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Abstract

We present a mask-piloted Transformer which improves
masked-attention in Mask2Former for image segmenta-
tion. The improvement is based on our observation that
Mask2Former suffers from inconsistent mask predictions
between consecutive decoder layers, which leads to incon-
sistent optimization goals and low utilization of decoder
queries. To address this problem, we propose a mask-piloted
training approach, which additionally feeds noised ground-
truth masks in masked-attention and trains the model to
reconstruct the original ones. Compared with the predicted
masks used in mask-attention, the ground-truth masks serve
as a pilot and effectively alleviate the negative impact of
inaccurate mask predictions in Mask2Former. Based on this
technique, our MP-Former achieves a remarkable perfor-
mance improvement on all three image segmentation tasks
(instance, panoptic, and semantic), yielding +2.3AP and
+1.6mIoU on the Cityscapes instance and semantic seg-
mentation tasks with a ResNet-50 backbone. Our method
also significantly speeds up the training, outperforming
Mask2Former with half of the number of training epochs
on ADE20K with both a ResNet-50 and a Swin-L backbones.
Moreover, our method only introduces little computation dur-
ing training and no extra computation during inference. Our
code will be released at https://github.com/IDEA-
Research/MP-Former.

1. Introduction

Image segmentation is a fundamental problem in com-
puter vision which includes semantic, instance, and panoptic
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segmentation. Early works design specialized architectures
for different tasks, such as mask prediction models [2, 15]
for instance segmentation and per-pixel prediction mod-
els [25, 28] for semantic segmentation. Panoptic segmen-
tation [18] is a unified task of instance and semantic seg-
mentation. But universal models for panoptic segmentation
such as Panoptic FPN [18] and K-net [34] are usually sub-
optimal on instance and semantic segmentation compared
with specialized models.

Recently, Vision Transformers [29] has achieved tremen-
dous success in many computer vision tasks, such as image
classification [11, 24] and object detection [1]. Inspired by
DETR’s set prediction mechanism, Mask2Former [7] pro-
poses a unified framework and achieves a remarkable per-
formance on all three segmentation tasks. Similar to DETR,
it uses learnable queries in Transformer decoders to probe
features and adopts bipartite matching to assign predictions
to ground truth (GT) masks. Mask2Former also uses pre-
dicted masks in a decoder layer as attention masks for the
next decoder layer. The attention masks serve as a guidance
to help next layer’s prediction and greatly ease training.

Despite its great success, Mask2Former is still an initial
attempt which is mainly based on a vanilla DETR model
that has a sub-optimal performance compared to its later
variants. For example, in each decoder layer, the predicted
masks are built from scratch by dot-producting queries and
feature map without performing layer-wise refinement as
proposed in deformable DETR [37]. Because each layer
build masks from scratch, the masks predicted by a query
in different layers may change dramatically. To show this
inconsistent predictions among layers, we build two metrics
mIoU-Li and Utili to quantify this problem and analyze its
consequences in Section 3. As a result, this problem leads to
a low utilization rate of decoder queries, which is especially
severe in the first few decoder layers. As the attention masks
predicted from an early layer are usually inaccurate, when
serving as a guidance for its next layer, they will lead to
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sub-optimal predictions in the next layer.
Since detection is a similar task to segmentation, both

aiming to locate instances in images, we seek inspirations
from detection to improve segmentation. For example, the
recently proposed denoising training [19] for detection has
shown very effective to stabilize bipartite matching between
training epochs. DINO [33] achieves a new SOTA on COCO
detection built upon an improved denoising training method.
The key idea in denoising training is to feed noised GT boxes
in parallel with learnable queries into Transformer decoders
and train the model to denoise and recover the GT boxes.

Inspired by DN-DETR [19], we propose a mask-piloted
(MP) training approach. We divide the decoder queries into
two parts, an MP part and a matching part. The matching part
is the same as in Mask2Former, feeding learnable queries
and adopting bipartite matching to assign predictions to GT
instances. In the MP part, we feed class embeddings of GT
categories as queries and GT masks as attention masks into
a Transformer decoder layer and let the model to reconstruct
GT masks and labels. To reinforce the effectiveness of our
method, we propose to apply MP training for all decoder
layers. Moreover, we also add point noises to GT masks and
flipping noises to GT class embeddings to force the model
to recover GT masks and labels from inaccurate ones.

We summarize our contributions as follows.

1. We propose a mask-piloted training approach to im-
proving masked-attention in Mask2Former, which suf-
fers from inconsistent and inaccurate mask predictions
among layers. We also develop techniques including
multi-layer mask-piloted training with point noises and
label-guided training to further improve the segmenta-
tion performance. Our method is computationally ef-
ficient, introducing no extra computation during infer-
ence and little computation during training.

2. Through analyzing the predictions of Mask2Former, we
discover a failure mode of Mask2Former—inconsistent
predictions between consecutive layers. We build two
novel metrics to measure this failure, which are layer-
wise query utilization and mean IoU. We also show
that our method improves the two metrics by a large
margin, which validates its effectiveness on alleviating
inconsistent predictions.

3. When evaluating on three datasets, including ADE20k,
Cityscapes, and MS COCO, our MP-Former outper-
forms Mask2Former by a large margin. Besides im-
proved performance, our method also speeds up train-
ing. Our model exceeds Mask2Former on all three seg-
mentation tasks with only half of the number of train-
ing steps on ADE20k. Also, our model trained for 36
epochs is comparable with Mask2Former trained for 50
epochs on instance and panoptic segmentation on MS
COCO.

2. Related Work
Generally, image segmentation can be divided into three

tasks including instance segmentation, semantic segmenta-
tion, and panoptic segmentation with respect to different
semantics.
Traditional Segmentation models Traditionally, re-
searchers develop specialized models and optimization ob-
jectives for each task. Instance segmentation is to predict a
set of binary masks and their associated categories. Previ-
ous methods often predict masks based on bounding boxes
produced by detection models. Mask R-CNN [15] builds
segmentation upon detection model Faster R-CNN [27] by
adding a mask branch in parallel with the detection branch.
HTC [2] further proposes to interleave the two branches and
add mask information flow to improve segmentation per-
formance. Semantic segmentation focus on category-level
semantics without distinguishing instances. Previous models
widely formulate it into a per-pixel classification problem.
The pioneering work, FCN [25] generates a label for each
pixel to solve this problem. Many follow-up works continue
with this idea and design more precise pixel-level classi-
fication models [3, 4]. Panoptic segmentation [18, 30] is a
combination of the two segmentation tasks above to segment
both the foreground instances ("thing") and background se-
mantics ("stuff").
Vision Transfomers for segmentation Transformer-based
segmentation models emerge with DETR (DEtection TRans-
former) [1]. Since that, Transformer [29] has been widely
used in many detection [1,19,23,33] and segmentation mod-
els [7, 8, 32]. Generally, these models adopt a set prediction
objective with bipartite matching to query features of interest.
Inspiring progress has been made in many specialized query-
based architectures for instance segmentation [13], semantic
segmentation [32, 35], panoptic segmentation [21]. Notably,
some recent works unify the three segmentation tasks into
one model [7, 8, 20, 34]. Among them, Mask2Former [7]
proposes masked attention and achieves remarkable perfor-
mance on all three segmentation tasks. Following DETR,
Mask2Former is an end-to-end Transformer for image seg-
mentation. It is composed of a backbone, a pixel decoder,
and a Transformer decoder. The pixel decoder is an encoder-
only deformable Transformer that takes multi-scale image
features as input and output processed multi-scale features.
The Transformer decoder takes learnable queries as input to
attend to the feature maps output by the pixel decoder. Each
decoder layer attends to a feature map of one scale following
a coarse-to-fine manner. The predicted masks of one decoder
layer will feed to the next layer as the attention masks, which
enables the following decoder to focus on more meaningful
regions. The design of attention masks eases the training and
improves performance.
Ease Training for Vision transformers Vision transformers
have an advantage over the convolution-based methods due
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Figure 1. We visualize layer-wise predictions of Mask2Former and show 4 pairs of failure cases. Each pair is the predictions of the same
query in adjacent decoder layers. The red regions are the predicted masks. These cases shows that the predictions of a query may change
dramatically between consecutive layers.

to their global attention— they can see all parts of the image.
However, it is hard to train because globally searching for
an object is a hard task. This phenomenon exists in both de-
tection and segmentation. In detection, DETR suffers from
slow convergence requiring 500 training epochs for conver-
gence. Recently, researchers have dived into the meaning
of the learnable queries [23, 26, 31, 37]. They either express
the queries as reference points or anchor boxes. [19, 33]
proposed to add noised ground truth boxes as positional
queries for denoising training and they speed up detection
greatly. In segmentation, Mask2Former proposed mask atten-
tion which makes training easier and speeds up convergence
when compared with MaskFormer. We have found some
common points for these works that speed up training for vi-
sion Transformers. Firstly, they usually give clearer meaning
to learnable queries to reduce ambiguity. Secondly, they give
local limitations to cross attention and reduce the scope for
the model to search objects. Therefore, we believe that giv-
ing guidance to cross attention leads to good segmentation
performance. Our method is similar to DN-DETR [19] in
introducing GT annotations to the Transformer decoder but
ours is totally different from it in both the problems we solve
and the method we take. Firstly, our method aims to address
the inconsistent prediction problem which leads to the low
utilization of queries, while DN-DETR aims to solve unsta-
ble matching among epochs. Secondly, we use GT masks
as the attention masks, while DN-DETR feeds noised GT
boxes as decoder queries. Thirdly, noises are optional in our
method, but DN-DETR does not work without noises.

3. Failure Cases and Solution
Failure cases: We view the mask prediction in Mask2Former
as a mask refinement process through Transformer decoder
layers. By taking predictions from a layer as the attention
masks of the next layer, we expected to obtain refined pre-
dictions from the next layer. Generally, the predicted masks
are assigned to the GT masks by bipartite matching and

refined in a coarse-to-fine procedure. Therefore, keeping
refinement consistency in different layers is the key to re-
fining the predicted masks consistently. However, when we
visualize the predictions of Mask2Former layer by layer,
we found a severe inconsistency problem among the pre-
dictions from the same query between consecutive decoder
layers. As shown in Fig. 1, the predictions of adjacent layers
differ significantly. We define a metric named layer-wise
mean Intersection-over-Union (IoU) denoted as mIoU-Li to
quantify this inconsistency. We denote the predicted masks
from the i-th decoder layer as Mi =

{
M i

0,M
i
1, ...,M

i
N−1

}
,

where N is the number of decoder queries. Note that M0

means the predictions before queries enter the first Trans-
former decoder layer. We have

mIoU-Li =

N−1∑
n=0

IoU(M i−1
n ,M i

n) (1)

As shown in Table 1, the mIoU-L is quite low, especially for
the first few layers, which indicates inconsistent mask predic-
tion results between adjacent layers. Such an inconsistent re-
sult means a query may be assigned to different instances (or
background for panoptic and semantic segmentation) during
layer-by-layer updates. To evaluate the inconsistent matching
problem, we define another metric named as layer-wise query
utilization denoted as Utili for the i-th layer, which means
the ratio of the matched queries in the i-th layer that matches
exactly the same instance as in the last layer. We denote the
ground truth objects as T = {T0, T1, T2, ..., TO−1} where O
is the number of ground truth objects. After bipartite match-
ing, we compute an index vector Vi =

{
V i
0 , V

i
1 , ..., V

i
N−1

}
to store the matching result of layer i as follows.

V i
n =

{
o, if M i

n matches To

−1, if M i
n matches nothing (2)

We define the query utilization of layer i as the proportion
of GT masks that match with the same query in layer i and
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Layer Number 1 2 3 4 5 6 7 8 9

Mask2Former
mIoU-Li(%) 23.0 50.3 59.5 69.7 70.1 69.9 78.6 76.3 76.0
Utili(%) 38.1 65.5 70.8 73.5 78.5 81.1 83.2 83.2 100

MP training
mIoU-Li(%) 51.5 83.2 86.6 96.2 96.0 93.8 97.6 97.9 96.3
Utili∗(%) 94.0 93.8 94.6 93.2 94.0 94.8 94.0 94.0 100

Multi-layer MP
mIoU-Li(%) 51.3 87.8 88.8 97.5 97.5 96.2 99.0 98.8 98.2
Utili∗(%) 94.2 95.4 97.3 97.6 97.3 97.0 98.2 98.2 100

Table 1. The mIoU-Li and Utili of Mask2Former and the proposed methods. The mIoU-Li for a query is taken as the IoU of the predicted
masks in the (i− 1)-th and i-th decoder layers. The mIoU-Li takes the average over all queries. Note that the index of decoder layers starts
from 1, so "prediction of the 0-th decoder" means the prediction before entering Transformer decoder. The Utili is the ratio of GT masks
that match with the same query in i-th layer and the last layer. ∗ means that We test Utili with bipartite matching to assign predictions in
MP part to GT masks. Note that when directly assigning predictions in MP part to corresponding GT masks with hard assignment, Utili is
always 100%.

the last layer, which is calculated as

Utili =
1

O

N∑
j=0

1(V i
n = V l

n and V i
n ̸= −1), (3)

where 1(·) is the indicator function. 1(x) = 1 if x is true and
0 otherwise. The query utilization of layer i for the whole
data set is averaged over the utilization numbers for all im-
ages. Table 1 shows that the query utilizations of the first few
layers are too low, which indicate many matched queries in
early layers are ended up not being used in the last layer. The
low mIoU-Li and Utili have potential consequences such as
inconstant optimization goals and low training efficiency.

Our observations based on these two metrics motivate
us to develop a more effective training method to make the
matching more consistent among layers.
Solution: To address the inconsistent prediction problem,
inspired by DN-DETR, we proposed a mask-piloted training
method. We feed GT masks as attention masks and expect
these queries with GT masks can focus on their correspond-
ing GT masks and not be distracted by other instances. As
shown in row 2 and 3, Table 1, both mIoU-Li and Utili are
improved by a large margin when adopting mask-piloted
training. We also find that only applying mask-piloted (MP)
training in the first layer is not enough. Fig 3(a)(b) shows that
inconsistent prediction exists even when given GT masks.
Therefore, we add a GT mask to all decoder layers to re-
inforce MP training. As shown in Table 1, multi-layer MP
training further improves both mIoU-Li and Utili especially
in latter decoder layers.

4. MP-Former
4.1. Overview

Our method is a training method for improving
Mask2Former. Our MP-Former only introduces minor
changes in the Mask2Former pipeline during training as
shown in the red-line part in Fig. 2. Same as Mask2Former,
our model is composed of a backbone, a pixel decoder, and

a Transformer decoder. Our improvements are on the Trans-
former decoder. We divide decoder queries into two parts, a
mask-piloted (MP) part and a matching part. The matching
part is the same as Mask2Former. The MP part feeds GT
masks and GT class embeddings as input and the predic-
tions are directly assigned to the corresponding GT masks
without bipartite matching. Our method includes three com-
ponents which are multi-layer MP training, mask noises, and
label-guided training.

4.2. Multi-layer MP training

In order to address the inconsistent prediction problem,
we propose a multi-layer mask-piloted (MP) training method.
In the MP part, we feed an additional set of queries and
masks into Transformer where the queries and masks are
GT class embeddings and GT masks. On the loss side, we
independently assign the outputs of the MP part and the
matching part with the GT instances. The predictions of
the MP part are directly assigned to their corresponding
GT masks and those in the matching part are assigned with
bipartite graph matching. The losses for both parts are the
same, following the loss design in Mask2Former. We also
propose to add GT masks in multiple layers and show that
this can further improve the performance with experiments
in Table 8. Since we follow Mask2Fomer to use feature
maps of different resolutions in different decoder layers, we
interpolate GT masks into different resolutions when applied
to different layers.

4.3. Noised masks

Besides feeding GT masks to alleviate the inconsistency
problem, we further propose to use noised GT masks to
make mask refinement more robust in each decoder. The
intuition is simple, as Mask2former refines the mask from
an inaccurate mask predicted from the previous decoder.
GT masks without noise may be too easy for the task which
prevents further refinement. Therefore, we feed noised masks
to the decoder and train the model to reconstruct the original
ones, which is similar to DN-DETR [19] for box denoising
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Figure 2. The architecture of our method is the same as Mask2Former (the blue-shaded part), which consists of a backbone, a pixel decoder,
and a Transformer decoder. The difference is that we feed extra queries and attention masks which are called the MP part to the Transformer
decoder (red-line part in the figure). The MP part contains GT masks as attention masks and GT class embeddings as queries. We feed GT
masks into the MP part of all decoder layers. We also add point noises to GT masks and flipping noises to class embeddings which can
further improve the performance. Note that this architecture is just for training. In the inference time, the red-line part does not exist, and
thus, our pipeline is exactly the same as Mask2Former.

(a) (b) (c) (d) (e)

Figure 3. (a)The red region is a given GT mask in first decoder layer which covers the man riding the black horse. (b) The predicted mask of
the first decoder layer which only covers the head of the man. The predicted mask will be used as the attention mask of the second layer and
may mislead the second layer. (c)(d)(e) are demonstrations of point, shift and scale noises. The blue regions are noised masks and the red
regions are the GT masks.

method backbone
panoptic instance semantic

PQ APTh
pan mIoUpan AP APS APM APL mIoU

MaskFormer [8] R50 34.7 - - - - - - -
Panoptic-DeepLab [6] SWideRNet [5] 37.9∗ - 50.0∗ - - - - -
Mask2Former [7] R50 39.7 26.5 46.1 26.4 10.4 28.9 43.1 47.2
MP-Former R50 40.8(+1.1) 27.1 48.3(+2.2) 28.0(+1.6)10.5 30.7(+1.8)44.6 48.1
MaskFormer [8] Swin-L† - - - - - - - 54.1
FaPN-MaskFormer [8, 17] Swin-L† - - - - - - - 55.2
Mask2Former [7] Swin-L† 48.1 34.2 54.5 34.9 16.3 40.0 54.7 56.1
MP-Former Swin-L† 49.4(+1.3) 35.2 56.0 35.3 16.3 40.7 55.5 56.9

Table 2. Image segmentation results on ADE20K val. MP-Former improves the performance on all three segmentation tasks with R50
and Swin-L as backbone. All metrics are evaluated with single-scale inference. Backbones pre-trained on ImageNet-22K are marked with †. -
means the results are not reported for the methods.

training. We have tried three types of noise which are point
noise, shift noise, and scale noise as shown in Fig. 3. For

point noise, we randomly sample some points on the mask
and flip them from 1 to 0 or from 0 to 1. The number of
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method backbone
panoptic instance semantic

PQ APTh
pan mIoUpan AP AP50 mIoU

Panoptic-DeepLab [6] R50 60.3 32.1 78.7 - - -
Mask2Former [7] R50 62.1 37.3 77.5 37.4 61.9 79.4
MP-Former R50 62.7 39.3(+2.0) 79.6(+2.1) 39.7(+2.3) 65.4(+3.5) 81.0(+1.6)
Mask2Former [7] Swin-L† 66.6 43.6 82.9 43.7 71.4 83.3
MP-Former Swin-L† 67.5 45.8(+2.2) 83.5 44.9(+1.2) 72.4 83.9

Table 3. Image segmentation results on Cityscapes val. We report results on all three segmentation tasks with R50 or Swin-L as backbone.
All metrics are evaluated with single-scale inference. Backbones pre-trained on ImageNet-22K are marked with †

sampled points is proportional to the area of a GT mask. For
shift noise, we randomly shift a mask instance vertically and
horizontally while keeping the center of the instance within
its GT bounding box. For the scaling noise, we enlarge or
shrink the instance by a random ratio. A comparison of three
types of noises is shown in Table 8. Through experiments,
we find point noises improve the performance while shifting
and scaling noises do not work for our method. Therefore,
we adopt point noises in our implementation. We use a noise
ratio λp to control how many noise points are added. Denote
a binary GT mask as M = [mi,j ]H×W where mi,j = 1
means the pixel belongs to the mask. The number of noise
points is randomly sampled from 0 to λp ×

∑
i,j mi,j . Since

we apply mask-piloted training to all decoder layers, we
independently add different noises to GT masks in different
layers.

4.4. Label-guided training

We use the class embeddings of GT categories as queries
in the MP part. The reason why we use class embeddings is
that queries will dot-product with image features and an in-
tuitive way to distinguish instances is to use their categories.
Note that we only use class embeddings in the first layer
and do not replace predicted queries with class embeddings
in subsequent layers. We also have a classification loss in
the MP part. Since the classification task becomes very easy
given GT class embeddings, we add flipping noises in class
embeddings. We randomly sample GT class embeddings
and let them randomly flip to the class embeddings of other
categories. For example, E0, E1, ..., EK denotes the class
embeddings of K categories. An image contains N instances
which belong to Categories C0, C1, ..., CN . So their default
class embeddings should be EC0 , EC1 , ..., ECN . To add flip-
ping noise, we enumerate all N instances. For i-th instance,
we generate a random number ri in [0, 1] to decide whether
to flip the class embedding ECi or not. If ri < λl, we ran-
domly sample another class embedding in E0, E1, ..., EK to
replace ECi . λl denotes the proportion of the sampled class
embeddings.

5. Experiments
We conduct extensive experiments to compare our

method with Mask2Former and other segmentation methods

on all three segmentation tasks on three datasets to show
the effectiveness of our method. We also conduct several
ablation studies to show the effectiveness of each component
in our method.

5.1. Implementation details

Model: Since our method is an improved training method
based on Mask2Former, we adopt an identical model setting
as Mask2Former except for the mask-piloted (MP) part. In
the MP part, we adopt 100 GT masks with point noises.
We adopt noise ratios λp = 0.2 and λl = 0.2 for point
noises on masks and flipping noises on class embeddings.
We adopt ResNet50 [16] and Swin-L [24] when evaluating
our method on ADE20K and Cityscapes. On COCO2017,
we use ResNet50 and ResNet101 as the backbone.

Dataset and metrics: We evaluate MP-Former on three
challenging datasets: Cityscapes [9, 10] and ADE20K [36]
for all three segmentation tasks and COCO 2017 [22] dataset
for panoptic segmentation and instance segmentation. For
instance segmentation, we evaluate the mask AP [22] on in-
stances that are denoted as "thing" categories in datasets. For
semantic segmentation, we evaluate mean Intersection-over-
Union (mIOU) over all categories including both foreground
and background. For panoptic segmentation, we evaluate the
results with the panoptic quality (PQ) metric [18].

5.2. Main Results
We trained on three challenging datasets ADE20K,

Cityscapes, and MS COCO with different backbones. Our
method outperforms Mask2Former on all three segmentation
tasks (instance, panoptic, and semantic) under the same set-
ting, which demonstrates its effectiveness and generalization
ability to different datasets.
Performance on ADE20K. On ADE20K, we report our per-
formance trained for 160K steps following Mask2Former.
As shown in Table 2, our method exceeds Mask2Former and
other baselines on all metrics with both R50 and Swin-L.
Notably, MP-Former achieves +1.6AP on instance segmen-
tation with a R50 backbone and +1.3PQ on panoptic seg-
mentation with a Swin-L backbone.
Performance on Cityscapes. On Cityscapes, we train the
model with 90K training steps following Mask2Former. As
shown in Table 3, our method consistently outperforms
Mask2Former on all three segmentation tasks across differ-
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method backbone query type epochs AP APS APM APL #params. FLOPs fps

MaskFormer [8] R50 100 queries 300 34.0 16.4 37.8 54.2 45M 181G 19.2
Mask R-CNN [15] R50 dense anchors 36 37.2 18.6 39.5 53.3 44M 201G 15.2
Mask R-CNN [12, 14, 15] R50 dense anchors 400 42.5 23.8 45.0 60.0 46M 358G 10.3
Mask2Former [7] R50 100 queries 50 43.7 23.4 47.2 64.8 44M 226G 9.7
MP-Former R50 100 queries 50 44.8(+1.1) 24.7 48.1 65.5 44M 226G 9.7
Mask R-CNN [15] R101 dense anchors 36 38.6 19.5 41.3 55.3 63M 266G 10.8
Mask R-CNN [12, 14, 15] R101 dense anchors 400 43.7 24.6 46.4 61.8 65M 423G 8.6
Mask2Former [7] R101 100 queries 50 44.2 23.8 47.7 66.7 63M 293G 7.8
MP-Former R101 100 queries 50 45.1(+0.9) 24.6 48.7 66.2 63M 293G 7.8
QueryInst [13] Swin-L† 300 queries 50 48.9 30.8 52.6 68.3 - - 3.3
Swin-HTC++ [2, 24] Swin-L† dense anchors 72 49.5 31.0 52.4 67.2 284M 1470G -
Mask2Former [7] Swin-L† 200 queries 100 50.1 29.9 53.9 72.1 216M 868G 4.0
MP-Former (ours) Swin-L† 200 queries 72 50.8(+0.7) 30.3 54.5 72.6 216M 868G 4.0

Table 4. Instance segmentation on COCO val2017 with 80 categories. MP-Former outperforms strong baseline Mask2Former without
extra computation cost in inference time. For a fair comparison, we only consider single-scale inference and models trained using only
COCO train2017 set data. Backbones pre-trained on ImageNet-22K are marked with †

method backbone query type epochs PQ PQTh PQSt APTh
pan mIoUpan #params. FLOPs fps

DETR [1] R50 100 queries 500+25 43.4 48.2 36.3 31.1 - - - -
MaskFormer [8] R50 100 queries 300 46.5 51.0 39.8 33.0 57.8 45M 181G 17.6
Mask2Former [7] R50 100 queries 50 51.4∗ 57.2 42.7 41.9 61.5 44M 226G 8.6
MP-Former (ours) R50 100 queries 50 52.2(+0.8)58.3 42.9 42.5 61.6 44M 226G 8.6
DETR [1] R101 100 queries 500+25 45.1 50.5 37.0 33.0 - - - -
MaskFormer [8] R101 100 queries 300 47.6 52.5 40.3 34.1 59.3 64M 248G 14.0
Mask2Former [7] R101 100 queries 50 52.6 58.5 43.7 42.6 62.4 63M 293G 7.2
MP-Former (ours) R101 100 queries 50 52.9(+0.3)58.7 44.0 43.0 61.8 63M 293G 7.2
Max-DeepLab [30] Max-L 128 queries 216 51.1 57.0 42.2 - - 451M 3692G -
MaskFormer [8] Swin-L† 100 queries 300 52.7 58.5 44.0 40.1 64.8 212M 792G 5.2
K-Net [34] Swin-L† 100 queries 36 54.6 60.2 46.0 - - - - -
Mask2Former Swin-L† 200 queries 100 57.8 64.2 48.1 48.6 67.4 216M 868G 4.0
MP-Former Swin-L† 200 queries 72 58.1(+0.3)64.4 48.4 48.9 67.6 216M 868G 4.0

Table 5. Panoptic segmentation on COCO panoptic val2017 with 133 categories. MP-Former outperforms Mask2Former on COCO
panoptic segmentation with both R50 and R101 as backbone. Results that are implemented are marked with ∗.

ent backbones. MP-Former also scales well when adopting
Swin-L as the backbone. Especially, our method outper-
forms Mask2Former by +2.3AP on instance segmentation
and +1.6mIoU on semantic segmentation with R50.
Performance on COCO. On COCO val2017, we follow
Mask2Former’s setting to train for 50epochs. As shown
in Table 4 and Table 5, MP-Former outperforms both
Mask2Former and classical methods such as Mask R-CNN
[15] on instance segmentation and panoptic segmentation.
For instance segmentation, our method achieves +1.1AP
with R50, +0.9AP with R101 and +0.7 with Swin-L [24].
Note that we only train MP-Former for 72 epochs with Swin-
L. On panoptic segmentation, our method achieves +0.8PQ
with R50 and +0.3PQ with R101. Notably, our method is
only a pluggable training method that will not affect the
model architecture or inference speed. In addition, it only
introduces negligible parameters (class embeddings) during
training.

5.3. Speed up training

In Table 6, we show our MP-Former can significantly
speed up training on ADE20k and COCO. We do not report
the results on Cityscapes because this dataset is relatively

small and only needs 90k steps to converge in Mask2Former,
which is not necessary for additional speedup. The results
show that our method trained with 36 epochs achieved com-
parable results with Mask2Former trained with 50 epochs
with both R50 and R101 as the backbone on both panoptic
and instance segmentation. Moreover, our method trained
with half number of training steps (80K steps) achieves com-
parable results with Mask2Former trained with 160K steps.
Note that we use the same batch size as Mask2Former. We
also report the clock time. The results show that our method
reduces the actual training time by large. For a fair compari-
son, we use the same number of GPUs to run MP-Former and
Mask2Former. Because there may exist differences in speed
for different machines, we run our method and Mask2Former
on the same machine to test the running time.

5.4. Ablation Study

We conduct an ablation study on the COCO instance
segmentation task with R50 as backbone.
Effectiveness of each component: We show the effective-
ness of each version of our method trained for 12 epochs
and 50 epochs in Table 7, where we show the result of raw
Mask2Former and the result after each version of our method
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dataset method backbone epochs∗
panoptic instance semantic

PQ APTh
pan mIoUpan clock

time/h
AP APS APM APL clock

time/h
mIoU clock

time/h

ADE20k

Mask2Former R50 160k 39.7 26.5 46.1 52.8 26.4 10.4 28.9 43.1 40.3 47.2 21.3
MP-Former R50 80k 39.7 27.0 48.4 34.2 27.4 10.2 30.0 44.5 25.5 47.4 12.3
Mask2Former Swin-L† 160k 48.1 34.2 54.5 63.2 34.9 16.3 40.0 54.7 51.4 56.1 39.8
MP-Former Swin-L† 80k 48.5 34.7 56.1 45.7 35.2 15.8 39.6 55.6 26.7 56.9 21.5

COCO

Mask2Former R50 50 51.4∗ 41.9 61.5 77.9 43.7 23.4 47.2 64.8 62.5 - -
MP-Former R50 36 51.5 41.8 61.6 59.5 44.1 24.1 47.4 65.3 50.8 - -
Mask2Former R101 50 52.6 42.6 62.4 113.1 44.2 23.8 47.7 66.7 86.0 - -
MP-Former R101 36 52.5 42.6 62.0 84.4 44.2 23.2 47.9 66.6 71.5 - -

Table 6. Image segmentation results on ADE20K val. and COCO val2017 MP-Former speeds up training by large. On ADE20K,
MP-Former trained for 80K steps can achieve comparable result with Mask2Former trained for 160K steps with both R50 and Swin-L as
backbone. On COCO, MP-Former trained for 36 epochs can achieve comparable result with Mask2Former trained for 50 epochs with both
R50 and R101 as backbone. ∗ means that we adopt number of steps instead of epochs on ADE20k following Mask2Former. We report only
single-scale inference results. Backbones pre-trained on ImageNet-22K are marked with †

#Row 12 ep (AP mask) 50 ep (AP mask)

1. Mask2Former [7] 38.7 43.7
2. Row1+MP training on 1st layer 39.4 44.2
3. Row2+Label noises 39.6 44.2
4. Row3+Point noises 39.9 44.6
5. Ours (Row4+All-layer MP) 40.2 44.8

Table 7. The effectiveness of each component of our method when trained for
12 epochs and 50 epochs. The table shows that each component of our model
effectively improves the results. Label noise does not work when trained for
50 epochs. Espectially, our method without noises can improve the results
by +0.9AP. With multi-layer MP training, our method achives +1.5AP on
COCO instance segmentation with R50 backbone trained for 12 epochs. "ep"
is short for epochs.

Layers for MP training ep AP mask

First layer 12 39.4
First three layers 12 39.6(+0.2)
All layers 12 40.2(+0.8)
Noise Type
No noise 12 39.6
Point noise 12 39.9
Shifting noise 12 39.6
Scaling noise 12 39.4

Table 8. Top 3 lines shows the effectiveness of multi-layer
Mask-Piloted (MP) training. The bottom lines of the table
shows that shifting and scaling noise do not work for our
method. "ep" is short for epochs.

Feature map ep AP mask

Coarse to fine 12 40.2
All large 12 40.0
Assignment in Mask-Piloted part
Match 12 39.4
Hard assignment 12 39.6

Table 9. Some hyperparemeter tuning:1.coarse-to-fine manner
works better for our method than all-large feature maps. 2.Hard
assignment lead to better results than matching for MP part queries.
"ep" is short for epochs.

is adopted. Without adding noises, our method achieves an
improvement of +0.9AP . With multi-layer MP-training, our
method achieves +1.5AP. We also find that label noise does
not work when trained for 50 epochs. Note that except for
the last line of the table, other lines of our method apply MP
training on the first 3 layers.
Apply MP training on multiple layers: In Table 8, we show
the effectiveness of applying GT masks on multiple layers.
The results indicate that more layers of GT masks can lead
to better performance. By adding noised GT masks in all
layers, MP-Former achieves +0.8AP.
Add noises to GT masks: In the last four rows of Table 8,
we show the effectiveness of adding different types of noises.
Note that without any noise, MP-Former achieves 39.6AP
which is corresponding to the 4th row in Table 7. Shifting
noise and scaling noise do not work in our method. Point
noise achieved +0.3 extra growth.
Some hyper-parameter tuning: Mask2Former adopts
coarse-to-fine feature maps in decoder layers. We try to
adopt the largest feature map (1/8 feature map) in all de-
coder layers. Table 9 shows that a coarse-to-fine manner is
better than using the largest feature map in all layers for our
MP-Former . We also try to use matching to assign predic-
tions to GT instances in the MP part. The result shows that
matching can also improve the result compared with raw
Mask2Former but the hard assignment is better.

6. Conclusion

In this paper, we have analyzed failure cases of
Mask2Former and found a problem of inconsistent predic-
tions between adjacent layers which potentially leads to
inconstant optimization goals and low utilization of queries
and therefore limits the performance of Mask2Former. In or-
der to address the problem, we developed a new MP-Former,
whose key components include multi-layer mask-piloted
training with point noises and label-guided training. Our ex-
perimental results showed that the proposed training method
effectively mitigates the inconsistent prediction problem.
When evaluating on three challenging datasets (ADE20K,
Citescapes, and MS COCO), our method achieved improve-
ment by a large margin on all three image segmentation tasks
(semantic, instance, and panoptic). In addition, our method
only introduces little computation during training and no
extra computation in inference time. Finally, our method can
also significantly speed up training. Especially, when trained
with half number of steps, our method exceeds Mask2Former
on all three segmentation tasks on ADE20K with both R50
and Swin-L as the backbones.
Limitations: We evaluated MP-Former on Mask2Former,
but our method may be useful to some other models such as
MaskFormer and HTC. We will take it as our future work.
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