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Abstract

An image is usually described by more than one attribute
like “shape” and “color”. When a dataset is biased, i.e.,
most samples have attributes spuriously correlated with the
target label, a Deep Neural Network (DNN) is prone to
make predictions by the “unintended” attribute, especially
if it is easier to learn. To improve the generalization abil-
ity when training on such a biased dataset, we propose a
χ2-model to learn debiased representations. First, we de-
sign a χ-shape pattern to match the training dynamics of
a DNN and find Intermediate Attribute Samples (IASs) —
samples near the attribute decision boundaries, which in-
dicate how the value of an attribute changes from one ex-
treme to another. Then we rectify the representation with a
χ-structured metric learning objective. Conditional interpo-
lation among IASs eliminates the negative effect of periph-
eral attributes and facilitates retaining the intra-class com-
pactness. Experiments show that χ2-model learns debiased
representation effectively and achieves remarkable improve-
ments on various datasets. Code is available at: https:
//github.com/ZhangYikaii/chi-square

1. Introduction
Deep neural networks (DNNs) have emerged as an epoch-

making technology in various machine learning tasks with
impressive performance [5,26]. In some real applications, an
object may possess multiple attributes, and some of them are
only spuriously correlated to the target label. For example,
in Figure 1, the intrinsic attribute of an image annotated by
“lifeboats” is its shape. Although there are many lifeboats
colored orange, a learner can not make predictions through
the color, i.e., there is a misleading correlation from attribute
as one containing “orange” color is the target “lifeboats”.
When the major training samples can be well discerned by
such peripheral attribute, especially learning on it is easier
than on the intrinsic one, a DNN is prone to bias towards
that “unintended” bias attribute [6, 11, 21, 43, 47, 48, 51],
like recognizing a “cyclist” wearing orange as a “lifeboat”.
Similar spurious attribute also exists in various applications
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Figure 1. Classification of a standard ResNet-50 of (a) an orange
lifeboat in the training set (with both color and shape attributes),
and (b) an orange cyclist for the test (aligned with color attribute
but conflicting with the shape one). Most of the lifeboats in the
training set are orange. The biased model is prone to predict via
the “unintended” color attribute rather than the intrinsic shape.

such as recommendation system [8, 35, 53, 59] and neural
language processing [13, 14, 33, 41, 56].

Given such a biased training dataset, how to get rid of
the negative effect of the misleading correlations? One in-
tuitive solution is to perform special operations on those
samples highly correlated to the bias attributes, which re-
quires additional supervision, such as the pre-defined bias
type [1, 4, 11, 12, 22, 30, 34, 46, 50]. Since prior knowledge
of the dataset bias requires expensive manual annotations
and is naturally missing in some applications, learning a
debiased model without additional supervision about bias
is in demand. Nam et al. [36] identify samples with intrin-
sic attributes based on the observation that malignant bias
attributes are often easier-to-learn than others. Then the valu-
able samples for a debiasing scheme could be dynamically
reweighted or augmented [11,27,34]. However, the restricted
number of such samples implies uncertain representations
and limits its ability to assist in debiasing.

To leverage more valuable-for-debiasing knowledge, we
take a further step in analyzing the representation space of
naïvely-training dynamics, especially focusing on the dis-
crepancies in attributes with a different learning difficulty.
As we will later illustrate in Figure 2, an attribute-based
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DNN pushes and fits on the easier bias attribute initially.
The intrinsic attribute is then forced to shift in a “lazy” man-
ner. The bias attribute that is pushed away first leaves a
large margin boundary. Since the space of the other intrin-
sic attribute is filled with many different samples on bias
attribute, it has a large intra-class variance, like a “hollow”.
The representation is biased toward one side of the “hollow”,
i.e., those samples aligned with the bias attribute. Without
the true intra-class structure, the model becomes biased.

From the above observation, it is crucial to fill intra-class
“hollow” and remodel representation compactness. Notice
that the samples shifting to the two sides of the “hollow” have
different characteristics, as aligned with the bias attribute and
conflicting with it, respectively. We can find samples with
an intermediate state between the above two. We call this
type of sample the Intermediate Attribute Samples (IASs)
which are near the decision boundary. When we condition
(fix) on the intrinsic attribute, IASs vary on the other bias
attribute and are exactly located in the “hollow” with low-
density structural knowledge. Further, we can mine samples,
including IASs, based on the distinct training dynamics.

To this end, we propose our two-stage χ2-model. In the
first stage, we train a vanilla model on the biased dataset
and record the sample-wise training dynamics w.r.t. both the
target and the most obvious non-target classes (as the bias
ones) along the epochs. An IAS is often predicted as a non-
target class in the beginning and then switched to its target
class gradually, making its dynamics plot a χ-shape. Follow-
ing this observation, we design a χ-shape pattern to match
the training samples. The matching score ranks the mined
samples according to the bias level, i.e., how much they are
biased towards the side of the bias attribute. Benefiting from
the IASs, we conduct conditional attribute interpolation, i.e.,
fixing the value of the target attribute. We interpolate the
class-specific prototypes around IASs with various bias ra-
tios. These conditional interpolated prototypes precisely
“average out” on the bias attribute. From that, we design
a χ-structured metric learning objective. It pulls samples
close to those same-class interpolated prototypes, then intra-
class samples become compact, and the influence of the bias
attribute is removed. Our χ2-model learns debiased repre-
sentation effectively and achieves remarkable improvements
on various datasets. Our contributions are summarized as
• We claim and verify that Intermediate Attribute Samples

(IASs) distributed around attribute decision boundaries
facilitate learning a debiased representation.

• Based on the diverse learning behavior of different at-
tribute types, we mine samples with varying bias levels,
especially IASs. From that, we interpolate bias attribute
conditioned on the intrinsic one and compact intra-class
samples to remove the negative effect of bias.

• Experiments on benchmarks and a newly constructed real-
world dataset from NICO [17] validate the effectiveness

of our χ2-model in learning debiased representations.

2. A Closer Look at Learning on Bias Attribute
After the background of learning on a biased dataset in

subsection, we analyze the training dynamics of the model.

2.1. Problem Definition

Given a training set Dtrain = {(xi, yi)}Ni=1, each sample
xi is associated with a class label y ∈ {1, 2, · · · , C}. We
aim to find a decision rule hθ that maps a sample to its
label. hθ is optimized by fitting all the training samples, e.g.,
minimizing the cross entropy loss as follows:

LCE = E(xi,yi)∼Dtrain [− log Pr (hθ(xi) = yi | xi)] . (1)

We denote hθ = argmaxc∈[C] w
⊤
c fϕ(x), where fϕ →

Rd is the feature extraction network and {wc}c∈[C] is top-
layer C-class classifier. The θ represents the union of learn-
able parameters ϕ and w. We expect the learned hθ to have
the high discerning ability over the test set Dtest which has
the same form as the training set Dtrain.

In addition to its class label, a sample could be described
based on various attributes. If an attribute is spuriously
correlated with the target label, we name it non-target bias
attribute ab. The attribute that intrinsically determines the
class label is the target attribute ay. For example, when
we draw different handwritten digits in the MNIST dataset
with specific colors [22], the color attribute will not help in
the model generalization since we need to discern digits by
the shape, e.g., “1” is like the stick. However, if almost all
training images labeled “1” are in the same “yellow” color,
the decision rule image in “yellow” is digit “1” will perform
well on a such biased training set.

In the task of learning with a biased training set [22, 29,
36], the bias attribute ab on most of the same-class samples
are consistent, and spuriously correlated with the target label
(as example digit “1” in “yellow” above), so a model hθ that
relies on ab or the target attribute ay will both perform well
on Dtrain. In real-world applications, it is often easier to learn
to rely on ab than on ay, such as “background” or “texture”
is easier-to-learn than the object [42, 51]. Therefore a model
is prone to recognize based on the ab. Such a simplicity
bias [3, 37, 38, 42] dramatically hurts the generalization of
an unbiased test set. Nam et al. [36] also observe that the
loss dynamics indicate the easier ab is learned first, where
the model is distracted and fails to learn ay .

Based on the behaviors of the “ultimate” biased model,
samples in Dtrain are split into two sets. Those training sam-
ples that could be correctly predicted based on the bias at-
tribute ab are named as Bias-Aligned (BA) samples (as ex-
ample “yellow digit 1” above), while the remaining ones are
Bias-Conflicting (BC) samples (as digit “1” of other colors).
The number of BC samples is extremely small, and previous
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Figure 2. An illustration of the training dynamics of a naïvely-trained model on a biased dataset. The different attribute classes are
drawn with a specific color (top row) or shape (bottom row). The first three columns correspond to the sequential training progress of these
two classifiers, and the final column shows the test scenario. The easier-to-learn color is fitted first, which leaves a large margin on decision
boundary and correspondingly triggers the shape attribute intra-class “hollow”. “UB” and “BB” are the abbreviations of “unbiased boundary”
and “biased boundary”. The biased model cannot generalize well as the shadow area in the last column frames the shape-misclassified
samples. We use yellow stars to indicate the shifted class centers of the training samples and gray stars for those of the test samples.

methods emphasize their role with various strategies [11, 27,
34, 36]. For additional related methods of learning a debi-
ased model [2,7,9,10,18,24,25,29,31,40,49,60] please see
the supplementary material. They can be extrapolated and
applied to other application scenarios [16, 45, 52, 54, 57, 58].

2.2. The Training Dynamics of Biased Dataset

We analyze the training dynamics of a naïvely trained
model in Eq. 1 on the Colored MNIST dataset. The non-
target bias attribute is the color and the target attribute is the
shape. For visualization shown in Figure 2, we set the output
dimension of the penultimate layer as two. In addition to the
learned classifier on shape attribute ay , simultaneously, we
add another linear classifier on top of the embedding to show
how the decision boundary of color attribute ab changes.
More details are described in the supplementary material.
Focusing on the precedence relationship for learning ay and
ab, we have the following observations:
• The easier-to-learn bias attribute color is fitted soon.

The early training stage is shown in the first column. Both
color and shape attribute classifiers discern by different
colors and do correctly on almost all BA samples (red “0”
and blue “2”, about 95% of the training set).

• The target attribute shape is learned later in a “lazy”
manner. To further fit all shape labels, the model focuses
on the limited BC samples (blue “0” and red “2”, corre-

spondingly about 5%) that cannot be perfectly classified
by color. It pushes minor BC representations to the other
(correct) side instead of adjusting the decision boundary.

• The ahead-color and lagged-shape learning process leaves
a large margin of color attribute boundary, which fur-
ther triggers the shape attribute intra-class “hollow”.
Because the representation of different colors is continu-
ously pushed away (classified) before that of the shape,
the gaps between different color attribute clusters are sig-
nificantly larger than that of the shape attribute.

• Since there is an intra-class “hollow” between BA and BC
samples which is conditioned on a particular shape, the
true class representation is deviated toward color. The
fourth column shows that the training class centers (yellow
stars) and the test ones (gray stars) are mismatched. The
true class center is located in the low-density “hollow”
between shape-conditioned BA and BC samples.

Previous observations indicate that the before-and-latter
learning process on attributes of different learning difficulties
leaves the model to lose intra-class compactness, primarily
when learning relying on the bias attribute is easier. To
alleviate class center deviation towards the BA samples,
only emphasizing the BC samples is insufficient due to their
scarcity. In addition, we propose to utilize Intermediate
Attribute Samples (IASs), i.e., the samples near the attribute
decision boundary and remodel the shifted representation.
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Figure 3. An illustration of the χ2-model. In the first stage (top row, left to right), we match and mine all samples with a χ-shape pattern.
As shown in the right part, the images are getting biased towards the side of peripheral bias attribute from top to bottom, i.e., from various
colors or backgrounds to a single red or sunset. Different shapes (# or ∆) and colors (orange or green) drawn in the Representation Space
indicate the target and bias attribute, respectively. In the second stage (bottom row, right to left), we construct prototypes by conditional
interpolating around IASs with various ratios and design the χ-structured metric learning objective to pull the intra-class samples.

Especially when conditioned on the target attribute, the IASs
vary on bias attribute and fill in the low-density intra-class
“hollow” between BA and BC samples.

3. χ2-Model
To mitigate the representation deviation and compact

the intra-class “hollow”, we leverage IASs to encode how
bias attribute changes from one extreme (major BA side) to
another (BC side). Then, the variety of the bias attribute
could be interpolated when conditioned on a particular target
attribute. We propose our two-stage χ2-model, whose no-
tion is illustrated in Figure 3. First, the χ2-model discovers
IASs based on the training dynamics of the vanilla model
in subsection 3.1. Next, we analyze where the top-ranked
samples with a χ-shape pattern are as well as their effective-
ness in debiasing in subsection 3.2. A conditional attribute
interpolation step with IASs then fills in the low-density
“hollow” to get a better estimation of class-specific proto-
type. By pulling samples to the corresponding prototype, the
χ-structured metric learning makes intra-class samples com-
pact in subsection 3.3. We further investigate the Colored
MNIST dataset. Results on other datasets are consistent.

3.1. Scoring Samples with a χ-shape Pattern

From the observations in the previous section, we aim
to collect IASs to reveal how BC samples shift and leave
the intra-class “hollow” between them and BA ones. As dis-
cussed in subsection 2.2, the vanilla model fits BC samples
later than BA ones, which motivates us to score the samples
from their training dynamics. Once we have the score pattern

to match and distinguish BA and BC samples, IASs, with in-
termediate scores can be extracted and available for the next
debiasing stage. In the following, we denote the posterior of
the Ground-Truth class (GT-class) yi for a sample xi as

Pr (hθ(xi) = yi | xi) = softmax(w⊤
c fϕ(x))yi

, (2)

the larger the posterior, the more confident a model predicts
xi with yi. For notation simplicity, we abbreviate the pos-
terior as Pr (yi | xi). The target posterior of a BA sample
reaches one or becomes much higher than other categories
soon after training several epochs, while the posterior of a
BC sample has a delayed increase. To capture the clues on
the change of bias attribute, we also analyze the posterior
of the most obvious non-GT attribute, which reveals crucial
bias influences. Denote the model at the t-th epoch plus the
superscript t, such as ht

θ . we take the bias class for the sam-
ple xi at epoch t as bti = argmaxc∈[C],c ̸=yi

(
w⊤

c fϕ(x)
)t

.
Then, we define the non-GT bias class as the most frequent
bti along all epochs, i.e., bi = max_freq{bti}Tt=1. A sample
has a larger bias class posterior when it has low confidence
in its target class and vice versa.

Taking posteriors of both yi and bi into account, a BA
sample has larger Pr (yi | xi) and small Pr (bi | xi) along
all its training epochs. For a BC sample, Pr (yi | xi) in-
creases gradually and meanwhile Pr (bi | xi) decreases. We
verify the phenomenon on Colored MNIST dataset in Fig-
ure 4 (left). For BA samples (yellow “1”), the two curves
demonstrate a “rectangle”, while for BC samples (blue “1”),
the two curves have an obvious intersection and reveal a “χ”
shape. The statistics for the change of posteriors are shown
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Figure 4. Left: The change of posterior over the GT-class (green curve) as well as the bias class (red curve) over four samples. The two
curves over BC samples and IAS demonstrate a χ-shape, which is different from the curves over the BA sample. Right: The change of
prediction frequencies of BC or BA samples along with the training epochs. The statistics are calculated over all BC or BA samples. A BA
sample is easily predicted as the GT-class from the initial training stage, while a BC sample changes its prediction from the bias class to the
GT-class gradually.

in Figure 4 (right). Therefore, how much the training dynam-
ics match the “χ” shape reveals the probability of a sample
that shifts from the major BA clusters to minor BC ones. We
design a χ-shape for the dynamics of losses to capture such
BC-specific properties. The change of sample-specific loss
for ground-truth label and bias label over T epochs could be
summarized by LCE. Then, we use two exponential χ-shape
functions χpattern to capture the ideal loss shape of the BC
sample, i.e., the severely shifted case.

LCE (xi) =

(
Lgt
CE (xi) =

{
− log Prt (yi | xi)

}T
t=1

Lb
CE (xi) =

{
− log Prt (bi | xi)

}T
t=1

)
,

χpattern =

(
pgt =

{
e−A1t

}T
t=1

pb =
{
eA2t

}T
t=1

)
, (3)

where A1 and A2 are the matching factors. They could be
determined based on the dynamics of prediction fluctuations.
For more details please see the supplementary material. The
χpattern encodes the observations for the most deviated BC
samples. To match the loss dynamics with the pattern, we
use the inner product over the two curves:

s(xi) = ⟨LCE (xi) , χshape⟩ (4)

= ⟨Lgt
CE (xi) ,p

gt⟩+ ⟨Lb
CE (xi) ,p

b⟩

=

T∑
t=1

(
−e−A1t · log Pr (hθ (xi) = yi | xi)

−eA2t · log Pr (hθ (xi) = bi | xi)
)
.

The inner product s(xi) takes the area under the curves
(AUC) into account, which is more robust w.r.t. the volatile
loss changes. When s(xi) score goes from low to high, the
sample varies on the bias level, i.e., from BA samples to
IASs, and then to BC samples.

Table 1. The classification accuracy on the unbiased test sets of
vanilla models. Various training sampling strategies are compared.
“0-1” denotes only using BC samples. “Step-wise” denotes applying
uniformly higher and lower weights on BC and BA samples. “χ-
pattern” denotes sampling with scores calculated by our χ2-model.
The best results are in bold, while the second-best ones are with
underlines. C-CIFAR-10 is a similarly biased dataset as C-MNIST.

Dataset C-MNIST C-CIFAR-10
Ratio (%) 99.9 99.5 99.9 99.5

Vanilla 28.58 59.29 26.91 30.16
+ 0-1 54.78 70.41 18.73 25.06
+ Step-wise 41.68 73.52 32.12 35.91
+χ-pattern 52.67 80.29 35.47 37.83

3.2. Where IASs Are and Why IASs Can Help to
Learn a Debiased Representation?

Combining the analysis in subsection 2.2 and collecting
ranked samples by s(xi), we find there are two types of
IASs according to the representation near the target attribute
decision boundary (as “0” for complex shapes in Figure 3),
or that of the bias attribute (as helicopter in intermediate
transitional “sunset” background). (1) If an IAS has an inter-
mediate target attribute value, it may be a difficult samples
and contains rich information about the target class bound-
aries. (2) If an IAS is in an intermediate state on the bias
attribute, it may help to fill in the intra-class vacant “hollow”
when conditioning (fixing) on the target attribute. Both types
of IASs are similar to BC samples but from two directions,
i.e., compared to the BA samples, they contain richer seman-
tics on target or bias attributes. In the representation space,
they are scattered between BA and BC samples, compensat-
ing for the sparsity of BC samples and valuable for debiasing.
We will show how χ-structured objective with IASs help to
remodel the true class centers in the following subsection.

We illustrate the importance of IASs with simple experi-
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Figure 5. Heatmap of the mean distance from the sample to its conditional interpolated prototypes. We construct the prototype with
mixing over the same-class subset but with different ratios of BC samples. Then the mean distances between the sample and those prototypes
are measured. For a biased model (left two), when the BC ratio γ of interpolated prototype pγ changes from low to high (horizontal
direction), the distance of a sample to different pγ varies hugely. The BA samples are closer to the low ratio ones, while the BC samples
behave the opposite. An intra-class “hollow” exists. For an unbiased model (right two), the distances from any sample to pγ with different
ratios are almost the same.

ments on biased Colored-MNIST and Corrupted CIFAR-10
datasets. The datasets are described in subsection 4.1. We
investigate whether various reweighting strategies on the
vanilla model improve the generalization ability over an un-
biased test set. We use “0-1” to denote the strategy that
utilizes only the BC samples. “step-wise” means we apply
uniformly higher (ratio of BA samples) and lower weights
(one minus above ratio) to BC and BA samples. Our “χ-
pattern” smoothly reweights all samples with the matched
scores, where BC samples as well as IASs have relatively
larger weights than the remaining BA ones. The results in
Table 1 shows that simple reweighting strategies can improve
the performance of a vanilla classifier, supporting the sig-
nificance of emphasizing BC-like samples. Our “χ-pattern”
gets the best results in most scenarios, indicating that higher
resampling weights on the IASs and BC samples assist the
vanilla model to better frame the representation space.

3.3. Learning from a χ-Structured Objective

Although the BA samples are severely biased towards
the bias attribute, the BC samples, integrating the rich bias
attribute semantics, naturally make the representation inde-
pendent of the biased influence [19]. An intuitive approach
for debiasing is to average over BC samples and classified by
the BC class centers. However, the sparsity of BC samples
induces an erratic estimation which is far from the true class
center, as shown in Figure 2.

Benefiting from the analysis that BC-like IASs better
estimate the intra-class structure, we target conditional in-
terpolating around it, i.e., mixing the same-class samples
with different BC-like scores to remodel the intermediate
samples between BA and BC samples. From that, we can
construct many prototypes closer to the real class center and
pull samples to these prototypes to compact the intra-class

space. Combined with the soft ranking score from the χ-
pattern in the previous stage, we build two pools (subsets) of
the samples denoted as D∥ and D⊥. The D⊥ pool collects
the top-rank sampels and most of them are BC samples and
IASs. The D∥ pool is sampled from the remaining (BA) part
according to the score. With the help of D∥ and D⊥, we
construct multiple bias bags (subset) Bγ with bootstrapping
where the ratio of BC samples is γ.

Bγ =
{
(xi, yi)

∣∣ num (D⊥) : num
(
D∥

)
= γ

}
, (5)

where num (D) equals the number of samples in D. When
γ is low to high, the Bγ contains samples ranging from the
extremes of BA samples to the IASs, and then to the BC ones.
Based on Bγ , we compute the prototype, i.e., averaged on
Bγ to interpolate bias attribute conditioned on the particular
target attribute. For example, the prototype conditioned on
class c is formalized as pγ,c:

pγ,c =
1

K

∑
(xi,yi)∈Bγ

fϕ (xi) · I [yi = c] . (6)

To further demonstrate the significance of intra-class com-
pactness, we design the experiments to study the difference
between a biased vanilla model and the unbiased oracle
model (well-trained on an unbiased training set). We mea-
sure the mean distance between samples and their multiple
conditional interpolated prototypes with changing ratio γ. If
the prototypes are shifted with changing γ, that indicates a
large intra-class deviation exists. As shown in Figure 5, for
a biased model, when γ decreases, pγ is interpolated closer
to the BA samples. Opposite phenomena are observed in the
BC samples. As for the unbiased oracle model, no matter
how the BC ratio γ changes, such mean distance is almost
unchanged and shows a lower variance. This coincides with
the observation in Figure 2.
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Table 2. The classification performance on unbiased test set (in %; higher is better) evaluated on unbiased test sets of Colored MNIST and
Corrupted CIFAR-10 with training on varying BA samples ratios. We denote bias pre-provided type by # (without any information), H#
(bias prior knowledge), and  (explicit bias supervision). The best result is in bold, while the second-best is with underlines.

Dataset Colored MNIST Corrupted CIFAR-10
Ratio (%) 99.9 99.5 99.0 95.0 99.9 99.5 99.0 95.0

Vanilla # 28.58 59.29 74.42 87.13 26.91 30.16 37.71 41.60
+ p [44] # 31.01 64.82 76.84 87.86 26.55 29.48 38.07 42.30

RUBi [7] H# 27.82 70.80 86.58 96.77 33.70 34.70 34.59 47.23
ReBias [4] H# 27.71 72.89 85.95 96.87 33.65 34.40 35.82 47.45
End [46]  28.19 81.81 88.10 96.99 31.30 33.83 34.02 38.77
DI [50]  33.18 80.63 86.28 98.36 32.09 33.37 37.65 51.27
LfF [36] # 30.24 68.90 76.69 96.81 29.89 33.68 35.28 45.38
LFA [27] # 22.31 64.13 81.83 95.45 32.49 35.74 39.63 47.25

χ-pattern + p  60.33 64.15 93.53 98.30 35.33 39.31 41.32 53.37
χ2-model (Ours) # 66.91 88.73 92.15 97.87 35.67 37.61 40.74 49.04

Motivated by mimicking the oracle, we adopt the condi-
tional interpolated prototypes and construct a customized
χ-structured metric learning task. Assuming γ is large, we
use pγ and p1−γ to denote prototypes in bias bags B with
high and low BC ratios. The model should prioritize pulling
the majority of low BC ratio bias bag B1−γ closer to pγ ,
which interpolated into the high BC space. Similarly, the
high BC bias bag Bγ should be pulled to low BC interpolated
p1−γ . We optimize the cross-entropy loss LCE to enable the
pulling operation. Concretely, the posterior via the distance
d (·, ·) in the representation space is formalized as:

Pr (yi | xi) =
exp (−d (fϕ (xi) ,pγ,yi

) /τ)∑
c∈[C] exp (−d (fϕ (xi) ,pγ,c) /τ)

, (7)

where τ is a scaled temperature. One of the branches of
the χ-structure classification task is optimizing the LCE be-
tween samples in the B1−γ and pγ . Similarly, the other
branch is optimizing between Bγ and p1−γ at the same
time. As shown in Figure 3, such a high-and-low correspon-
dence captures and compacts the intra-class “hollow”. In
summary, The bias bags of high BC ratios Bγ with corre-
sponding low BC interpolated prototypes conditioning on
the target attribute p1−γ , and B1−γ with pγ form the χ-
structure crossover objective.

4. Experiments
We conduct experiments to verify whether χ2-model has

effective debiasing capability. We begin by introducing bias
details in each dataset (as in subsection 4.1). We present
the comparison approaches and training details. In subsec-
tion 4.2, the experiments show that χ2-model achieves supe-
rior performance in each stage. Furthermore, we exemplify
the inherent quality of the prototype-based classification for
debiasing tasks and offer ablation studies in subsection 4.3.

Table 3. The classification performance on the unbiased CelebA
and NICO test set. The data source BA denotes the measurement
on BA samples and BC is corresponding the BC samples.

Data Biased CelebA NICO
Source BA BC All All

LfF [36] 73.69 70.41 72.05 34.44
DFA [27] 94.01 58.98 76.50 33.10
χ2-model 97.66 60.79 79.23 36.99

4.1. Experimental Setups

Datasets. To cover more general and challenging cases
of bias impact, we validate χ2-model in a variety of datasets,
including two synthetic bias datasets (Colored MNIST [4],
Corrupted CIFAR-10 [36]) and two real-world datasets (Bi-
ased CelebA [32] and Biased NICO).

The BA samples ratio ρ in the training set is usually high
(over 95%), so the bias attribute is highly correlated with the
target label. For instance, in the Colored MNIST dataset,
each digit is linked to a pre-defined bias color. Similarly,
there is an object target with corruption bias in Corrupted
CIFAR-10 and a gender target with hair color bias in Bi-
ased CelebA. Following the previous works [19], we use
the BA ratio ρ ∈ {95.0%, 99.0%, 99.5%, 99.9%} for Col-
ored MNIST and Corrupted CIFAR-10, respectively, and
approximately 96% for Biased CelebA. The Biased NICO
dataset is dedicatedly sampled in NICO [17], initially de-
signed for OOD (Out-of-Distribution) image classification.
NICO is enriched with variations in the object and context
dimensions. We select the bias attribute with the highest
co-occurrence frequency to the target one, e.g., helicopter to
sunset in training set correlates strongly (see BA samples in
Figure 3). The correlation ratio is roughly controlled to 86%.
For more details please see the supplementary material.
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Table 4. The performance of BC samples mining on Colored
MNIST with 99.5% BA ratio. Acc. denotes mean accuracy of
ranking with top-300. 98%-σ denotes the number of samples
required to contain 98% of BC samples. AP is average precision. ↑
means higher is better, while ↓ is the opposite.

Measure Acc. ↑ 98%-σ ↓ AP ↑

Entropy [20] 78.33 632 83.52
Confidence [28] 80.33 590 85.61
Loss [36] 94.39 418 98.22
Pleiss et al. [39] 82.67 686 89.24
Zhao et al. [55] 90.33 451 96.04
χ-pattern (Ours) 95.84 372 98.44

Baselines. We carefully select the classic and the latest
trending approaches as baselines: (1) Vanilla model train-
ing with cross entropy as described in subsection 2.1. (2)
Bias-tailored approaches with pre-provided bias type: RUBi,
Rebias. (3) Explicit approaches under the guidance of total
bias supervision: EnD and DI. (4) Implicit methods through
general bias properties: LfF and DFA.

Implementation details. Following the existing popular
benchmarks [19,23], we use the four-layer CNN with kernel
size 7×7 for the Colored MNIST dataset and ResNet-18 [15]
for Corrupted CIFAR-10, Biased CelebA, and Biased NICO
datasets. For a fair comparison, we re-implemented the
baselines with the same configuration. We mainly focus on
unbiased test accuracy for all categories. All models are
trained on an NVIDIA RTX 3090 GPU.

Baselines for the first stage. To better demonstrate the ef-
fectiveness of χ-pattern, we consider related sample-specific
scoring methods [39, 55] and report average precision, top-
threshold accuracy, and the minimum samples (threshold)
required for 98% accuracy. For more results, such as PR
curves, please see the supplementary material.

4.2. Quantitative Evaluation

Performance of χ-shape pattern. As shown in Table 4,
our χ-pattern matching achieves state-of-the-art performance
on various evaluation metrics. Thus, the χ-structure metric
learning objective can leverage more IASs cues to interpolate
bias attribute and further learn the debiased representation.

χ2-model in different types of bias constructions. (1)
Synthetic bias on Colored MNIST and Corrupted CIFAR-
10: From Table 2 we find that under extreme bias influence,
as ρ is 99.9%, the performance of the vanilla model and
other baselines decreases catastrophically. In contrast, Our
χ2-model maintains the robust and efficient debiasing capa-
bility on the unbiased dataset. Further, more results in Fig-
ure 2 present the remarkable performance of our χ2-model
compared to other methods. (2) Real-world bias on Biased
CelebA and Biased NICO: Table 3 shows that compared
to the recent methods which do not pre-provide any bias
information as the same as ours, our method also achieves

(a) t-SNE on at (b) t-SNE on ab

96%

𝐴1

𝐴2

88%

(c) ablation study of A1, A2

Figure 6. (a) and (b) show the t-SNE visualization of our unbiased
representation in terms of digit (the target attribute) and color (the
bias one) in Colored MNIST, respectively. (c) displays the top-300
mean accuracy of mining BC samples on Colored MNIST with
99.5% BA ratio when A1 and A2 are changed.

outstanding performance. The above experiments indicate
that conditional interpolation among IASs feedback the shift
of the intrinsic knowledge and facilitate learning debiased
representations even in extremely biased conditions.

4.3. Further analysis

The inherent debiasing capability of prototype-based
classification. We directly construct the prototype by aver-
aging the trained representations of the vanilla model (as in
Table 2 line two named “+ p”). The results show that on
some datasets like Colored MNIST, the prototype-based clas-
sifier without training achieves performance improvement.

Visualize the test set representation on 2D embedding
space via t-SNE. Figure 6 shows the 2D projection of the
feature extracted by χ2-model on Colored MNIST. We color
the target and bias attributes separately. The representations
follow the target attribute to cluster into classes which indi-
cates that our model learns the debiased representations.

Ablation studies. We further perform the ablation analy-
sis of the matching factors A1, A2 in Eq. 3, which directly
determine the χ-shape curves. The results show the first
stage of χ2-model is robust to changes in hyperparameters.
For more related experiments like on different BC identifica-
tion thresholds, please see the supplementary material.

5. Conclusion

Although intra-class biased samples with a “hollow”
structure impede learning debiased representations, we pro-
pose the χ2-model to leverage Intermediate Attribute Sam-
ples (IASs) to remodel the representation compactness. χ2-
model works in a two-stage manner, matching and ranking
possible IASs based on their χ-shape training dynamics fol-
lowed by a χ-branch metric-based debiasing objective with
conditional attribute interpolation.
Acknowledgments. This research was supported by NSFC
(61773198,61921006,62006112), Collaborative Innovation
Center of Novel Software Technology and Industrialization,
NSF of Jiangsu Province (BK20200313).

7606



References
[1] Vedika Agarwal, Rakshith Shetty, and Mario Fritz. Towards

causal VQA: revealing and reducing spurious correlations by
invariant and covariant semantic editing. In CVPR, pages
9687–9695, 2020. 1

[2] Martín Arjovsky, Léon Bottou, Ishaan Gulrajani, and
David Lopez-Paz. Invariant risk minimization. CoRR,
abs/1907.02893, 2019. 3

[3] Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David
Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan
Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio,
and Simon Lacoste-Julien. A closer look at memorization in
deep networks. In ICML, pages 233–242, 2017. 2

[4] Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo,
and Seong Joon Oh. Learning de-biased representations with
biased representations. In ICML, pages 528–539, 2020. 1, 7

[5] Yoshua Bengio, Yann LeCun, and Geoffrey E. Hinton. Deep
learning for AI. Communications of the ACM, 64(7):58–65,
2021. 1

[6] Wieland Brendel and Matthias Bethge. Approximating cnns
with bag-of-local-features models works surprisingly well on
imagenet. In ICLR, 2019. 1

[7] Rémi Cadène, Corentin Dancette, Hedi Ben-younes, Matthieu
Cord, and Devi Parikh. Rubi: Reducing unimodal biases for
visual question answering. In NeurIPS, pages 839–850, 2019.
3, 7

[8] Rocío Cañamares and Pablo Castells. Should I follow the
crowd?: A probabilistic analysis of the effectiveness of pop-
ularity in recommender systems. In SIGIR, pages 415–424,
2018. 1

[9] Pengyu Cheng, Weituo Hao, Siyang Yuan, Shijing Si, and
Lawrence Carin. Fairfil: Contrastive neural debiasing method
for pretrained text encoders. In ICLR, 2021. 3

[10] Christopher Clark, Mark Yatskar, and Luke Zettlemoyer.
Don’t take the easy way out: Ensemble based methods for
avoiding known dataset biases. In EMNLP-IJCNLP, pages
4067–4080, 2019. 3

[11] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A. Wichmann, and Wieland Brendel.
Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. In ICLR, 2019.
1, 3

[12] Karan Goel, Albert Gu, Yixuan Li, and Christopher Ré.
Model patching: Closing the subgroup performance gap with
data augmentation. In ICLR, 2021. 1

[13] Yue Guo, Yi Yang, and Ahmed Abbasi. Auto-debias: Debias-
ing masked language models with automated biased prompts.
In ACL, pages 1012–1023, 2022. 1

[14] He He, Sheng Zha, and Haohan Wang. Unlearn dataset bias in
natural language inference by fitting the residual. In EMNLP-
IJCNLP Workshop, pages 132–142, 2019. 1

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, pages
770–778, 2016. 8

[16] Rundong He, Zhongyi Han, Yang Yang, and Yilong Yin. Not
all parameters should be treated equally: Deep safe semi-

supervised learning under class distribution mismatch. In
AAAI, pages 6874–6883, 2022. 3

[17] Yue He, Zheyan Shen, and Peng Cui. Towards non-iid image
classification: A dataset and baselines. Pattern Recognition,
110:107383, 2021. 2, 7

[18] Lisa Anne Hendricks, Kaylee Burns, Kate Saenko, Trevor
Darrell, and Anna Rohrbach. Women also snowboard: Over-
coming bias in captioning models. In ECCV, pages 793–811,
2018. 3

[19] Youngkyu Hong and Eunho Yang. Unbiased classifica-
tion through bias-contrastive and bias-balanced learning. In
NeurIPS, pages 26449–26461, 2021. 6, 7, 8

[20] Ajay J. Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos.
Multi-class active learning for image classification. In CVPR,
pages 2372–2379, 2009. 8

[21] Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz, Alexei A.
Efros, and Antonio Torralba. Undoing the damage of dataset
bias. In ECCV, pages 158–171, 2012. 1

[22] Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim,
and Junmo Kim. Learning not to learn: Training deep neural
networks with biased data. In CVPR, pages 9012–9020, 2019.
1, 2

[23] Eungyeup Kim, Jihyeon Lee, and Jaegul Choo. Biaswap:
Removing dataset bias with bias-tailored swapping augmen-
tation. In ICCV, pages 14972–14981, 2021. 8

[24] Nayeong Kim, SEHYUN HWANG, Sungsoo Ahn, Jaesik
Park, and Suha Kwak. Learning debiased classifier with
biased committee. In NeurIPS, pages 18403–18415, 2022. 3

[25] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wil-
son. Last layer re-training is sufficient for robustness to
spurious correlations. In ICLR, 2023. 3

[26] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep
learning. Nature, 521(7553):436–444, 2015. 1

[27] Jungsoo Lee, Eungyeup Kim, Juyoung Lee, Jihyeon Lee, and
Jaegul Choo. Learning debiased representation via disentan-
gled feature augmentation. In NeurIPS, 2021. 1, 3, 7

[28] Mingkun Li and Ishwar K. Sethi. Confidence-based active
learning. IEEE TPAMI, 28(8):1251–1261, 2006. 8

[29] Yi Li and Nuno Vasconcelos. REPAIR: removing representa-
tion bias by dataset resampling. In CVPR, pages 9572–9581,
2019. 2, 3

[30] Yingwei Li, Qihang Yu, Mingxing Tan, Jieru Mei, Peng Tang,
Wei Shen, Alan L. Yuille, and Cihang Xie. Shape-texture
debiased neural network training. In ICLR, 2021. 1

[31] Evan Zheran Liu, Behzad Haghgoo, Annie S. Chen, Aditi
Raghunathan, Pang Wei Koh, Shiori Sagawa, Percy Liang,
and Chelsea Finn. Just train twice: Improving group robust-
ness without training group information. In ICML, pages
6781–6792, 2021. 3

[32] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In ICCV, pages
3730–3738, 2015. 7

[33] Michael Mendelson and Yonatan Belinkov. Debiasing meth-
ods in natural language understanding make bias more acces-
sible. In EMNLP, pages 1545–1557, 2021. 1

[34] Matthias Minderer, Olivier Bachem, Neil Houlsby, and
Michael Tschannen. Automatic shortcut removal for self-

7607



supervised representation learning. In ICML, pages 6927–
6937, 2020. 1, 3

[35] Marco Morik, Ashudeep Singh, Jessica Hong, and Thorsten
Joachims. Controlling fairness and bias in dynamic learning-
to-rank. In SIGIR, pages 429–438, 2020. 1

[36] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and
Jinwoo Shin. Learning from failure: De-biasing classifier
from biased classifier. In NeurIPS, pages 20673–20684, 2020.
1, 2, 3, 7, 8

[37] Giacomo De Palma, Bobak Toussi Kiani, and Seth Lloyd.
Random deep neural networks are biased towards simple
functions. In NeurIPS, pages 1962–1974, 2019. 2

[38] Guillermo Valle Pérez, Chico Q. Camargo, and Ard A. Louis.
Deep learning generalizes because the parameter-function
map is biased towards simple functions. In ICLR, 2019. 2

[39] Geoff Pleiss, Tianyi Zhang, Ethan R. Elenberg, and Kilian Q.
Weinberger. Identifying mislabeled data using the area under
the margin ranking. In NeurIPS, pages 17044–17056, 2020.
8

[40] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and
Percy Liang. Distributionally robust neural networks. In
ICLR, 2020. 3

[41] Ramprasaath Ramasamy Selvaraju, Stefan Lee, Yilin Shen,
Hongxia Jin, Shalini Ghosh, Larry P. Heck, Dhruv Batra, and
Devi Parikh. Taking a HINT: leveraging explanations to make
vision and language models more grounded. In ICCV, pages
2591–2600, 2019. 1

[42] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek
Jain, and Praneeth Netrapalli. The pitfalls of simplicity bias
in neural networks. In NeurIPS, pages 9573–9585, 2020. 2

[43] Sahil Singla and Soheil Feizi. Salient imagenet: How to
discover spurious features in deep learning? In ICLR, 2022.
1

[44] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototyp-
ical networks for few-shot learning. In NIPS, pages 4077–
4087, 2017. 7

[45] Lin Sui, Chen-Lin Zhang, and Jianxin Wu. Salvage of super-
vision in weakly supervised object detection. In CVPR, pages
14207–14216, 2022. 3

[46] Enzo Tartaglione, Carlo Alberto Barbano, and Marco
Grangetto. End: Entangling and disentangling deep repre-
sentations for bias correction. In CVPR, pages 13508–13517,
2021. 1, 7

[47] Tatiana Tommasi, Novi Patricia, Barbara Caputo, and Tinne
Tuytelaars. A deeper look at dataset bias. In Pattern Recogni-
tion, volume 9358, pages 504–516, 2015. 1

[48] Antonio Torralba and Alexei A. Efros. Unbiased look at
dataset bias. In CVPR, pages 1521–1528, 2011. 1

[49] Haohan Wang, Zexue He, Zachary C. Lipton, and Eric P.
Xing. Learning robust representations by projecting superfi-
cial statistics out. In ICLR, 2019. 3

[50] Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis, Kyle
Genova, Prem Nair, Kenji Hata, and Olga Russakovsky. To-
wards fairness in visual recognition: Effective strategies for
bias mitigation. In CVPR, pages 8916–8925, 2020. 1, 7

[51] Kai Yuanqing Xiao, Logan Engstrom, Andrew Ilyas, and
Aleksander Madry. Noise or signal: The role of image back-
grounds in object recognition. In ICLR, 2021. 1, 2

[52] Han-Jia Ye, Lu Han, and De-Chuan Zhan. Revisiting unsuper-
vised meta-learning via the characteristics of few-shot tasks.
IEEE Trans. Pattern Anal. Mach. Intell., 45(3):3721–3737,
2023. 3

[53] Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chong-
gang Song, Guohui Ling, and Yongdong Zhang. Causal inter-
vention for leveraging popularity bias in recommendation. In
SIGIR, pages 11–20, 2021. 1

[54] Yi-Kai Zhang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan
Zhan. Audio-visual generalized few-shot learning with
prototype-based co-adaptation. In Interspeech, pages 531–
535, 2022. 3

[55] Bowen Zhao, Chen Chen, Qi Ju, and Shutao Xia. Learning
debiased models with dynamic gradient alignment and bias-
conflicting sample mining. CoRR, abs/2111.13108, 2021.
8

[56] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez,
and Kai-Wei Chang. Men also like shopping: Reducing
gender bias amplification using corpus-level constraints. In
EMNLP, pages 2979–2989, 2017. 1

[57] Da-Wei Zhou, Yang Yang, and De-Chuan Zhan. Learning
to classify with incremental new class. IEEE Trans. Neural
Networks Learn. Syst., 33(6):2429–2443, 2022. 3

[58] Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Co-transport
for class-incremental learning. In ACM Multimedia, pages
1645–1654, 2021. 3

[59] Nengjun Zhu, Jian Cao, Yanchi Liu, Yang Yang, Haochao
Ying, and Hui Xiong. Sequential modeling of hierarchical
user intention and preference for next-item recommendation.
In WSDM, pages 807–815. ACM, 2020. 1

[60] Wei Zhu, Haitian Zheng, Haofu Liao, Weijian Li, and Jiebo
Luo. Learning bias-invariant representation by cross-sample
mutual information minimization. In ICCV, pages 14982–
14992, 2021. 3

7608


