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Abstract

Self-supervised monocular depth estimation that does

not require ground truth for training has attracted attention

in recent years. It is of high interest to design lightweight

but effective models so that they can be deployed on edge

devices. Many existing architectures benefit from using

heavier backbones at the expense of model sizes. This paper

achieves comparable results with a lightweight architecture.

Specifically, the efficient combination of CNNs and Trans-

formers is investigated, and a hybrid architecture called

Lite-Mono is presented. A Consecutive Dilated Convolu-

tions (CDC) module and a Local-Global Features Interac-

tion (LGFI) module are proposed. The former is used to

extract rich multi-scale local features, and the latter takes

advantage of the self-attention mechanism to encode long-

range global information into the features. Experiments

demonstrate that Lite-Mono outperforms Monodepth2 by

a large margin in accuracy, with about 80% fewer train-

able parameters. Our codes and models are available at

https://github.com/noahzn/Lite-Mono.

1. Introduction

Many applications in the field of robotics, autonomous

driving, and augmented reality rely on depth maps, which

represent the 3D geometry of a scene. Since depth sen-

sors increase costs, research on inferring depth maps us-

ing Convolutional Neural Networks (CNNs) from images

emerged. With the annotated depth one can train a regres-

sion CNN to predict the depth value of each pixel on a sin-

gle image [10, 11, 22]. Lacking large-scale accurate dense

ground-truth depth for supervised learning, self-supervised

methods that seek supervisory signals from stereo-pairs of

frames or monocular videos are favorable and have made

great progress in recent years. These methods regard the

depth estimation task as a novel view synthesis problem

and minimize an image reconstruction loss [5,14,15,41,45].
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Figure 1. The proposed Lite-Mono has fewer parameters than

Monodepth2 [15] and R-MSFM [46], but generates more accu-

rate depth maps.

The camera motion is known when using stereo-pairs of im-

ages, so a single depth estimation network is adopted to pre-

dict depth. But if only using monocular videos for training

an additional pose network is needed to estimate the motion

of the camera. Despite this, self-supervised methods that

only require monocular videos are preferred, as collecting

stereo data needs complicated configurations and data pro-

cessing. Therefore, this paper also focuses on monocular

video training.

In addition to increasing the accuracy of monocular

training by introducing improved loss functions [15] and

semantic information [5, 21] to mitigate the occlusion and

moving objects problems, many works focused on design-

ing more effective CNN architectures [17, 33, 39, 41, 46].

However, the convolution operation in CNNs has a local

receptive field, which cannot capture long-range global in-

formation. To achieve better results a CNN-based model

can use a deeper backbone or a more complicated archi-

tecture [15, 28, 44], which also results in a larger model

size. The recently introduced Vision Transformer (ViT) [8]

is able to model global contexts, and some recent works ap-

ply it to monocular depth estimation architectures [3, 35] to

obtain better results. However, the expensive calculation of

the Multi-Head Self-Attention (MHSA) module in a Trans-

former hinders the design of lightweight and fast inference

models, compared with CNN models [35].

This paper pursues a lightweight and efficient self-

supervised monocular depth estimation model with a hy-

brid CNN and Transformer architecture. In each stage of

the proposed encoder a Consecutive Dilated Convolutions

(CDC) module is adopted to capture enhanced multi-scale

local features. Then, a Local-Global Features Interaction

(LGFI) module is used to calculate the MHSA and encode
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global contexts into the features. To reduce the computa-

tional complexity the cross-covariance attention [1] is cal-

culated in the channel dimension instead of the spatial di-

mension. The contributions of this paper can be summa-

rized in three aspects.

• A new lightweight architecture, dubbed Lite-Mono,

for self-supervised monocular depth estimation, is pro-

posed. Its effectiveness with regard to the model size

and FLOPs is demonstrated.

• The proposed architecture shows superior accuracy

on the KITTI [13] dataset compared with competitive

larger models. It achieves state-of-the-art with the least

trainable parameters. The model’s generalization abil-

ity is further validated on the Make3D [32] dataset.

Additional ablation experiments are conducted to ver-

ify the effectiveness of different design choices.

• The inference time of the proposed method is tested on

an NVIDIA TITAN Xp and a Jetson Xavier platform,

which demonstrates its good trade-off between model

complexity and inference speed.

The remainder of the paper is organized as follows. Sec-

tion 2 reviews some related research work. Section 3 illus-

trates the proposed method in detail. Section 4 elaborates

on the experimental results and discussion. Section 5 con-

cludes the paper.

2. Related work

2.1. Monocular depth estimation using deep learn
ing

Single image depth estimation is an ill-posed problem,

because a 2D image may correspond to many 3D scenes

at different scales. Methods using deep learning can be

roughly divided into two categories.

Supervised depth estimation. Using ground-truth

depth maps as supervision, a supervised deep learning net-

work is able to extract features from input images and learn

the relationship between depth and RGB values. Eigen et

al. [10] first used deep networks to estimate depth maps

from single images. They designed a multi-scale network

to combine global coarse depth maps and local fine depth

maps. Subsequent works introduced some post-processing

techniques, such as Conditional Random Fields (CRF), to

improve the accuracy [24,25,38]. Laina et al. [22] proposed

to use a new up-sampling module and the reverse Huber loss

to improve the training. Fu et al. [11] adopted a multi-scale

network, and treated the depth estimation as an ordinal re-

gression task. Their method achieved higher accuracy and

faster convergence.

Self-supervised depth estimation. Considering that

large-scale annotated datasets are not always available, self-

supervised depth estimation methods that do not require

ground truth for training have attracted some attention.

Garg et al. [12] regarded the depth estimation as a novel

view synthesis problem, and proposed to minimize a photo-

metric loss between an input left image and the synthesized

right image. Their method was self-supervised, as the su-

pervisory signal came from the input stereo pairs. Godard et

al. [14] extended this work and achieved higher accuracy

by introducing a left-right disparity consistency loss. Apart

from using stereo pairs the supervisory signal can also come

from monocular video frames. Zhou et al. [45] trained a

separate multi-view pose network to estimate the pose be-

tween two sequential frames. To improve the robustness

when dealing with occlusion and moving objects they also

used an explainability prediction network to ignore target

pixels that violate view synthesis assumptions. To model

dynamic scenes other works introduced multi-task learning,

such as optical flow estimation [41] and semantic segmenta-

tion [5,20], or introduced additional constraints, such as un-

certainty estimation [30, 40]. Godard et al. [15] found that

without introducing extra learning tasks they could achieve

competitive results by simply improving the loss functions.

They proposed Monodepth2, which used a minimum repro-

jection loss to mitigate occlusion problems, and an auto-

masking loss to filter out moving objects that have the same

velocity as the camera. This work is also based on their

self-supervised training strategy.

2.2. Advanced architectures for depth estimation

Network architectures also play an important role in

achieving good results in monocular depth estimation.

By replacing the network architecture from the VGG

model [33] with a ResNet [17] Yin et al. [41] achieved

better results. Yan et al. [39] used a channel-wise at-

tention module to capture long-range multi-level informa-

tion and enhance local features. Zhou et al. [44] also

used an attention module to obtain a better feature fu-

sion. Zhao et al. [46] proposed a small architecture that

used a feature modulation module to learn multi-scale fea-

tures, and demonstrated the method’s superiority. To re-

duce model parameters they only used the first three stages

of ResNet18 [17] as the backbone. With the rise of vision

transformer (ViT) [8] recent work applied it to various com-

puter vision tasks [4, 16, 29, 31, 34], and achieved promis-

ing results. However, research incorporating Transformers

in depth estimation architectures is still limited. Varma et

al. [35] adopted the Dense Prediction Transformer [31] for

self-supervised monocular depth estimation, and added an-

other prediction head to estimate the camera’s intrinsic.

Bae et al. [3] proposed a hybrid architecture of CNN and

Transformer that enhanced CNN features by Transform-

ers. However, due to the high computational complex-

ity of Multi-Head Self-Attention (MHSA) in a ViT, the

above-mentioned Transformer-based methods have more
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Figure 2. Overview of the proposed Lite-Mono. Lite-Mono has an encoder-decoder DepthNet for depth prediction, and a commonly

used PoseNet [15, 46] to estimate poses between adjacent monocular frames. The encoder of the DepthNet consists of four stages, and it

uses Consecutive Dilated Convolutions (CDC) modules and Local-Global Features Interaction (LGFI) modules to extract rich hierarchical

features. The details of these modules are shown in Figure 3.

trainable parameters and have a large speed gap compared

with methods only using CNNs [35]. MonoViT [43] uses

MPViT [23] as its encoder and has achieved state-of-the-art

accuracy. Nevertheless, the use of multiple parallel blocks

in MonoViT slows down its speed.

3. The proposed framework: Lite-Mono

3.1. Design motivation and choices

Several papers demonstrated that a good encoder can

extract more effective features, thus improving the final

result [15, 17, 44]. This paper focuses on designing a

lightweight encoder that can encode effective features from

the input images. Figure 2 shows the proposed architec-

ture. It consists of an encoder-decoder DepthNet (Section

3.2) and a PoseNet (Section 3.3). The DepthNet estimates

multi-scale inverse depth maps of the input image, and the

PoseNet estimates the camera motion between two adjacent

frames. Then, a reconstructed target image is generated, and

the loss is computed to optimize the model (Section 3.4).

Enhanced local features. Using shallow instead of

deeper networks can effectively reduce the size of a model.

As mentioned shallow CNNs have very limited receptive

fields, while using dilated convolution [42] is helpful to en-

large receptive fields. By stacking the proposed Consec-

utive Dilated Convolutions (CDC) the network is able to

”observe” the input at a larger area, while not introducing

extra training parameters.

Low-computation global information. The enhanced

local features are not enough to learn a global repre-

sentation of the input without the help of Transform-

ers to model long-range information. The MHSA mod-

ule in the original Transformer [8] has a linear compu-

tational complexity to the input dimension, hence it lim-

its the design of lightweight models. Instead of comput-

ing the attention across the spatial dimension the proposed

Local-Global Features Interaction (LGFI) module adopts

the cross-covariance attention [1] to compute the attention

along the feature channels. Comparing with the original

self-attention [8] it reduces the memory complexity from

O(hN2+Nd) to O(d2/h+Nd), and reduces the time com-

plexity from O(N2d) to O(Nd2/h), where h is the number

of attention heads. The proposed architecture is described

in detail below.

3.2. DepthNet

Depth encoder. The proposed Lite-Mono aggregates

multi-scale features across four stages. The input image
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Output Size Layers Lite-Mono-tiny Lite-Mono-small Lite-Mono Lite-Mono-8M

640× 192 Input

320× 96 Conv Stem
3× 3, 32, stride = 2 3× 3, 48, stride = 2 3× 3, 48, stride = 2 3× 3, 64, stride = 2

[3× 3, 32]× 2 [3× 3, 48]× 2 [3× 3, 48]× 2 [3× 3, 64]× 2
160× 48 Downsampling 3× 3, 32, stride = 2 3× 3, 48, stride = 2 3× 3, 48, stride = 2 3× 3, 64, stride = 2

Stage 1
CDC blocks [3× 3, 32]× 3 [3× 3, 48]× 3 [3× 3, 48]× 3 [3× 3, 64]× 3
LGFI block dilation = 1, 2, 3 dilation = 1, 2, 3 dilation = 1, 2, 3 dilation = 1, 2, 3

80× 24 Downsampling 3× 3, 64, stride = 2 3× 3, 80, stride = 2 3× 3, 80, stride = 2 3× 3, 128, stride = 2

Stage 2
CDC blocks [3× 3, 64]× 3 [3× 3, 80]× 3 [3× 3, 80]× 3 [3× 3, 128]× 3
LGFI block dilation = 1, 2, 3 dilation = 1, 2, 3 dilation = 1, 2, 3 dilation = 1, 2, 3

40× 12 Downsampling 3× 3, 128, stride = 2 3× 3, 128, stride = 2 3× 3, 128, stride = 2 3× 3, 224, stride = 2

Stage 3
CDC blocks [3× 3, 128]× 6 [3× 3, 128]× 6 [3× 3, 128]× 9 [3× 3, 224]× 9
LGFI block dilation = 1, 2, 3, 2, 4, 6 dilation = 1, 2, 3, 2, 4, 6 dilation = [1, 2, 3]× 2, 2, 4, 6 dilation = [1, 2, 3]× 2, 2, 4, 6

#Params. (M) 2.0 2.3 2.9 8.1

Table 1. Four variants of the proposed depth encoder. [3 × 3, C] ×N means that a CDC block uses the 3 × 3 kernel size to output C

channels, and repeats for N times. The dilation rate used in each CDC block is also listed.

Repeat × 1

3×3 DDWConv

dilation=r

Batch Norm

1×1 point-wise

GELU

1×1 point-wise

CDC Module LGFI Module

Linear

1×1 point-wise

GELU

Linear Linear

LayerNorm

   

Softmax

Linear

LayerNorm

1×1 point-wise

𝑄𝑇  

𝑄 𝐾 𝑉  

Repeat × N

Figure 3. Structures of the proposed Consecutive Dilated Con-

volutions (CDC) module and Local-Global Features Interac-

tion (LGFI) module. In each stage the CDC module with differ-

ent dilation rate is repeated for N times.

with size H × W × 3 is first fed into a convolution stem,

where the image is down-sampled by a 3 × 3 convolu-

tion. Following two additional 3 × 3 convolutions with

stride = 1 for local feature extraction, the feature maps

of size H
2 × W

2 × C1 are obtained. In the second stage the

features are concatenated with the pooled three-channel in-

put image, and another 3×3 convolution with stride = 2 is

adopted to down-sample the feature maps, resulting in fea-

ture maps with size H
4 × W

4 × C2. Concatenating features

with the average-pooled input image in a down-sampling

layer can reduce the spatial information loss caused by

the reduction of feature size, which is inspired by ESP-

Netv2 [3]. Then, the proposed Consecutive Dilated Con-

volutions (CDC) module and the Local-Global Features In-

teraction (LGFI) module learn rich hierarchical feature rep-

resentations. The down-sampling layers in the second and

the third stage also receive the concatenated features output

by the previous down-sampling layer. This design is simi-

lar to the residual connection proposed in ResNet [17], and

is able to model better cross-stage correlation. Similarly,

the output feature maps are further fed into the third and the

fourth stages, and output features of dimension H
8 ×W

8 ×C3

and H
16 × W

16 × C4.

Consecutive Dilated Convolutions (CDC). The pro-

posed CDC module utilizes dilated convolutions to extract

multi-scale local features. Different from using a parallel

dilated convolution module only in the last layer of the net-

work [6] we insert several consecutive dilated convolutions

with different dilation rates into each stage for adequate

multi-scale contexts aggregation.

Given a two-dimensional signal x[i] the output y[i] of a

2D dilated convolution can be defined as:

y[i] =
K∑

k=1

x[i+ r · k]w[k], (1)

where w[k] is a filter with length K, and r denotes the di-

lation rate used to convolve the input x[i]. In a standard

non-dilated convolution r = 1. By using a dilated convolu-

tion the network can keep the size of the output feature map

fixed while achieving a larger receptive field. Considering

an input feature X with dimension H × W × C our CDC

module outputs X̂ as follows:

X̂ = X + LinearG(Linear(BN(DDWConvr(X)))),
(2)

where LinearG denotes a point-wise convolution opera-

tion, followed by the GELU [18] activation. BN is a batch

normalization layer, and DDWConvr(·) is a 3 × 3 depth-

wise dilated convolution with dilation rate r.

Local-Global Features Interaction (LGFI). Given an

input feature map X with dimension H ×W × C it is lin-

early projected to the same dimensional queries Q = XWq ,

keys K = XWk, and values V = XWv , where Wq , Wk,
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and Wv are weight matrices. The cross-covariance atten-

tion [1] is used to enhance the input X:

X̃ = Attention(Q,K, V ) +X, (3)

where Attention(Q,K, V ) = V · Softmax(QT · K).
Then, the non-linearity of the features can be increased:

X̂ = X + LinearG(Linear(LN(X̃))), (4)

where LN is a layer normalization [2] operation. Accord-

ing to different channel numbers, CDC blocks, and dilation

rates, four variants of the depth encoder are designed. Ta-

ble 1 shows more details.

Depth decoder. Different from using a complicated

up-sampling method [46] or introducing additional atten-

tion modules [3] Lite-Mono uses a depth decoder adapted

from [15]. As shown in Figure 2 it increases the spatial

dimension using bi-linear up-sampling, and uses convolu-

tional layers to concatenate features from three stages of the

encoder. Each up-sampling block follows a prediction head

to output the inverse depth map at full, 1
2 , and 1

4 resolution,

respectively.

3.3. PoseNet

Following [15, 46] this paper uses the same PoseNet for

pose estimation. To be specific, a pre-trained ResNet18 is

used as the pose encoder, and it receives a pair of color

images as input. A pose decoder with four convolutional

layers is used to estimate the corresponding 6-DoF relative

pose between adjacent images.

3.4. Selfsupervised learning

Different from the supervised training that utilizes

ground truth of depth this work treats depth estimation as

the task of image reconstruction. Similar to [45] the learn-

ing objective is modeled to minimize an image reconstruc-

tion loss Lr between a target image It and a synthesized tar-

get image Ît, and an edge-aware smoothness loss Lsmooth

constrained on the predicted depth map Dt.

Image reconstruction loss. The photometric reprojec-

tion loss is defined as:

Lp(Ît, It) = Lp(F(Is, P,Dt,K), It), (5)

where Ît can be obtained by a function F in terms of the

source image Is, the estimated pose P , the predicted depth

Dt, and the camera’s intrinsics K. As introduced in [45] Lp

is computed by a sum of the pixel-wise similarity SSIM
(Structural Similarity Index [37]) and the L1 loss between

Ît and It:

Lp(Ît, It) = α
1− SSIM(Ît, It)

2
+(1−α)∥Ît− It∥, (6)

where α is set to 0.85 empirically [15]. In addition, to deal

with out-of-view pixels and occluded objects in a source

image the minimum photometric loss [15] is computed:

Lp(Is, It) = min
Is∈[−1,1]

Lp(Ît, It), (7)

where Is can be either the previous or the next frame with

respect to the target image. Another binary mask [15] is

used to remove moving pixels:

µ = min
Is∈[−1,1]

Lp(Is, It)> min
Is∈[−1,1]

Lp(Ît, It). (8)

Therefore, the image reconstruction loss is defined as:

Lr(Ît, It) = µ · Lp(Is, It), (9)

Edge-aware smoothness loss. To smooth the generated

inverse depth maps an edge-aware smoothness loss is cal-

culated, followed by [15, 44]:

Lsmooth = |∂xd
∗
t | e

−|∂xIt| + |∂xd
∗
t | e

−|∂yIt|, (10)

where d∗t = dt/d̂t denotes the mean-normalized inverse

depth. The total loss can be expressed as:

L =
1

3

∑

s∈{1, 1
2
, 1
4
}

(Lr + λLsmooth), (11)

where s is the different scale output by the depth decoder. λ
is set to 1e−3 as in [15].

4. Experiments

This section evaluates the proposed framework and

demonstrates the superiority of Lite-Mono.

4.1. Datasets

KITTI. The KITTI [13] dataset contains 61 stereo road

scenes for research in autonomous driving and robotics, and

it was collected by multiple sensors, including camera, 3D

Lidar, GPU/IMU, etc. To train and evaluate the proposed

method the Eigen split [9] is used, which has a total of

39,180 monocular triplets for training, 4,424 for evaluation,

and 697 for testing. The self-supervised training is based

on the known camera intrinsics K, as indicated in Eq. 5. By

averaging all the focal lengths of images across the KITTI

dataset this paper uses the same intrinsics for all images dur-

ing training [15]. In the evaluation the predicted depth is

restricted in the range of [0, 80]m, as is common practice.

Make3D. To evaluate the generalization ability of the

proposed method it is further tested on the Make3D [32]

dataset, which contains 134 test images of outdoor scenes.

The model trained on the KITTI dataset is loaded and in-

ferred directly on these test images.
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Method Year Data
Depth Error (↓) Depth Accuracy (↑) Model Size (↓)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253 Params.

GeoNet [41] 2018 M 0.149 1.060 5.567 0.226 0.796 0.935 0.975 31.6M

DDVO [36] 2018 M 0.151 1.257 5.583 0.228 0.810 0.936 0.974 28.1M

Monodepth2-Res18 [15] 2019 M 0.115 0.903 4.863 0.193 0.877 0.959 0.981 14.3M

Monodepth2-Res50 [15] 2019 M 0.110 0.831 4.642 0.187 0.883 0.962 0.982 32.5M

SGDepth [21] 2020 M+Se 0.113 0.835 4.693 0.191 0.879 0.961 0.981 16.3M

Johnston et al. [19] 2020 M 0.111 0.941 4.817 0.189 0.885 0.961 0.981 14.3M+

CADepth-Res18 [39] 2021 M 0.110 0.812 4.686 0.187 0.882 0.962 0.983 18.8M

HR-Depth [28] 2021 M 0.109 0.792 4.632 0.185 0.884 0.962 0.983 14.7M

Lite-HR-Depth [28] 2021 M 0.116 0.845 4.841 0.190 0.866 0.957 0.982 3.1M

R-MSFM3 [46] 2021 M 0.114 0.815 4.712 0.193 0.876 0.959 0.981 3.5M

R-MSFM6 [46] 2021 M 0.112 0.806 4.704 0.191 0.878 0.960 0.981 3.8M

MonoFormer [3] 2022 M 0.108 0.806 4.594 0.184 0.884 0.963 0.983 23.9M+

Lite-Mono-tiny (Ours) 2023 M 0.110 0.837 4.710 0.187 0.880 0.960 0.982 2.2M

Lite-Mono-small (Ours) 2023 M 0.110 0.802 4.671 0.186 0.879 0.961 0.982 2.5M

Lite-Mono (Ours) 2023 M 0.107 0.765 4.561 0.183 0.886 0.963 0.983 3.1M

Monodepth2-Res18 [15] 2019 M† 0.132 1.044 5.142 0.210 0.845 0.948 0.977 14.3M

Monodepth2-Res50 [15] 2019 M† 0.131 1.023 5.064 0.206 0.849 0.951 0.979 32.5M

R-MSFM3 [46] 2021 M† 0.128 0.965 5.019 0.207 0.853 0.951 0.977 3.5M

R-MSFM6 [46] 2021 M† 0.126 0.944 4.981 0.204 0.857 0.952 0.978 3.8M

Lite-Mono-tiny (Ours) 2023 M† 0.125 0.935 4.986 0.204 0.853 0.950 0.978 2.2M

Lite-Mono-small (Ours) 2023 M† 0.123 0.919 4.926 0.202 0.859 0.951 0.977 2.5M

Lite-Mono (Ours) 2023 M† 0.121 0.876 4.918 0.199 0.859 0.953 0.980 3.1M

Monodepth2-Res18 [15] 2019 M* 0.115 0.882 4.701 0.190 0.879 0.961 0.982 14.3M

R-MSFM3 [46] 2021 M* 0.112 0.773 4.581 0.189 0.879 0.960 0.982 3.5M

R-MSFM6 [46] 2021 M* 0.108 0.748 4.470 0.185 0.889 0.963 0.982 3.8M

HR-Depth [28] 2021 M* 0.106 0.755 4.472 0.181 0.892 0.966 0.984 14.7M

Lite-Mono-tiny (Ours) 2023 M* 0.104 0.764 4.487 0.180 0.892 0.964 0.983 2.2M

Lite-Mono-small (Ours) 2023 M* 0.103 0.757 4.449 0.180 0.894 0.964 0.983 2.5M

Lite-Mono (Ours) 2023 M* 0.102 0.746 4.444 0.179 0.896 0.965 0.983 3.1M

Lite-Mono-8M (Ours) 2023 M* 0.097 0.710 4.309 0.174 0.905 0.967 0.984 8.7M

MonoViT-tiny [43] 2022 M 0.102 0.733 4.459 0.177 0.895 0.965 0.984 10.3M

Lite-Mono-8M (Ours) 2023 M 0.101 0.729 4.454 0.178 0.897 0.965 0.983 8.7M

Table 2. Comparison of Lite-Mono with some recent representative methods on the KITTI benchmark using the Eigen split [9].

All input images are resized to 640 × 192 unless otherwise specified. The best and the second best results are highlighted in bold and

underlined, respectively. ”M”: KITTI monocular videos, ”M+Se”: monocular videos + semantic segmentation, ”M*”: input resolution

1024× 320, ”M†”: without pre-training on ImageNet [7].

Input

Monodepth2

R-MSFM3

R-MSFM6

Lite-Mono

-small

Lite-Mono

Figure 4. Qualitative results on KITTI. Here are some depth maps generated by Monodepth2 [15], R-MSFM3 [46], R-MSFM6 [46],

Lite-Mono-small (ours), and Lite-Mono (ours), respectively. Monodepth2 and R-MSFM have limited receptive fields, so they yield some

inaccurate depth predictions. Instead, our models can generate better results.

4.2. Implementation details

Hyperparameters. The proposed method is imple-

mented in PyTorch and trained on a single NVIDIA TITAN

Xp with a batch size of 12. AdamW [27] is the optimizer,

and the weight decay is set to 1e−2. Drop-path is used in the

CDC and LGFI modules to mitigate overfitting. For models

trained from scratch an initial learning rate of 5e−4 with a

cosine learning rate schedule [26] is adopted, and the train-

ing epoch is set to 35. It is found that pre-training on Ima-
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geNet [7] makes the network converge fast, so the network

is trained for 30 epochs when using pre-trained weights, and

the initial learning rate is set to 1e−4. A monocular training

for 35 epochs takes about 15 hours.

Data augmentation. Data augmentation is adopted as a

preprocessing step to improve the robustness of the training.

To be specific, the following augmentations are performed

with a 50% chance: horizontal flips, brightness adjustment

(±0.2), saturation adjustment (±0.2), contrast adjustment

(±0.2), and hue jitter (±0.1). These adjustments are applied

in a random order, and the same augmentation method is

also used by [15, 28, 46].

Evaluation metrics Accuracy is reported in terms of

seven commonly used metrics proposed in [10], which are

Abs Rel, Sq Rel, RMSE, RMSE log, δ < 1.25, δ < 1.252,

and δ < 1.253.

4.3. KITTI results

The proposed framework is compared with other repre-

sentative methods with model sizes less than 35M, and the

results are shown in Table 2. Lite-Mono beats all meth-

ods except MonoViT-tiny and is the smallest model (3.1M).

Specifically, Lite-Mono greatly exceeds Monodepth2 [15]

with a ResNet18 [17] backbone, but the model size is

only about one-fifth of this model. It also outperforms

the ResNet50 version of Monodepth2, which is the largest

model (32.5M) in this table. Besides, Lite-Mono surpasses

the recent well-designed small model R-MSFM [46]. Com-

pared with the new MonoFormer [3] with a ResNet50 back-

bone the proposed Lite-Mono outperforms it in all metrics.

Our other two smaller models also achieve satisfactory re-

sults, considering that they have fewer trainable parameters.

In the last two rows of the table, the proposed Lite-Mono-

8M also performs better than MonoViT-tiny, the smallest

model of MonoViT [43], with fewer parameters. Figure 4

shows that Lite-Mono achieves satisfactory results, even on

challenging images where moving objects are close to the

camera (column 1).

4.4. Make3D results

The proposed method is evaluated on the Make3D

dataset to show its generalization ability in different out-

door scenes. The model trained on KITTI is directly in-

ferred without any fine-tuning. Table 3 shows the compar-

ison of Lite-Mono with the other three methods, and Lite-

Mono performs the best. Figure 5 shows some qualitative

results. Owing to the proposed feature extraction modules

Lite-Mono is able to model both local and global contexts,

and perceives objects with different sizes.

4.5. Complexity and speed evaluation

The proposed models’ parameters, FLOPs (floating point

of operations), and inference time are evaluated on an

Method Abs Rel Sq Rel RMSE RMSE log

DDVO [36] 0.387 4.720 8.090 0.204

Monodepth2 [15] 0.322 3.589 7.417 0.163

R-MSFM6 [46] 0.334 3.285 7.212 0.169

Lite-Mono (Ours) 0.305 3.060 6.981 0.158

Table 3. Comparison of the proposed Lite-Mono to some other

methods on the Make3D [32] dataset. All models are trained on

KITTI [13] with an image resolution of 640× 192.

Input

Monodepth2

R-MSFM6

Lite-Mono

Figure 5. Qualitative results on the Make3D dataset. Lite-Mono

is compared to Monodepth2 [15] and R-MSFM [46]. Lite-Mono

can perceive different sizes of objects.

NVIDIA TITAN Xp and a Jetson Xavier and are compared

with Monodepth2 [15], R-MSFM [46], and MonoViT-

tiny [43]. Table 4 shows that the proposed design has a good

balance between model size and speed. Notice that Lite-

Mono-tiny outperforms Monodepth2 both in speed and ac-

curacy (Table 2). Although R-MSFM [46] is a lightweight

model it is slow. The latest MonoViT-tiny [43] runs the

slowest due to its parallel blocks and multiple layers of

self-attention. Our models also infer quickly on the Jetson

Xavier, which allows them to be used on edge devices.

4.6. Ablation study on model architectures

To further demonstrate the effectiveness of the proposed

model the ablation study is conducted to evaluate the impor-

tance of different designs in the architecture. We remove or

adjust some modules in the network, and report their results

on KITTI, as shown in Table 5.

The benefit of LGFI blocks. When all the LGFI blocks

in stage 2, 3, and 4 are removed, the model size decreases

by 0.4M, but the accuracy also drops. The proposed LGFI

is crucial to make Mono-Lite encode long-range global con-

texts, thus making up for the drawback that CNNs can only

extract local features.

The benefit of dilated convolutions. If all the dilation

rates of convolutions in CDC blocks are set to 1, i.e., there

are no dilated convolutions used in the network. It can be

observed that although the model size remains the same the

accuracy drops more than for not using LGFI blocks. The

benefit of introducing the CDC module is to enhance the

locality by gradually extracting multi-scale features, while

not adding additional trainable parameters.

The benefit of pooled concatenations. Accuracy also

decreases when three pooled concatenations are removed.
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Encoder Decoder Full Model Speed (ms)

Method Params. (M) FLOPs (G) Params. (M) FLOPs (G) Params. (M) FLOPs (G) Titan XP Jetson Xavier

Monodepth2 [15] 11.2 4.5 3.1 3.5 14.3 8.0 3.8 14.3

R-MSFM3 [46] 0.7 2.4 2.8 14.1 3.5 16.5 7.8 22.3

R-MSFM6 [46] 0.7 2.4 3.1 28.8 3.8 31.2 13.1 41.7

MonoViT-tiny [43] 5.6 7.8 4.7 15.9 10.3 23.7 13.5 47.4

Lite-Mono-tiny (Ours) 2.0 2.4 0.2 0.5 2.2 2.9 3.3 12.7

Lite-Mono-small (Outs) 2.3 4.1 0.2 0.7 2.5 4.8 4.3 19.2

Lite-Mono (Ours) 2.9 4.4 0.2 0.7 3.1 5.1 4.5 20.0

Lite-Mono-8M (Ours) 8.1 9.5 0.6 1.7 8.7 11.2 6.5 32.2

Table 4. Model complexity and speed evaluation. We compare parameters, FLOPs (floating point of operations), and inference speed.

The input size is 640× 192, and the batch size is 16.

Architecture Params. Speed(ms) Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Lite-Mono full model 3.069M 4.5 0.107 0.765 4.561 0.183 0.886 0.963 0.983

w/o LGFI blocks 2.661M 3.2 0.111 0.854 4.705 0.187 0.881 0.960 0.982

w/o dilated convolutions 3.069M 4.5 0.112 0.836 4.685 0.187 0.880 0.960 0.982

w/o pooled concatenations 3.062M 4.4 0.109 0.842 4.700 0.186 0.883 0.960 0.982

w/o cross-stage connections 2.942M 4.4 0.108 0.834 4.683 0.185 0.884 0.962 0.982

Table 5. Ablation study on model architectures. All the models are trained and tested on KITTI with the input size 640× 192.

This is because when using a down-sampling layer to re-

duce the size of feature maps, some spatial information is

also lost. The advantage of using pooled concatenations is

that the spatial information is kept, and this design only adds

a small number of parameters (0.007M).

The benefit of cross-stage connections. When two

cross-stage connections are removed the accuracy decreases

slightly. The benefit of the proposed cross-stage connec-

tions in Mono-Lite is to promote feature propagation and

cross-stage information fusion.

4.7. Ablation study on dilation rates

The influence of the dilation rate in the proposed CDC

module on the accuracy is studied. Four different settings

are used in this experiment. (1) The default setting of our

models is to group every three CDC blocks together, and

set the dilation rate to 1, 2, and 3, respectively. For the last

three blocks we set them to 2, 4, and 6. (2) Based on the

default setting the dilation rates of the last three blocks are

set to 1, 2, and 3, respectively. (3) Similar to the default

setting we set 1, 2, and 5 in every three CDC blocks as a

group. (4) Based on the default setting the dilation rates

in the last two CDC blocks are set to 2, 4, 6 and 4, 8, 12,

respectively. Table 6 lists the accuracy under different dila-

tion settings. Comparing (2) with (3) the accuracy benefits

from larger dilation rates. However, (4) using very large di-

lation rates in the late CDC blocks does not help. Simply

pursuing larger dilation rates will result in the loss of local

information, which is not good for the network to perceive

small and medium-sized objects. Therefore, the proposed

Lite-Mono adopts the setting (1) to extract multi-scale lo-

cal features, i.e., smaller dilation rates are used in shallow

layers, and they are doubled in the last three CDC modules.

NO. Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3
1 0.107 0.765 4.561 0.183 0.886 0.963 0.983

2 0.110 0.867 4.681 0.187 0.885 0.961 0.981

3 0.108 0.835 4.652 0.186 0.885 0.962 0.982

4 0.110 0.855 4.642 0.187 0.885 0.961 0.981

Table 6. Ablation study on dilation rates.

5. Conclusions

This paper presents a novel architecture Lite-Mono for

lightweight self-supervised monocular depth estimation. A

hybrid CNN and Transformer architecture is designed to

model both multi-scale enhanced local features and long-

range global contexts. The experimental results on the

KITTI dataset demonstrate the superiority of our method.

By setting optimized dilation rates in the proposed CDC

blocks and inserting the LGFI modules to obtain the local-

global feature correlations, Lite-Mono can perceive dif-

ferent scales of objects, even challenging moving objects

closed to the camera. The generalization ability of the

model is also validated on the Make3D dataset. Besides,

Lite-Mono achieves a good trade-off between model com-

plexity and inference speed.
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