Eqs. (2) to (4) to spotlight the peculiar physics prin-
ciples, while more complex degradation can be formulated
with the combination of the above functions, such as heavy
rain with rain veiling effect. Basically, different degrada-
tions enjoy different compositional formulation principles,
grounded on the above basic principles.

3.1. Meta-Prior Learning Module

The meta-prior learning module (MPL) aims at learn-
ing a set of prior embeddings to alleviate the awared cor-
ruption on the feature, and can be instantiated as task-prior
learning and ingredient-prior learning in optimization. An
illustration of MPL is depicted in Fig. 2, which consists of
two parts, i.e. prior-oriented degradation representation and
principle-oriented degradation operation.

Given the input of the degraded feature x ∈ RH×W×C

and a set of prior embeddings P ∈ RN×Cd , where N is
the capacity of the prior hub and N ≪ Cd, we first employ
the supervised degradation attention module (SDAM) on x
to dilute the background content while intensifying the la-
tent subtle dergadation for content-agnostic prior learning,
which is inspired by [59] with merely replaced degradation
supervision. The process of the prior-oriented degradation
representation can be formulated as

hp = MHCA(LN(SDAM(x)),LN(P),LN(P)) (5)

where MHCA, LN denote the multi-head cross attention
module and layer norm. Instead of taking additional pri-
ors as queries [30, 47], we borrow the idea from dictionary
learning, which keep the few intrinsic prior embeddings as
keys and release the tremendous degraded feature tokens as
queries for potential knowledge compression. The degrada-
tion representation hp ∈ RH×W×C is the aggregation of the
prior hub P , according to the co-attention matrix modeled
via the prior dictionary inquiry. We align the dimensions of
P with x via the projection matrix.

Collaborated with the extracted hp, the process of the
principle-oriented degradation operation aims to correct the
corrupted features depending on the underlying physics
principles, which can be formulated as

x′ =
∑

j∈{a,m,c}

ϕj(x; θj([Whhp,Wxx])) (6)

where [·] denotes the channel-wise concatenation, Wh,Wx

are two individual MLPs for common space projection, ϕj

represents the basic principle function including addition,
multiplication and convolution, and θj denotes its parame-
ter generation functions. Particularly, each θj is composed
of a 3 × 3 convolution layer and two residual blocks, ex-
cept for θc, which comprises an additional 1 × 1 convolu-
tion layer for kernel generation. The corrupted features x
are corrected in virtue of the prior hub P and the underlying
physics principles ϕj , producing the pseudo clean features

Algorithm 1 Learnable Principal Component Analysis
Input: Task-oriented prior embeddings {Tk}Kk=1

Output: Ingredient-oriented prior embedding I0
1: Stop the gradient for {Tk}Kk=1

2: for Tk in {Tk}Kk=1 do
3: Calculate the singular value decomposition on Tk,

we have Tk = UkSkV
T
k

4: Reformulate the{Uk}Kk=1 and {V T
k }Kk=1 into UI and

V T
I using Eq. (8).

5: Reformulate the {Sk}Kk=1 into SI using Eq. (9).
6: return I0 = UISIV

T
I

x′ ∈ RH×W×C . To further increase nonlinearity and to be
consistent with the general transformer block, we retain the
feed forward network (FFN) at the end of the MPL.

3.2. Task-oriented Knowledge Collection

The MPL introduced in Sec. 3.1 should extract the in-
trinsic degradation ingredients from the corrupted features,
however, it is hard to directly learn the generalizable priors
for diverse image degradations. Therefore, we first estab-
lish the independent task-oriented prior hubs for different
restoration tasks to excavate the specific degradation ingre-
dients, where the MPL is instantiated as tasks-prior learn-
ing in the first stage. The task-oriented prior hubs can be
presented as {Tk}Kk=1, where K denotes the number of the
tasks, Tk ∈ RN×Cd is the set of k-th task-related prior em-
beddings, and the corresponding degraded features can be
denoted as {x(i)

k }Kk=1. Consequently, the k-th task-related
degradation representation h

(i)
k can be expressed as

h
(i)
k =

∑
j=k

MHCA(LN(SDAM(x
(i)
k )), LN(Tj), LN(Tj))

(7)
where only the specific Tk are interacted with the degraded
features to exclude the leakage interference to other prior
hubs for dedicated learning. We assign the principle func-
tion ϕj(· ; θj) according to the specific degradation as dis-
cussed above, and only one type of principle is involved. We
note that the collaboration between the independent prior
learning and the corresponding hard principle allocation is
quite favorable for the collection of the strong task-related
priors, attributing to the principles-decoupled conformity.

3.3. Ingredient-oriented Knowledge Integration

Our main goal is to exploit the correlation among di-
verse image restoration tasks to realize the intrinsic gen-
eralizable degradation ingredients. Equipped with several
task-oriented prior hubs {Tk}Kk=1, the second stage aims
at progressively reformulates them into single ingredients-
oriented hub I0 ∈ RN×Cd , which is nontrivial to procure.
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Figure 3. t-SNE visualization of the learned separate task-oriented
prior hubs Tk in first optimization stage, where somewhat com-
monalities among them can be observed.

To this end, we propose the learnable principal compo-
nent analysis that firstly decompose the respective Tk into
multiple subspace via the singular value decomposition, and
perform the integration at the singular vectors level. Mean-
while, the respective singular values matrices are freezed to
dynamic adjust the propensity to specific degradation. The
above design follow the interrelationship among the decom-
posed subspaces, which has been presented in [46]. The
integration of the singular vectors can be formulated as

UI = Gu({Uk}Kk=1), V
T
I = Gv({V T

k }Kk=1) (8)

where Tk = UkSkV
T
k , and UI , Uk ∈ RN×r, Sk ∈ Rr×r,

V T
I , V T

k ∈ Rr×Cd , (r = min(N,Cd)). Instead of tak-
ing the first N principle components of the {Uk}Kk=1 and
{V T

k }Kk=1 as the integration matrices, we employ the learn-
able Gu and Gv to progressively integrate them via neural
networks. While the gradients of {Uk}Kk=1 and {V T

k }Kk=1

are stopped to prevent undermining the originally learned
task-oriented priors. The freezed {Sk}Kk=1 are reformulated
into SI ∈ RR×R adaptively, expressed as

SI =
∑
k

M(xk)Sk (9)

where M(·) denotes the two-layer prediction head, provid-
ing dynamic weights to adjust the propensity of the refor-
mulated I0 = UISIV

T
I to specific degradation, as shown

in Algorithm 1.
Consequently, the degradation representation hI can be

obtained via the interaction of the degraded features with
the reformulated ingredients-oriented priors I0. Addition-
ally, the dynamic soft routing mechanism is employed in
place of the hard principle allocation, where the weights for
each ϕj are derived from M(xk) depending on the underly-
ing physics principles. Thanks to the specialized learning in
the first stage that endows the separate θj with specialized
principle prior, the synergy of them can be more encyclope-
dic and are capable to handle more complex degradations.

Figure 4. t-SNE visualization of the reformulated ingredients-
oriented prior hub I0 with different degradation propensity SI in
the second optimization stage.

3.4. Optimization object

We optimize our IDR end-to-end with the combination
of the reconstruction loss Lrec and classification loss Lcls:

Ltotal = Lrec + λclsLcls, (10)

The Lrec comprises the ℓ1 loss between the restored image
I and the ground-truth image Y , as well as the degraded
supervision D introduced in each SDAM, formulated as

Lrec = L1(I, Y ) +
∑
s∈C

|L1(I
s
x, D

s)| , (11)

where C denotes the set of the stages where MPL has been
embedded into the backbone network, and Isx, D

s denote
the restored image and the rescaled version of D in s stage.
In addition, the cross-entropy loss is employed as Lcls:

Lcls =
∑
s∈C

|LCE(Ms(x
s), y)| , (12)

where xs denotes the input corrupted feature of the s-th
stage MPL, y denotes the task label of D, Ms(·) denotes
the s-th stage prediction head. The term of Lcls is included
in the first stage, while the prediction results are served as
the dynamic weights in the second optimization stage.

4. Experiments
In this section, we first clarify the experimental settings

of our method, and then present the qualitative and quanti-
tative comparison results with eleven state-of-the-art meth-
ods. Moreover, extensive experiments for ablation studies
are conducted to verify the effectiveness of our method.

4.1. Implementation Details

Tasks and Metrics. We train our method on a combina-
tion of multiple image degradation datasets, following [25],
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Table 1. Quantitative results on five challenging image restoration datasets with state-of-the-arts general image restoration and
all-in-one methods. The best and the second best results are marked in bold and underlined, respectively.

Rain100L [53] SOTS [27] BSD68 [35] GoPro [39] LOL [7] Average ParamsMethod PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

NAFNet [3] 35.56 0.967 25.23 0.939 31.02 0.883 26.53 0.808 20.49 0.809 27.76 0.881 17.11M
HINet [4] 35.67 0.969 24.74 0.937 31.00 0.881 26.12 0.788 19.47 0.800 27.40 0.875 88.67M

MPRNet [59] 38.16 0.981 24.27 0.937 31.35 0.889 26.87 0.823 20.84 0.824 28.27 0.890 15.74M
DGUNet [38] 36.62 0.971 24.78 0.940 31.10 0.883 27.25 0.837 21.87 0.823 28.32 0.891 17.33M

MIRNetV2 [56] 33.89 0.954 24.03 0.927 30.97 0.881 26.30 0.799 21.52 0.815 27.34 0.875 5.86M
SwinIR [29] 30.78 0.923 21.50 0.891 30.59 0.868 24.52 0.773 17.81 0.723 25.04 0.835 0.91M

Restormer [57] 34.81 0.962 24.09 0.927 31.49 0.884 27.22 0.829 20.41 0.806 27.60 0.881 26.13M

DL [11] 21.96 0.762 20.54 0.826 23.09 0.745 19.86 0.672 19.83 0.712 21.05 0.743 2.09M
Transweather [47] 29.43 0.905 21.32 0.885 29.00 0.841 25.12 0.757 21.21 0.792 25.22 0.836 37.93M

TAPE [30] 29.67 0.904 22.16 0.861 30.18 0.855 24.47 0.763 18.97 0.621 25.09 0.801 1.07M
AirNet [25] 32.98 0.951 21.04 0.884 30.91 0.882 24.35 0.781 18.18 0.735 25.49 0.846 8.93M
IDR (Ours) 35.63 0.965 25.24 0.943 31.60 0.887 27.87 0.846 21.34 0.826 28.34 0.893 15.34M

Figure 5. Visual comparison with state-of-the-art methods on Rain100L dataset. Please zoom in for details.

including Rain200L [53] for deraining, RESIDE [27] for
dehazing, BSD400 [35] and WED [33] for denoising, Go-
Pro [39] for deblurring and LOL [7] for low-light enhance-
ment. For evaluation, Rain100L [53], SOTS-Outdoor [27],
BSD68 [35], Urban100 [18], Kodak24 [12], GoPro [39],
LOL [7] are utilized as the test sets. We report the Peak
Signal to Noise Ratio (PSNR), Structural Similarity (SSIM)
and Learned Perceptual Image Patch Similarity (LPIPS)
[62] for numerical evaluation in our experiments.
Training. We implement our framework on single NVIDIA
Geforce RTX 3090 GPU. The entire network is trained with
Adam optimizer for 1200 epochs, and the initial learning
rate is set to be 1 × 10−4, gradually reduced to 1e−6 with
the cosine annealing. We random crop 128x128 patch from
original image as network input after data augumentation.
The batch size is set as 8 with single degradation type in first
stage while hybrid in the second stage. The label smoothing
strategy is adopted in Lcls with ϵ = 0.1, and the λcls is set
to be 0.01. We adopt the trimmed restormer backbone with
embedded MPLs at the end of multiple stages.

4.2. Comparison with state-of-the-art methods

We compare our IDR with seven general image restora-
tion methods and four all-in-one fashion methods on five
challenging image restoration tasks including deraining, de-
hazing, denoising, deblurring and low-light enhancement.

Table 1 reports the quantitative comparison results.
Counterintuitively, the performance of the general image
restoration methods are commonly exceeding the special-
ized all-in-one fashion methods as more tasks are involved.
We attribute this to the large model size that endowed with
more capability to handle complex mappings. However, our
IDR reformulated this paradigm in a more efficient way.
Consistent with existing methods [25, 57], Table 2 reports
the denoising results at different noise ratio. Interestingly, it
exhibits the comparable performance to previous individual
task learning, compared with other degradations, suggest-
ing the particular generality across diverse degradations.

Table 3 evaluates the performance of each method on
unknown tasks, i.e. under-display camera (UDC) image
restoration, without any fine-tuning. Typically, images cap-
tured under UDC system suffer from blurring due to the
point spread function, and lower light transmission rate.
The generalization ability of distinct methods is critically
different. Comfortingly, our IDR demonstrates the favor-
able generalization ability via task-correlation excavation.

We present the visual comparison results of the forego-
ing image restoration tasks in Figs. 5 to 9. It can be observed
that our IDR achieves steady performance in all tasks, com-
pared with other methods. Due to the limited space, more
bountiful results and the visual comparison on UDC dataset
are provided in the supplementary material.
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Figure 6. Visual comparison with state-of-the-art methods on SOTS dataset. Please zoom in for details.

Figure 7. Visual comparison with state-of-the-art methods on BSD68 dataset. Please zoom in for details.

Table 2. Quantitative results of image denoising on BSD68,
Urban100 and Set12 datasets in terms of PSNR↑.

BSD68 [35] Urban100 [18] Kodak24 [12]
Method σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

NAFNet [3] 33.67 31.02 27.73 33.14 30.64 27.20 34.27 31.80 28.62
HINet [4] 33.72 31.00 27.63 33.49 30.94 27.32 34.38 31.84 28.52

MPRNet [59] 34.01 31.35 28.08 34.13 31.75 28.41 34.77 32.31 29.11
DGUNet [38] 33.85 31.10 27.92 33.67 31.27 27.94 34.56 32.10 28.91

MIRNetV2 [56] 33.66 30.97 27.66 33.30 30.75 27.22 34.29 31.81 28.55
SwinIR [29] 33.31 30.59 27.13 32.79 30.18 26.52 33.89 31.32 27.93

Restormer [57] 34.03 31.49 28.11 33.72 31.26 28.03 34.78 32.37 29.08

DL [11] 23.16 23.09 22.09 21.10 21.28 20.42 22.63 22.66 21.95
Transweather [47] 31.16 29.00 26.08 29.64 27.97 26.08 31.67 29.64 26.74

TAPE [30] 32.86 30.18 26.63 32.19 29.65 25.87 33.24 30.70 27.19
AirNet [25] 33.49 30.91 27.66 33.16 30.83 27.45 34.14 31.74 28.59
IDR (Ours) 34.11 31.60 28.14 33.82 31.29 28.07 34.78 32.42 29.13

4.3. Abalation Studies

We perform the ablation experiments on the combined
dataset to verify the effectiveness and scalability of our
method. In Table 4, we quantitatively evaluate the core
components design and the two stage optimization pro-
cedure. The metrics are reported on the average of all five
datasets, from which we can make the following observa-
tions: a) It is difficult for the model to directly learn the
ingredients-oriented priors without the assistance of the task
specific optimization in stage 1. b) Compared with random
integration (i.e. w/o LPCA), the proposed learnable princi-
pal component analysis is quite beneficial for the ingredi-
ents reformulation. c) The dynamic routing mechanism and
the supervised degradation attention module are crucial for
the overall performance improvement.

Table 5 evaluates the performance on all test sets with

Table 3. Quantitative results of unknown tasks (under-display
camera image restoration) on TOLED and POLED datasets.

TOLED [64] POLED [64]
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NAFNet [3] 26.89 0.774 0.346 10.83 0.416 0.794
HINet [4] 13.84 0.559 0.448 11.52 0.436 0.831

MPRNet [59] 24.69 0.707 0.347 8.34 0.365 0.798
DGUNet [38] 19.67 0.627 0.384 8.88 0.391 0.810

MIRNetV2 [56] 21.86 0.620 0.408 10.27 0.425 0.722
SwinIR [29] 17.72 0.661 0.419 6.89 0.301 0.852

Restormer [57] 20.98 0.632 0.360 9.04 0.399 0.742

DL [11] 21.23 0.656 0.434 13.92 0.449 0.756
Transweather [47] 25.02 0.718 0.356 10.46 0.422 0.760

TAPE [30] 17.61 0.583 0.520 7.90 0.219 0.799
AirNet [25] 14.58 0.609 0.445 7.53 0.350 0.820
IDR (Ours) 27.91 0.795 0.312 16.71 0.497 0.716

partially included train sets, where the R, H, N, B, L denotes
the derain, dehaze, denoise, deblur and low-light enhance-
ment, respectively. It can be observed that with more tasks
involved, the performance ratains stable or even benefits,
indicating the scalability of our method.

4.4. Discussion

We visualize the t-SNE statistics of the learned task-
oriented prior embeddings {Tk}Kk=1 and the reformulated
ingredients-oriented prior embeddings I0 in Figs. 3 and 4.
In the first optimization stage, the learned respective task-
oriented prior hubs are essentially separated, nevertheless,
somewhat commonalities among them can be gleaned: i)
The prior embeddings of the dehaze are crowding close to
those of the low-light enhancement, suggesting their shared
physics principles and the global degradation. ii) Despite
the dissimilarity of the derain and deblur, few of embed-
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Figure 8. Visual comparison with state-of-the-art methods on GoPro dataset. Please zoom in for details.

Figure 9. Visual comparison with state-of-the-art methods on LOL dataset. Please zoom in for details.

Table 4. Ablation experiments on the components design.
Method stage1 stage2 LPCA Dyn. SDAM PSNR↑ SSIM↑

a ✓ ✓ ✓ ✓ 28.06 0.880
b ✓ ✓ ✓ ✓ 27.92 0.878
c ✓ ✓ ✓ ✓ 27.98 0.883
d ✓ ✓ ✓ ✓ 28.07 0.881
e ✓ ✓ ✓ ✓ 28.23 0.889
f ✓ ✓ ✓ ✓ ✓ 28.34 0.893

Table 5. Ablation experiments for task scalability (PSNR↑).
Tasks Rain100L SOTS BSD68 GoPro LOL

R+H+N 35.23 24.59 31.63 25.63 7.82
R+H+N+B 34.64 24.49 31.53 27.08 7.76
R+H+N+L 31.69 23.40 30.47 25.50 22.16

R+H+N+B+L 35.63 25.24 31.60 27.87 21.34

dings are interleaved, which may indicating that the poten-
tial directionality between them. iii) The noise are contigu-
ous with all other types of embeddings, suggesting that the
additive noise are widespread across diverse image degra-
dations. iv) We further include an extra clean prior hub dur-
ing training for reference, while the learned clean priors are
apparently distinct with those corruption priors, indicating
their natural oppositional essence.

Fig. 4 presents reformulated ingredients-oriented prior
embeddings I0 with different degradation propensity SI in
the second stage. One can see that the learnable princi-
pal component analysis profoundly refreshes the distribu-
tion of various degradation priors, strengthening their cor-
relations while preserving the respective variance informa-
tion for diverse representation. In this way, the paradigm of
multi-degradation learning is reformulated that dispose the
constrains of the capability of the model for task-scaleable
learning and improve the potential generalization ability.

4.5. Limitation and Future works

Despite the superior generalization ability and scalabil-
ity that IDR have been made, it is of great interest to figure
out the implication of the learned priors, and exploit their
correlations for akin controllable degradation removal. Fur-
thermore, how to leverage the clean image priors remains
an open problem. Additionally, we hope IDR will be useful
in promoting the further exploration of diverse degradation
correlations for potential collaborative learning.

5. Conclusion
In this paper, we rethink the current paradigm of all-

in-one fashion methods in image restoration, and propose
to reformulate the degradation via a novel ingredients-
oriented manner for task scalable learning. The proposed
Ingredients-oriented Degradation Reformulation (IDR)
framework consists of two stages, namely task-oriented
knowledge collection and ingredients-oriented knowledge
integration. Collaborating on both prior-oriented degrada-
tion representation and principle-oriented degradation op-
eration, the learnable Principal Component Analysis (PCA)
and the dynamic routing mechanism were proposed to re-
alize the reformulation. Extensive experiments validate the
effectiveness and scalability of the proposed method.
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