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Abstract

Scene graph generation (SGG) aims to abstract an im-
age into a graph structure, by representing objects as graph
nodes and their relations as labeled edges. However, two
knotty obstacles limit the practicability of current SGG
methods in real-world scenarios: 1) training SGG mod-
els requires time-consuming ground-truth annotations, and
2) the closed-set object categories make the SGG mod-
els limited in their ability to recognize novel objects out-
side of training corpora. To address these issues, we nov-
elly exploit a powerful pre-trained visual-semantic space
(VSS) to trigger language-supervised and open-vocabulary
SGG in a simple yet effective manner. Specifically, cheap
scene graph supervision data can be easily obtained by
parsing image language descriptions into semantic graphs.
Next, the noun phrases on such semantic graphs are di-
rectly grounded over image regions through region-word
alignment in the pre-trained VSS. In this way, we enable
open-vocabulary object detection by performing object cat-
egory name grounding with a text prompt in this VSS. On
the basis of visually-grounded objects, the relation repre-
sentations are naturally built for relation recognition, pur-
suing open-vocabulary SGG. We validate our proposed ap-
proach with extensive experiments on the Visual Genome
benchmark across various SGG scenarios (i.e., supervised
/ language-supervised, closed-set / open-vocabulary). Con-
sistent superior performances are achieved compared with
existing methods, demonstrating the potential of exploiting
pre-trained VSS for SGG in more practical scenarios.

1. Introduction

Scene graph [10] is a structured representation for de-
scribing image semantics. It abstracts visual objects as
graph nodes and represents their relations as labeled graph
edges. The task of scene graph generation (SGG) [6, 14,
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Figure 1. An illustration of exploiting a pre-trained visual-
semantic space (VSS) to trigger language-supervised and open-
vocabulary scene graph generation (SGG). (a) We acquire weak
scene graph supervision by semantically parsing the image lan-
guage description and grounding noun phrases on image re-
gions via VSS. (b) At SGG inference time, thanks to the open-
vocabulary generalization naturally rooted in VSS, the novel ob-
jectname (e.g., player) in the text prompt input can be well aligned
to one image region, which is regarded as its detection.

,26,40,47,48,50,51,57,60, 63, 64] plays an important
role for fine-grained visual understanding, which has shown
promising results in facilitating various downstream appli-
cations, such as image-text retrieval [24,38,49], image cap-
tioning [2,22,32,35,52,54,55,66], cross-media knowledge
graph construction [18,45] and robot planning [1].

Though great effort has been made, SGG of the current
stage still faces two knotty obstacles that limit its practi-
cability in real-world scenarios. 1) Training SGG mod-
els requires massive ground-truth scene graphs that are ex-
pensive for manual annotation. Annotators have to draw
bounding boxes for all objects in an image and connect
possible interacted object pairs, and assign object/relation
labels. Since assigned labels might be ambiguous, further
verification and canonicalization processing are usually re-
quired [14]. Finally, a scene graph in the form of a set of
(subject, predicate, object) triplets with subject and ob-
ject bounding boxes is constructed. Such annotating pro-
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cess is time-consuming and tedious, costing much human
labor and patience. 2) Almost all existing SGG methods
[20,21,26,47,48,50,51,60] involve a pre-defined closed set
of object categories, making them limited in recognizing
novel objects outside of training corpora. However, real-
world scenes contain a boarder set of visual concepts than
any pre-defined category pool. It is very likely to encounter
unseen/novel categories. When this happens, current SGG
models either classify novel objects to a known category or
fail to detect them like background regions. Accordingly,
the prediction of their interactions/relations with other ob-
jects is negatively affected or just neglected. This may lead
to problems. For example, a real-world robot may take inap-
propriate actions using such closed-set SGG models [1,42].

Recently, there is a trend of leveraging free-form lan-
guage supervision for benefiting visual recognition tasks
via large-scale language-image pre-training [7, 15, 17, 36,

, 59, 67].  These methods (e.g., CLIP [36]) perform
pre-training on massive easily-obtained image-text pairs
to learn a visual-semantic space (VSS), and have demon-
strated great zero-shot transferability. Especially, the re-
cent grounded language-image pre-training (GLIP) [17] has
learned an object-level and semantic-rich VSS. Based on
the learned VSS, it has established new state-of-the-art per-
formances in phrase grounding and zero-shot object de-
tection. This indicates such pre-trained VSS has power-
ful multi-modal alignment ability (i.e., image regions and
text phrases that have similar semantics get close embed-
dings) and open-vocabulary generalization ability (i.e., cov-
ering virtually any concepts in the pre-training image-text
corpus). This inspires our thought of addressing the afore-
mentioned obstacles in SGG using the pre-trained VSS. On
the one hand, taking advantage of its multi-modal align-
ment ability, we can cheaply acquire scene graph supervi-
sion from an image description (e.g., retrieving image re-
gions aligned with noun phrases and re-arranging the de-
scription into a scene-graph-like form). On the other hand,
by leveraging its open-vocabulary generalization ability, it
is promising to enable novel category prediction in SGG.

In this work, we investigate the opportunity of fully ex-
ploiting the VSS learned by language-image pre-training
to trigger language-supervised and open-vocabulary SGG.
Specifically, we obtain weak scene graph supervision by se-
mantically parsing an image language description into a se-
mantic graph, then grounding its noun phrases over image
regions through region-word alignment in the pre-trained
VSS (Figure 1 (a)). Moreover, we propose a novel SGG
model, namely Visual-Semantic Space for Scene graph gen-
eration (VS?). It takes a raw image and a text prompt con-
taining object category names as inputs, and projects them
into the shared VSS as embeddings. Next, VS3 performs
object detection by aligning the embeddings of category
names and image regions. Based on high-confidence de-

tected objects, VS? builds relation representations for object
pairs with a devised relation embedding module that fully
mines relation patterns from visual and spatial perspec-
tives. Finally, a relation prediction module takes relation
representations to infer relation labels. The predicted scene
graph is composed by combining object detections and in-
ferred relation labels. During training, visually-grounded
semantic graphs parsed from image descriptions could be
used as weak scene graph supervision, achieving language-
supervised SGG. At SGG inference time, when using a text
prompt input containing novel categories, VS® manages to
detect novel objects thanks to the open-vocabulary general-
ization ability natually rooted in VSS, hence allowing for
open-vocabulary SGG (Figure 1 (b)).

In summary, we have made the following contributions:
(1) the exploitation of a pre-trained VSS provides an el-
egant solution for addressing obstacles to triggering both
language-supervised and open-vocabulary SGG, making a
solid step toward real-world usage of SGG. (2) The pro-
posed VS? model is a new and versatile framework, which
effectively transfers language-image pre-training knowl-
edge for benefiting SGG. (3) We fully validate the effective-
ness of our approach through extensive experiments on the
Visual Genome benchmark, and have set new state-of-the-
art performances spanning across all settings (i.e., super-
vised / language-supervised, closed-set / open-vocabulary).

2. Related Work

Fully supervised SGG. The concept of scene graph as
a structured image representation is first introduced in [10].
Next, the Visual Genome benchmark [ 14] is manually anno-
tated with large-scale scene graphs on images. Such anno-
tated dataset triggers a series of innovations [6,20,26,40,47,

,50,51,57,60] for the fully supervised SGG task. Typi-
cally, an object detector (e.g., Faster-RCNN [37]) is trained
to retrieve image regions as scene graph nodes. Then, re-
lation representations of object pairs are constructed from
visual, spatial and language perspectives, and are used for
relation classification to label scene graph edges. To achieve
desirable SGG, researchers have devised message-passing
mechanisms [20, 26,48, 50, 60] to exploit contextual infor-
mation, derived contrastive loss functions [62] or incorpo-
rated external knowledge [6, 40, 57]. However, all these
methods rely on training with expensive scene graph an-
notations. Our proposed VS? model is compatible with
fully supervised SGG, but we seek to make SGG training
cheaper, which is more practical in real-world applications.

Language-supervised SGG. This task aims to train
SGG models using language descriptions. It has recently at-
tracted increasing attention [21,41,56,58,65], which is also
referred as weakly supervised SGG in [21,41, 58]. Partic-
ularly, based on a graph alignment algorithm, VSPNet [58]
first proposes to supervise SGG training with scene graphs
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that have no object locations. Subsequent works [21,41,65]
extract entities and relations from image captions to com-
pose such unlocalized scene graph, which is achieved via
an off-the-shelf language parser [31,39]. They next follow
a common paradigm: first grounding text entities on im-
age regions, and then leveraging grounded scene graphs as
pseudo labels to train standard SGG models. To acquire
entity groundings, Shi et al [41] devise an efficient graph
matching module optimized via contrastive learning; Zhong
et al [65] simply match text entity names with predicted ob-
ject labels from a pre-trained object detector using seman-
tic rules such as WordNet [33] synsets matching. More re-
cently, Li et al [21] integrate interaction-aware knowledge
distilled from pre-trained language-image models [16] for
enhancing grounding reliability. Instead, we propose to ob-
tain groundings through region-word alignment in a pre-
trained VSS, which is much simple yet more effective to
collect scene graph supervision from language.
Language-image pre-training. This has been shown
effective for boosting various vision-language downstream
tasks [11, 16,23,29, 30, 34, 43], e.g., image-text retrieval,
image captioning. Also, recent studies present remarkable
results on transferring pre-trained language-image knowl-
edge to solve vision recognition problems, such as zero-
shot image classification [9,36], open-vocabulary object de-
tection [7,17,53,59,67] and zero-shot semantic segmenta-
tion [15]. For example, CLIP [36] and ALIGN [9] learn
separate encoders to embed image and text into a shared
space by pre-training on massive image-text pairs using a
contrastive loss. They have demonstrated remarkable gener-
alization ability on zero-shot image classification after pre-
training. Distinct from CLIP and ALIGN that learn image-
level representations, GLIP [17] focuses on learning object-
level visual representations through region-word alignment.
It has attained strong zero-shot and few-shot transferability
to various object-level recognition tasks such as object de-
tection and phrase grounding. Most recently, He et al [8]
investigate a visual-relation pre-training and prompt-based
fine-tuning method for open-vocabulary SGG. However, its
image encoder relies on a pre-trained region proposal ex-
tractor, which is a bottleneck for achieving open-vocabulary
SGG under the SGDET protocol. Unlike [8], our pro-
posed VS? directly encodes an image into region tokens,
avoiding the bottleneck of region proposals. More impor-
tantly, our approach addresses obstacles to achieving both
language-supervised and open-vocabulary SGG using a uni-
fied framework, while He et al [8] only focus on the latter.

3. Approach
3.1. Notation & Overview

The task of scene graph generation (SGG) aims to map
an image into an abstract graph SG = {O, R}, where graph

Clarget Not containing Containing
SG novel object classes | novel object classes
fully supervised fully supervised
Manually annotated & closed-set & open-vocabulary

Automatically parsed
from image descriptions

language-supervised | language-supervised
& closed-set & open-vocabulary

Table 1. Definitions of different SGG settings, according to scene
graph supervision SG and the object set at inference CL*" 9.

nodes O = {o1,...,0n} correspond to image objects, and
graph edges R = {ry,...,7ar} represents their relations.
Each object 0o; = {b;,l;} € O contains the bounding box
coordinates b; € R* and its class label information /; € C,,
where C, denotes the set of object categories. Each relation
rm € Ris a (subject, predicate, object) triplet, and we
represent it as v, = r;—; = {04,pij,0;}, in which p;; is
the predicate/relation label belonging to category set C,..

Most existing SGG methods require expensive manually
annotated scene graphs SG as supervision. And they in-
volve a closed set of object categories C, in both training
and inference. These issues limit SGG for practical us-
age. In this work, we propose to fully exploit a pre-trained
VSS to push SGG towards language-supervised and open-
vocabulary scenarios. We illustrate the definitions of differ-
ent SGG settings in Table 1. Concretely, from the perspec-
tive of scene graph supervision SG, SGG is categorized
into fully supervised and language-supervised, using SG
from manual annotation and language respectively. From
the other perspective of object categories CL4"9¢! at infer-
ence, it is referred to as open-vocabulary or closed-set ac-
cording to whether or not C1*"9¢* contains novel objects.

Next, in Section 3.2, we present a new SGG model
named VS3, which is versatile to handle with all SGG set-
tings in Table 1. In Section 3.3, we devise a scheme to
obtain scene graph supervision from language descriptions,
allowing for language-supervised SGG. Finally, Section 3.4
details the strategy of transferring the proposed VS? to pur-
sue open-vocabulary SGG.

3.2. The Proposed VS Model

We propose the VS? model for tackling the SGG task by
extending the GLIP [17] framework with relation recogni-
tion modules, as shown in Figure 2.

Preliminary. GLIP unifies object detection and phrase
grounding into one framework. It has an image encoder
Enc; (e.g., Swin Transformer backbone [28]) and a text en-
coder Ency, (e.g., BERT [12]). Enc; extracts region/box
features O € RV >4 from an input image, where N is the
number of regions and d is the feature dimension. Encp,
encodes a text input into contextualized word/token em-
beddings P € RT*4 where T is the text length. Fur-
ther, GLIP uses a cross-modal fusion module to achieve
feature communication between O and P, resulting in en-
riched region embeddings O € RV*4 and word embed-
dings P e RTxd, Finally, the region-word alignment
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Figure 2. An overview of the proposed Visual-Semantic Space for Scene graph generation (VS®) model. It inherits the image encoder, the

text encoder and the cross-modal fusion module from GLIP [

], so as to project image regions and text prompt words in a pre-trained

visual-semantic space (VSS). Object regions are detected by aligning the embeddings of category names and image regions in VSS. Next,
high-confidence detected results are retained to compose subject-object pairs. After that, the relation embedding module constructs their
relation representations by extracting visual and spatial features, on which relation prediction is performed. At test time, thanks to the open-
vocabulary generalization ability of VSS, VS® manages to detect novel objects by switching to a text prompt containing novel classes.

scores Syround = OPT € RN*T and the predicted lo-
cations B = box_predictor(O) € RV** are supervised
by ground-truth text grounding data. After large-scale pre-
training, Enc; and Enc; embed the input image and text
into a joint VSS, which aligns multi-modal embeddings and
covers open-vocabulary concepts. VS? inherits Enc;, Ency,
and the cross-module fusion module from GLIP.

Text prompt. Considering that object detection has been
reformulated as phrase grounding, VS? also requires a text
prompt input except for the image input. Following GLIP’s
design, we set the text prompt for object detection in the
form of “name(ci). name(cz). ... name(cic,|).”, where
¢; € C, and name(c;) gets the category name of ¢; (e.g.,
person). Hence, an object is detected according to the
alignment score between a region embedding 0; € O (the
ith row) and the category name embeddings P.

Relation embedding module. To further enable VS?
with relation recognition ability, we devise the relation em-
bedding module to build relation representations. Based
on the region/box features O after cross-modal fusion, we
first sample a subset of regions O’ € RN "*d that are most
likely to be valid objects. This is achieved by match-
ing predicted bounding boxes B with ground-truth objects
during training, and by retaining top-N’ regions with the
highest confidence scores after non-maximum suppression
(NMS) at inference. Next, we construct relation repre-
sentations for all possible subject-object pairs. Given an
object pair (6,,0,) and their normalized bounding boxes
(b, b;), the pairwise relation representation is represented
as pair;_,; = cat[pair;’f;“l, pairfﬂlj’?ml]. This is the con-
catenation of features mined from the visual and spatial per-
spectives. The visual feature is computed by

pair!¥" = fair(6i — 6;) + Foum(0i +6;), (1)

where fg;5r and foum are two mapping functions imple-
mented as 2-layer MLPs (multi-layer perceptron). By defin-
ing the normalized center coordinates of two involved ob-
jects as (ct?, ct}) and (ctf, cty), the spatial feature is mea-
sured as

pair:?*" = cat[b,, bj, dx, dy, dis, 0, A;, A;, 1,U], (2)

=g
where dr = ctf — ctf,dy = ct] — ct] ,dis =
Vdx? +dy?,0 = arctcm(%). A;, A, I,U denote the ar-
eas of the subject, the object, their intersection, and union
boxes, respectively.

Relation prediction. Conditioned on the relation rep-
resentation pair;_,; of each object pair, we predict a re-
lateness score Z;; = frelateness(Pair;_,;) € [0,1] and a
semantic label probability ¥;—,; = fsemantic(Pair; _,j) €
[0,1]I¢"]. The relateness 2;_, ; represents the probability that
relations exist between the object pair. frciateness 1S im-
plemented with an MLP coupled with Sigmoid activation.
Fsemantic 1s implemented with another MLP using Softmax
activation. The total loss for relation recognition L. ¢4 is
measured as

Lyciateness = FL(éz'—>j7 Zz’—)j)7 3
Lsemantic = CE(Qi—)jv yi—>j)a (4)
Lrel,’rcg = Lrelateness + Lsemantia (5)

where F'L and C'E denote focal loss [25] and cross-entropy
loss functions. z_,; and y;_,; represent the ground-truth
relateness label and predicate category label respectively.
Training & inference. During training, we initialize pa-
rameters from pre-trained GLIP models for inherited mod-
ules in VS2. To ease training difficulty, we freeze the
image encoder and text encoder, and only fine-tune the
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cross-modal fusion module and devised modules for rela-
tion recognition. This also avoids the degeneration of the
pre-trained VSS. At inference, by retaining high-confidence
detected objects and further predicting their relations, we
generate an image scene graph representation.

3.3. Obtaining Language Scene Graph Supervision

Ground-truth scene graphs are time-consuming to anno-
tate. Alternatively, we can parse semantic graphs from im-
age language descriptions, and obtain noun phrase ground-
ings through region-word alignment in the pre-trained VSS
(implemented with an off-the-shelf GLIP). This is a much
cheaper way to obtain weak scene graph supervision.

Semantic graph parsing. Concretely, for each im-
age language description, we parse it into a seman-
tic graph SG'*t = {Of*t R'**} ysing the Stan-
dard Scene Graph Parser based on [39]. The parser
not only extracts noun phrases as entities/objects (O¢*?),
but also extracts the words describing their relations
(R'**%), For example, the sentence “a woman is play-
ing the piano in the room.” is parsed to the SG?e,
of which O*** = {woman, piano,room} and R'**** =
{{0, playing, 1), (0,in,2)} (numbers denote object in-
dices). Considering that parsed object/relation words are
free-form, we map them to our concerning categories (e.g.,
VG150 object/relation categories in experiments) by rules
such as direct string matching and WordNet [33] synsets
matching following [65].

Semantic graph grounding. Note that each element of
Ot¢*t only contains a text label name so far, and its bound-
ing box information is still missing. To obtain grounding
boxes, we construct a text prompt using triplets in SG¢t,
e.g., “woman playing piano. woman in room.”. Then, we
feed such text prompt together with the raw image into a
pre-trained GLIP, in order to acquire grounding boxes of
Otert Specifically, for each element in O'%!, we select
the image region that has the highest alignment score with
its category name as its grounding box. Since there might
be multiple objects in O**** that actually refer to the same
object, we perform a post-processing NMS to merge boxes
with the same label and high IoU (intersection over union)
scores (> 0.9). Finally, with box information, the visually-
grounded SG'®! is ready to be used as weak supervision
for training SGG models, e.g., the proposed VS3.

3.4. Transferring to Open-vocabulary SGG

Open-vocabulary SGG [8] aims to train SGG models that
can recognize objects of novel categories and their involved
relations. Formally, we train the SGG model with scene
graphs containing objects in the base category set C2%*¢. At
inference, the object category set is C:%"9¢t, which contains
novel categories in C0v¢l = Ctarget\cbase £ (),

Back to our proposed VS?, an open-vocabulary VSS is

maintained by freezing the image and text encoders. Taking
this advantage, we devise a scheme to adapt VS?® for open-
vocabulary SGG. Concretely, during training, we set the
text prompt as “name(c1). name(cz). ... name(ccrase|).”
where ¢; € C2*¢. And only relation triplets involving
base object categories are kept for training. At inference,
the text prompt is switched to be “name(c;). name(ca).

name(c gtaract)).”, where ¢; € Ci9°". In this way,
a novel object class (e.g., lady) may have an embedding
close to a base category (e.g., woman) embedding. This
makes the novel class also able to find well-aligned im-
age regions. Note that relation representations are con-
structed from visual and spatial cues, which are usually
class-agnostic. Hence, the following relation recognition in
VS? will not be affected when encountering novel objects.

4. Experiments
4.1. Datasets and Experimental Settings

Datasets. To evaluate the SGG task, we adopt the
widely-used VG150 version [50] of the Visual Genome
(VG) dataset [ 14]. VG150 retains the most frequent 150 cat-
egories and 50 relation/predicate categories in VG. It con-
tains ~108K images, of which 70% images are used for
training (including 5K for validation), and the remaining
30% images are used for testing. The annotated scene graph
of each image has 11.5 objects and 6.2 relation triplets
on average. In addition, images of VG are densely anno-
tated with region descriptions, about 50 descriptions for
each image. We refer to these descriptions as VG caption,
which provides a text source for evaluating the language-
supervised SGG setting. Moreover, we consider the chal-
lenging setting of using image-text pairs in COCO cap-
tion [4] for training SGG models. This dataset contains
123K images in total. Each image has 5 human-annotated
captions. We keep ~ 106k images by filtering out those im-
ages that also exist in the VG150 test split.

Evaluation protocols and metrics. We mainly adopt
the SGDET [47,50] protocol, which generates a scene graph
from the input image without any given box information.
We report the performance on Recall@K (K=20/50/100)
following previous works [21, 41, 47, 50, 56, 65], which
measures the fraction of correctly predicted relation triplets
in top K predictions. A triplet prediction is considered
as correct when its subject, object, predicate labels and
both the subject and object regions match with (same la-
bel or IoU>0.5) a ground-truth triplet. Note that we obtain
triplet predictions using graph constraint, which limits each
subject-object pair to have only the most confident predi-
cate. All recall metrics across different SGG settings in ex-
periments are computed over VG150 test images. Consid-
ering that the adopted GLIP pre-trained VSS has seen part
of images in the original VG150 test split (~26k) during
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pre-training, we exclude these images and get a new split
of ~15k test images. We have validated that such VG150
test split is sufficiently large for computing stable metrics
as the original, by comparing computed metrics of several
SGG models (in codebase [46]) on these two splits (< 0.15
points variation, see supplementary materials).

Implementation details. We initialize VS3 from pre-
trained GLIP [17] models, i.e., the GLIP-T and the larger
GLIP-L trained with more data. Both construct a VSS of di-
mension d = 256. We retain the top 36 object detections per
image for pairwise relation recognition. The whole frame-
work is fine-tuned on 8 Nvidia 2080Ti GPUs with AdamW
optimizer. During fine-tuning, we freeze the parameters of
the image and text encoder; and set the learning rate for the
cross-modal fusion module as le-5 and 10x larger learn-
ing rates for the relation embedding and prediction mod-
ules. The maximum fine-tuning epoch number is 10, with
learning rates dropping by 10x after 6 epochs.

4.2. Fully Supervised SGG

Setup. We first evaluate our proposed VS? under the
conventional fully supervised SGG setting. This setting
trains SGG models using manually annotated scene graphs,
consisting of object labels coupled with bounding boxes,
and relation labels. We adopt VG150 for training and eval-
uation following previous methods [3, 19,26,27,48, 50, 60,

,65]. All these methods involve a closed set of object
categories. Specifically, the text prompt input of VS? is
constructed from VG150 object category names, i.e., “air-
plane. animal. ... zebra.”. We train VS? by fine-tuning over
two GLIP variants: GLIP-T with the Swin-T [28] backbone,
GLIP-L with the Swin-L [28] backbone.

Comparison with state-of-the-arts. The results are
summarized in Table 2. Our proposed VS? model us-
ing the Swin-T backbone already achieves competitive re-
call metrics. When upgrading to the larger Swin-L vari-
ant, the performance improvements become significant (1.8
to 3.4 points improvement than the previous best results).
Note that previous methods [26, 50, 60] build their mod-
els upon an off-the-shelf object detector, and they usually
design heavy message-passing modules to incorporate con-
text information. Instead, VS? devises a light-weighted re-
lation recognition head (including the relation embedding
and prediction modules) over a pre-trained VSS. The supe-
rior performances clearly suggest the merits of transferring
language-image pre-trained models for boosting SGG.

Ablation on relation representation. Next, we carry
out ablation studies on relation representation construction
in the relation embedding module. As shown in Table 2,
by removing visual and spatial feature components, the re-
lation triplet recalls drop accordingly. Also notice that the
removal of visual features which is built from subject and
object region embeddings leads to relatively larger perfor-

SGG model Detector Backbone ‘ R@20 R@50 R@100
FCSGG [27] - HRNetW48 16.1 21.3 25.1
SGTR [19] DETR R-101 - 24.6 28.4
IMP [50] Faster-RCNN VGG-16 14.6 20.7 24.5
KERN [3] Faster-RCNN VGG-16 - 27.1 29.8
MOTIFS [60]  Faster-RCNN VGG-16 214 27.2 30.3
RelDN [62] Faster-RCNN VGG-16 21.1 28.3 32.7
VTransE [61]  Faster-RCNN RX-101 23.0 29.7 343
MOTIFS [60]  Faster-RCNN RX-101 25.1 32.1 36.9
VCTREE [48] Faster-RCNN RX-101 24.7 31.5 36.2
SGNLS [65] Faster-RCNN RX-101 24.6 31.8 36.3
HL-Net [26] Faster-RCNN RX-101 26.0 33.7 38.1
VS3 - Swin-T 26.1 34.5 39.2
w/o visual - Swin-T 23.1 31.6 36.7
w/o spatial - Swin-T 243 32.8 37.8
TV§E T T - SwinL | 278 366 415

Table 2. Experimental results of fully supervised SGG. w/o visual
and w/o spatial indicate removing spatial and visual features in the
relation embedding module for relation representation. All metrics
are computed under the SGDET protocol on VG150 test images.

mance drops than spatial. This suggests the region embed-
dings in the pre-trained VSS provide strong cues for relation
recognition. Overall, these observations validate the effec-
tiveness of our design to mine relation patterns.

4.3. Language-supervised SGG

Setup. Language-supervised SGG [21, 41, 56, 65] ex-
plores to train SGG models with language descriptions
of images. Concretely, we parse each image descrip-
tion into a semantic graph, in the form of a set of
(subject, predicate, object) triplets. Note that parsed ob-
ject/relation phrases from language descriptions are free-
form, we map them to VG150 categories by semantic rules
following [65], such as WordNet [33] synsets matching.
This makes the learned SGG model compatible for evaluat-
ing on VG150. Next, the parsed semantic graph is grounded
to image regions using grounding methods, i.e., the pre-
trained GLIP-L [17] in our approach. Finally, the visually-
grounded semantic graphs are used as weak supervision to
train our proposed VS? like the fully supervised setting.

Particularly, we have trained VS3 with text triplets
parsed from three different sources of text following [21,

1. 1) The unlocalized graph setting uses ground-truth
triplet annotations in VG. 2) The VG caption setting uses
triplets that are automatically parsed from natural image de-
scriptions in VG. 3) The COCO caption setting leverages
triplets parsed from captions in COCO. This setting is the
most challenging since COCO captions are image-level de-
scriptions. Such captions are different from the region-level
descriptions in VG, which focus on describing object inter-
actions. Also, note that the number of annotated captions
for each COCO image (average 5) is much less than the
number for each VG image (average ~50).

Comparison with state-of-the-arts. The experimen-
tal results compared with previous methods are pre-
sented in Table 3. All evaluation metrics are com-
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| SGG model Grounding | R@20 R@50 R@100
VSPNet [58] - - 470 5.40
LSWS [56] - - 7.30 8.73
S | MOTIFS [60] WSGM [41] | 412  5.59 6.45
5 | MOTIFS [60] SGNLS [65] | 7.23 928  10.71
B | MOTIFS [60] Lietal[21] | 9.09 1139  12.89
= | Uniter' [5] SGNLS [65] | 7.81  10.03  11.50
& | Uniter' [5] Lietal [21] | 9.57 11.80  13.15
5 [ VS suint) GLIP-L[17] | 1802 2389 28.19
VS3 (Swin-T+Freqpiasy GLIP-L[17] | 20.06 2672  31.75
VS (swint+Freqpiay GLIP-L[17] | 22.18  29.81  34.96
LSWS [50] - - 3.85 4.04
= | MOTIFS [60] SGNLS [65] | 631  8.05 9.21
-2 | MOTIFS [60] Lietal [21] | 825 1050  11.98
& | Uniter' [5] SGNLS [65] | - 920 1030
© | Uniter' [5] Lietal [21] | 890 1093 12.14
> VS s GLIP-L[17] | 11.78 1625  19.7
VS? (swin-L) GLIP-L[17] | 13.01 17.38  20.54
= | LSWS[50] - - 328 3.69
% MOTIES [60] Lietal [21] | 502  6.40 7.33
S| Uniter' [5] SGNLS [65] - 5.80 6.70
© | Uniter? [5] Lietal [21] | 542  6.74 7.62
8 VS swmn) GLIP-L[I7] | 559  7.30 8.62
O | VS suinsy GLIP-L[17] | 6.04 8.15 9.90

Table 3. Comparison with state-of-the-art language-supervised
SGG methods, using weak scene graph supervision from three
different text sources: unlocalized scene graphs, VG caption and
COCO caption. All metrics are computed under the SGDET pro-
tocol on VG150 images. (" indicates adapted for SGG.)
puted on the VG150 test set under the SGDET proto-
col. Specifically, under the unlocalized scene graphs set-
ting, VS with the Swin-T backbone (VS3(syin7)) Ob-
tains substantial improvements on recall metrics over exist-
ing best results (R@20,/50/100 from 9.57/11.80/13.15 to
18.02/23.89/28.19). Since relation frequency statistics are
available in this setting, we use them as frequency biases
[60] in predicate classification, leading to further perfor-
mance gains (VS3(SW,-”_T+ FreqBias))- When using the stronger
Swin-L backbone (VS?’(Swi,,_L+p,qu,<as)), we attain the high-
est performances (R@20/50/100 = 22.18/29.81/34.96),
which even outperform many fully supervised methods
(see Table 2). The VG caption setting provides weaker
scene graph supervision via language parsing. We ob-
serve that our approach also outperforms previous state-of-
the-art methods significantly. As for the most challenging
COCO caption setting, it suffers from the additional do-
main shift problem since it trains on COCO but evaluates
on VG150. As expected, the performances are lower than
in the two aforementioned settings. But when comparing
with previous works using the same text source, our ap-
proach still manages to achieve better performances. Over-
all, our approach consistently surpasses previous methods
for language-supervised SGG. This demonstrates the bene-
fits brought by pre-trained language-image models in terms
of both grounding box acquirement and task transferring to
tackle SGG.

Ablation on scene graph parsing strategy. We also
conduct ablation studies on different scene graph parsing
strategies for obtaining language SGG supervision. The re-

SGfrom  SG parser | R@20/50/100
Single caption Simple 5.07/6.25/7.36
All captions Simple 5.42/6.82/7.93

All captions ~ Advanced | 5.59/7.30/8.62

Table 4. Ablation on scene graph parsing strategies for language-
supervised SGG. Results are obtained with VS® 5.7 trained on
scene graph supervision parsed from COCO captions.

sults are shown in Table 4. Note that each image in COCO
is annotated with 5 captions, and these captions are usu-
ally complimentary in describing image content. At first,
we compare the performances between training with triplets
from a single caption and all captions. We see the re-
calls achieve relative 10% performance boosts by replac-
ing triplets from a single caption with all captions. This
suggests the completeness of extracted scene graphs from
image descriptions is a non-negligible factor for training a
high-quality SGG model.

Moreover, we compare two language parsers for ex-
tracting (subject, predicate, object) triplets: the simple
SG parser [31], and the advanced SG parser [39]. Both
parsers apply pre-defined rules to extract object and rela-
tion concepts from the semantic graphs of image language
descriptions. Compared with the simple SG parser, the
advanced SG parser covers additional features for dealing
with complex quantificational modifiers (e.g., a lot of), re-
solving pronouns (e.g., it) and handling plural nouns (e.g.,
three men). The performance boosts of the advanced SG
parser over the simple one (recalls from 5.42/6.82/7.93 to
5.59/7.30/8.62), indicates that the quality of semantic pars-
ing is also important for language-supervised SGG.

4.4. Open-vocabulary SGG

Setup. Following [8], we train the proposed VS? with
the same 70% object categories of VG150 as base cate-
gories. With the aid of the pre-trained VSS, we hope VS3
can generalize to recognize the remaining 30% novel ob-
jects and their involved relations at inference. Concretely,
we compute evaluation metrics over two object category
sets: 70% base + 30% novel objects (dubbed as open-
vocabulary SGG (Ov-SGG) evaluation), and 30% novel ob-
jects (dubbed as zero-shot SGG (ZsO-SGG) evaluation).

In addition, we adopt the PREDCLS and SGDET evalua-
tion protocols [50]. PREDCLS assumes object information
given, yet SGDET generates scene graphs from the raw im-
age using predicted objects. Since VS detects objects in
a one-stage manner, we implement PREDCLS by selecting
image regions that best match the ground-truth objects in
post-processing, then performing relation recognition. We
neglect the SGCLS protocol that assumes bounding box in-
formation given. This is because given bounding boxes can
be directly used as region proposals in two-stage detectors,
while the adopted one-stage manner in VS? has no region
proposal counterpart.
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Ov-SGG (70%+30%) Zs0-SGG (30%)

Method

PREDCLS SGDET PREDCLS SGDET

IMP [50] 400274340 37.01/39.46

MOTIFS [60] 41.14/44.70 39.53/41.14

VCTREE [48] | 42.56/45.84 41.27142.52

TDE [47] 38.29/40.38 34.15/36.37

GCA[13] 43.48/46.26 42.56/43.18

EBM [44] 44.09/46.95 43.27/44.03

SVRP [5] 47.62/49.94 - 4575/ 48.39 -

VS uint) 50.10/52.05 15.07/18.73 | 46.91/49.13 10.08/13.65
VS suin1) 55.88/58.18 23.13/2849 | 54.44/57.35 21.51/27.62

Table 5. Evaluation results (R@50/100) of fully supervised open-
vocabulary SGG. Ov-SGG evaluates on 70% base categories +
30% novel categories in VG150, while ZsO-SGG only evaluates
on 30% novel categories.

Fully supervised results. We first conduct experiments
using manually annotated scene graphs. The results are
presented in Table 5. For both Ov-SGG and ZsO-SGG,
VS? achieves substantial performance improvements un-
der PREDCLS. When upgrading to the stronger backbone
Swin-L, more significant improvements are obtained. More
importantly, we report performances for the challenging and
more practical SGDET, which are neglected by all previ-
ous methods since their used object detector cannot handle
open-vocabulary detection [8]. The SGDET performances
(R@50/100 = 10.08/13.65) of ZsO-SGG using VS? are
even higher than SGCLS metrics of SVRP (R@50/100 =
9.30/11.32 in [8]). This reveals the superiority of our ap-
proach to recognizing novel objects thanks to the open-
vocabulary generalization ability of the pre-trained VSS.

Language-supervised results. Next, we evaluate the
most challenging setting, i.e., open-vocabulary SGG using
language supervision. To our knowledge, we are the first to
propose such a new and practical SGG setting, and present
the benchmark performances in Table 5. Not surprisingly,
the recalls obtained via language-supervised training (i.e.,
SG from VG caption or COCO caption) are lower than
supervised results (i.e., SG from annotated). When com-
paring VS3 sy and VS35, 1) that is transferred from
a stronger pre-trained model, the latter gets substantially
higher Ov-SGG and ZsO-SGG performances. More impor-
tantly, we observe the performance gap between Ov-SGG
and ZsO-SGG get closer in VS3(SW,-,,_L), e.g., the R@50 gap
under the VG caption setting becomes 12.98-10.71=2.27
from 7.61-4.06=3.55. This is due to the better generaliza-
tion ability for recognizing novel classes. Moreover, the
superior performances obtained by VG caption over COCO
caption, indicate that using dense region-level descriptions
and avoiding domain shift will help improve language-
supervised open-vocabulary SGG in practice.

Qualitative analysis. We further showcase qualitative
results of open-vocabulary SGG in Figure 3. The results
demonstrate that our approach manages to detect novel ob-
jects and their relations with other objects. We also find that,
compared with the fully supervised setting, the language-
supervised results bias to predict simple relations such as

Method SG supervision ‘ Ov-SGG (70%+30%)  ZsO-SGG (30%)

Manual annotation 15.07 /18.73 10.08 / 13.65
VS3(swin) VG caption 7.61/9.60 4.06/5.58
COCO caption 4.39/5.63 3.65/4.73
Manual annotation 23.13/28.49 21.51/27.62
VS3(sin-t) VG caption 12.98/16.29 10.71/13.70
COCO caption 6.76 / 8.45 6.26/7.89

Table 6. Evaluation results (R@50/100) of open-vocabulary SGG
using three different scene graph supervisions: manual annota-
tion, VG caption and COCO caption (language-supervised). Ov-
SGG evaluates on 70% base categories + 30% novel categories in
VG150, while ZsO-SGG only evaluates on 30% novel categories.

holding

wearingon

Input images Fully supervised results Language-supervised results

Figure 3. Qualitative results of open-vocabulary SGG, particularly
from fully supervised and language-supervised (VG caption) set-
tings. Note that dotted nodes denote novel objects. For clarity, we
only show triplets among the top 20 predictions that depict rela-
tions of highlighted image regions (i.e., boxes on input images).

3

on’, ‘of’. Presumably, it’s because scene graph supervision
parsed from language is more likely to extract such simple
words as relation predicates.

5. Conclusion

In this work, we have proposed a novel approach to ex-
ploit a powerful pre-trained VSS for triggering language-
supervised and open-vocabulary SGG. Particularly, we ob-
tain cheap scene graph supervision by semantically pars-
ing image language descriptions into semantic graphs and
grounding the noun phrases through region-word alignment
in the VSS. In addition, we devise the VS? model, which
performs object detection as category name grounding in
the VSS and naturally builds relation representations for re-
lation recognition. Thanks to the open-vocabulary gener-
alization ability of the VSS, VS? manages to detect novel
objects and their relations with other objects, achieving
open-vocabulary SGG. We validate our approach on the
Visual Genome benchmark across supervised, language-
supervised and open-vocabulary SGG settings, and have set
new state-of-the-art performances. This demonstrates the
merits of transferring pre-training knowledge to push SGG
toward more practical scenarios.
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