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Abstract

Despite the remarkable performance that modern deep
neural networks have achieved on independent and iden-
tically distributed (I.I.D.) data, they can crash under dis-
tribution shifts. Most current evaluation methods for do-
main generalization (DG) adopt the leave-one-out strat-
egy as a compromise on the limited number of domains.
We propose a large-scale benchmark with extensive labeled
domains named NICO++ along with more rational eval-
uation methods for comprehensively evaluating DG algo-
rithms. To evaluate DG datasets, we propose two metrics
to quantify covariate shift and concept shift, respectively.
Two novel generalization bounds from the perspective of
data construction are proposed to prove that limited con-
cept shift and significant covariate shift favor the evalua-
tion capability for generalization. Through extensive ex-
periments, NICO++ shows its superior evaluation capabil-
ity compared with current DG datasets and its contribu-
tion in alleviating unfairness caused by the leak of oracle
knowledge in model selection. The data and code for the
benchmark based on NICO++ are available at https:
//github.com/xxgege/NICO-plus.

1. Introduction
Machine learning has illustrated its excellent capability

in a wide range of areas [37, 65, 82]. Most current algo-
rithms minimize the empirical risk in training data relying
on the assumption that training and test data are indepen-
dent and identically distributed (I.I.D.). However, this ideal
hypothesis is hardly satisfied in real applications, especially
those high-stake applications such as healthcare [10, 49],
autonomous driving [1, 13, 39] and security systems [6],
owing to the limitation of data collection and intricacy of
the scenarios. Distribution shifts between training and test
data may lead to the unreliable performance of current
approaches in practice. Hence, instead of generalization
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Figure 1. Covariate shift (Mcov in Equation (1)) and concept shift
(Mmax

cpt in Equation (2)) of NICO++ and current DG datasets.
NICO++ has the lowest concept shift and highest covariate shift,
showing the superiority in evaluation capability.

within the training distribution, the ability to generalize un-
der distribution shift, domain generalization (DG) [75, 94],
is of more critical significance in realistic scenarios.

In the field of computer vision, benchmarks that pro-
vide the common ground for competing approaches often
play a role of catalyzer promoting the advance of research
[14]. An advanced DG benchmark should provide sufficient
diversity in distributions for both training and evaluating
DG algorithms [74, 78] while ensuring essential common
knowledge of categories for inductive inference across do-
mains [33, 34, 93]. The first property drives generalization
challenging, and the second ensures the solvability [81].
This requires adequate distinct domains and instructive fea-
tures for each category shared among all domains.

Current DG benchmarks, however, either lack sufficient
domains (e.g., 4 domains in PACS [40], VLCS [18] and
Office-Home [73] and 6 in DomainNet [53]) or too simple
or limited to simulating significant distribution shifts in real
scenarios [2, 21, 30]. To enrich the diversity and perplexing
distribution shifts in training data as much as possible, most
of the current evaluation methods for DG adopt the leave-
one-out strategy, where one domain is considered as the test
domain and the others for training. This is not an ideal eval-
uation for generalization but a compromise due to the lim-
ited number of domains in current datasets, which impairs
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the evaluation capability. To address this issue, we suggest
testing DG methods on multiple test domains instead of
one specific domain in each evaluation after training.

To benchmark DG methods comprehensively and sim-
ulate real scenarios where a trained model may encounter
any possible test data while providing sufficient diversity
in the training data, we construct a large-scale DG dataset
named NICO++ with extensive domains and two proto-
cols supported by aligned and flexible domains across cate-
gories, respectively, for better evaluation. Our dataset con-
sists of 80 categories, 10 aligned common domains for all
categories, 10 unique domains specifically for each cat-
egory, and more than 230,000 images. Abundant diver-
sity in both domain and category supports flexible assign-
ments for training and test, controllable degree of distribu-
tion shifts, and extensive evaluation on multiple target do-
mains. Images collected from real-world photos and consis-
tency within category concepts provide sufficient common
knowledge for recognition across domains on NICO++.

To evaluate DG datasets in-depth, we investigate dis-
tribution shifts on images (covariate shift) and common
knowledge for category discrimination across domains
(concept agreement) within them. Formally, we present
quantification for covariate shift and the opposite of concept
agreement, namely concept shift, via two novel metrics. We
propose two novel generalization bounds and analyze them
from the perspective of data construction instead of models.
Through these bounds, we prove that limited concept shift
and significant covariate shift favor the evaluation capabil-
ity for generalization.

Moreover, a critical yet common problem in DG is the
model selection and the potential unfairness in the compar-
ison caused by leveraging the knowledge of target data to
choose hyperparameters that favors test performance [3,27].
This issue is exacerbated by the notable variance of test per-
formance with various algorithm irrelevant hyperparame-
ters on current DG datasets. Intuitively, strong and unsta-
ble concept shift such as confusing mapping relations from
images to labels across domains embarrasses training con-
vergence and enlarges the variance.

We conduct extensive experiments on three levels. First,
we evaluate NICO++ and current DG datasets with the pro-
posed metrics and show the superiority of NICO++ in eval-
uation capability, as shown in Figure 1. Second, we con-
duct copious experiments on NICO++ to benchmark cur-
rent representative methods with the proposed protocols.
Results show that the room for improvement of generaliza-
tion methods on NICO++ is spacious. Third, we show that
NICO++ helps alleviate the issue by squeezing the possible
improvement space of oracle leaking and contributes as a
fairer benchmark to the evaluation of DG methods, which
meets the proposed metrics.

2. Related Works

DG Benchmarks. After the high-speed development ben-
efited from the datasets, like PASCAL VOC [17], Ima-
geNet [14] and MSCOCO [45], in IID scenarios, a range
of image datasets has been raised for the research of do-
main generalization in visual recognition. The first branch
modifies traditional image datasets with synthetic transfor-
mations, typically including the ImageNet variants [29–31],
MNIST variants [2, 25], Waterbirds [60], OOD-CV [92],
and WILDS [38]. Another branch considers collecting data
coming from different source domains, including PACS
[40], Office-Home [73], DomainNet [53], Terra Incognita
[4], VLCS [18], and NICO [28]. However, these datasets
utilize a simple criterion to distinguish distributions, e.g.
image style, not enough to cover the complexity in real-
ity. In addition, the domains of most current DG datasets
are limited, leading to inadequate diversity in training or
test data. Please see the detailed comparison with the last
version of NICO [28], other DG datasets, and other bench-
marks [27, 40] in Appendix B.
Domain Generalization. There are several streams of lit-
erature studying the domain generalization problem in vi-
sion. With extra information on test domains, domain adap-
tation methods [5,19,23,62,66,67,69,77,86] show effective-
ness in addressing the distribution shift problems. By con-
trast, domain generalization aims to learn models that gen-
eralize well on unseen target domains while only data from
several source domains are accessible. According to [64],
DG methods can be divided into three branches, including
representation learning [7,8,20,24,26,32,35,50,51], train-
ing strategies [9, 15, 33, 42, 44, 46, 59, 61, 76, 88, 90], and
data augmentation methods [36,54,55,63,71,72,74,83,95].
More comprehensive surveys on domain generalization
methods can be found in [75, 96].

3. NICO++: Domain-Extensive Large Scale
Domain Generalization Benchmark

In this section, we introduce a novel large-scale domain
generalization benchmark NICO++, which contains exten-
sive domains and categories. Similar to the original version
of NICO [28], each image in NICO++ consists of two kinds
of labels, namely the category label and the domain la-
bel. The category labels correspond to the objective concept
(e.g., cat and dog) while the domain labels represent other
visual information in images, including the background of
the image (e.g. on grass and in water), the attributes of the
foreground (e.g. lying or running), and the relationship with
other objects (e.g., behind a table). To boost the heterogene-
ity in the dataset to support the thorough evaluation of gen-
eralization ability in domain generalization scenarios, we
greatly enrich the types of categories and domains and col-
lect a larger amount of images in NICO++.
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Figure 2. Statistical overview of NICO++. The figure shows the number of instances in each domain and each category. The horizontal
axis is for categories and the vertical axis for domains. The color of each bin corresponds to the number of instances in each (category,
domain) pair. The 10 domains at the bottom are common domains while the 10 at the top are unique domains.

3.1. Constructions of the Category / Domain Labels

We first select 80 categories and then build 10 common
and 10 category-specific domains upon them. We provide
detailed statistics of the selected categories and domains in
Appendix E.

Categories. A total of 80 categories are provided with a
hierarchical structure in NICO++. Four broad categories
Animal, Plant, Vehicle, and Substance lie on the top level.
For each of Animal, Plant, and Vehicle, there exist narrow
categories derived from it (e.g., felida and insect belong to
Animal) in the middle level. Finally, 80 concrete categories
are assigned to their super-category respectively. The hi-
erarchical structure ensures the diversity and balance* of
categories in NICO++, which is vital to simulate realistic
domain generalization scenarios in wild environments.

Common domains. Towards the settings of domain gen-
eralization or domain adaption, we design 10 common do-
mains that are aligned across all categories. Each of the
selected common domains refers to a family of concrete
contexts with similar semantics so that they are general and
common enough to generate meaningful combinations with
all categories. For example, the common domain water
contains contexts of swimming, in pool, in river, etc. A
comparison between common domains in NICO++ and do-
mains in current DG datasets is in Appendix B.

Unique domains. To increase the number of domains and
support the flexible DG scenarios where the training do-
mains are not aligned with respect to categories, we further
attain unique domains specifically for each of the 80 cate-
gories. We select the unique domains according to the fol-
lowing conditions: (1) they are different from the common
domains; (2) they can include various concepts, such as at-
tributes (e.g. action, color), background, camera shooting
angle, and accompanying objects, etc.; (3) different types

*The ratio of the number of categories in Animal, Plant, Vehicle and
Substance is 40 : 12 : 14 : 14.

of them hold a balanced proportion for diversity.

3.2. Data Collection and Statistics

NICO++ has 10 common domains, covering nature, sea-
son, humanity, and illumination, for a total of 80 categories,
and 10 unique domains for each category. The capacity of
the most common domains and unique domains is at least
200 and 50, respectively. The images from most domains
are collected by searching a combination of a category name
and a phrase extended from the domain name (e.g. “dog sit-
ting on grass” for the category dog and the domain grass)
on various search engines. Over 32,000 combinations are
adopted for searching images. The downloaded data con-
tain a large portion of outliers that require artificial anno-
tations. Each image is assigned to two annotators to la-
bel both the category and domain and passes the selection
when agreed upon by both annotators. After the annota-
tion process, 232.4k images are selected from over 1.0 mil-
lion images downloaded from the search engines. The scale
of NICO++ is enormous enough to support the training of
deep convolutional networks (e.g., ResNet-50) from scratch
in types of domain generalization scenarios. A statistical
overview of the dataset is shown in Figure 2 and example
images are shown in Figure 3.

4. Covariate Shift and Concept Shift

Consider a dataset with data points sampled from a joint
distribution P (X,Y ) = P (Y |X)P (X). Distribution shift
within the dataset can be caused by the shift on P (X) (i.e.,
covariate shift) and shift on P (Y |X) (i.e., concept shift)
[64]. We give quantification for these two shifts in any la-
beled dataset and analyze the preference of them from a
perspective of the DG benckmark via presenting two gen-
eralization bounds for multi-class classification. Then we
evaluate NICO++ and current DG datasets empirically with
the proposed metrics and show the superiority of NICO++.
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Figure 3. Example images of common (3a) and unique (3b) domains in NICO++.

Notations We use X and Y to denote the space of input X
and outcome Y , respectively. We use ∆Y to denote a distri-
bution on Y . A domain d corresponds to a distribution Dd

on X and a labeling function† fd : X → ∆Y . The training
and test domains are specified by (Dtr, ftr) and (Dte, fte),
respectively. We use ptr(x) and pte(x) to denote the prob-
ability density function on training and test domains. Let
ℓ : ∆Y ×∆Y → R+ define a loss function over ∆Y and H
define a function class mapping X to ∆Y . For any hypothe-
ses h1, h2 ∈ H, the expected loss LD(h1, h2) for distribu-
tion D is given as LD(h1, h2) = Ex∼D [ℓ(h1(x), h2(x))].
To simplify the notations, we use Ltr and Lte to denote the
expected loss LDtr and LDte in training and test domain,
respectively. In addition, we use εtr(h) = Ltr (h, ftr) and
εte(h) = Lte (h, fte) to denote the loss of a function h ∈ H
w.r.t. to the true labeling function ftr and fte, respectively.

4.1. Metrics for Covariate shift and Concept shift

The distribution shift between the training domain
(Dtr, ftr) and test domain (Dte, fte) can be decomposed into
covariate shift (i.e., shift between Dtr and Dte) and concept
shift (i.e., shift between ftr and fte). We propose the follow-
ing metrics to measure them.

Definition 4.1 (Metrics for covariate shift and concept
shift). Let H be a set of functions mapping X to ∆Y and
let ℓ : ∆Y ×∆Y → R+ define a loss function over ∆Y . For
the two domains (Dtr, ftr) and (Dte, fte), then
• the covariate shift is measured as the discrepancy dis-

tance [47] (provided in Definition 4.2) between Dtr and
Dte under H and ℓ, i.e.,

Mcov (Dtr,Dte;H, ℓ) ≜ disc (Dtr,Dte;H, ℓ) , (1)

• the concept shift is measured as the maximum / minimum
loss when using ftr on the test domain or using fte on the

†We use ∆Y here to denote that the labeling function may not be de-
terministic. This formulation also includes deterministic labeling function
cases.

training domain, i.e.,{
Mmin

cpt (Dtr,Dte, ftr, fte; ℓ) ≜ min {Ltr(ftr, fte),Lte(ftr, fte)} ,

Mmax
cpt (Dtr,Dte, ftr, fte; ℓ) ≜ max {Ltr(ftr, fte),Lte(ftr, fte)} .

(2)

Remark. We introduce two metrics for concept shift terms
in Equation (2) because they both provide meaningful char-
acterizations of the concept shift. In addition, both Mmin

cpt

and Mmax
cpt have close connections with DG performance

as shown in Theorem 4.2 and Theorem 4.3 in Section 4.2.
The covariate shift is widely discussed in recent literature
[16, 58, 64] yet none of them give the quantification with
function discrepancy, which favors the analysis of DG per-
formance and shows remarkable properties when H is large
(such as the function space supported by current deep mod-
els). The concept shift can be considered as the discrepancy
between the labeling rule ftr on the training data and the la-
beling rule fte on the test data. Intuitively, consider that a
circle in the training data is labeled as class A in training do-
mains and class B in test domains, models can hardly learn
the labeling function on the test data (mapping the circle to
class B) without knowledge about test domains. The dis-
crepancy distance mentioned above is defined as follows.

Definition 4.2 (Discrepancy Distance [47]). Let H be a
set of functions mapping X to ∆Y and let ℓ : ∆Y ×
∆Y → R+ define a loss function over ∆Y . The dis-
crepancy distance disc (D1,D2;H, ℓ) between two dis-
tributions D1 and D2 over X is disc (D1,D2;H, ℓ) ≜
suph1,h2∈H |LD1

(h1, h2)− LD2
(h1, h2)|.

We give formal analysis of metrics for covariate shift
(Mcov) and concept shift (Mmin

cpt /Mmax
cpt ) below and the

graphical explanation is shown in Figure 4.

The covariate shift term Mcov. When the capacity of
function class H is large enough and ℓ is bounded, Mcov is
in terms of the ℓ1 distance between two distributions, given
by the following proposition.

Proposition 4.1. Let H be the set of all functions map-
ping X to ∆Y and the range of the loss function
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Figure 4. Graphical explanations of our proposed metric Mcov

and Mmin
cpt /Mmax

cpt when H is the set of all functions mapping X
to ∆Y and ℓ is the 0-1 loss.

is [0,M ], then for any two distributions Dtr and Dte

on X with probability density function ptr and pte re-
spectively, Mcov (Dtr,Dte;H, ℓ) = M

2 ℓ1 (Dtr,Dte) =
M
2

∫
X |ptr(x)− pte(x)|dx.

It is clear that the covariate shift metric Mcov is deter-
mined by the accumulated bias between the distribution Dtr
and Dte defined on X and without contribution from Y ,
which meets the definition of covariate shift.

The concept shift term Mmin
cpt and Mmax

cpt . When ℓ is
set as the 0-1 loss, i.e., the loss ℓ(ftr(x), fte(x)) is 0 if
and only if ftr(x) = fte(x), Mmin

cpt and Mmax
cpt can be

written as Mmin
cpt /Mmax

cpt = min /max{
∫
X I[ftr(x) ̸=

fte(x)]ptr(x)dx,
∫
X I[ftr(x) ̸= fte(x)]pte(x)dx}. Here

I[ftr(x) ̸= fte(x)] is an indicator function on whether
ftr(x) ̸= fte(x).

Intuitively, the two terms in the min/max functions rep-
resent the probabilities of inconsistent labeling functions in
training and test domains. Mmin

cpt and Mmax
cpt further take

the minimal and maximal value of the two probabilities, re-
spectively. It is rational that the concept shift is actually
the integral of ptr(x) (or pte(x)) over any points x where
its corresponding label on training data differs from that on
test data. In practice, we estimate ftr and fte with models
trained on source domains and target domains, respectively.
More discussion and comparison of discrepancy distance
and other metrics for distribution distance are in Appendix
A.

4.2. Dataset Evaluation with the Metrics

To use the covariate shift metric Mcov and concept shift
metrics Mmin

cpt ,Mmax
cpt for dataset evaluation, we show that

larger covariate shift and smaller concept shift favors a dis-
criminative domain generalization benchmark. Intuitively,
the critical point of datasets for domain generalization lies
in 1) significant covariate shift between domains that drives
generalization challenging [56] and 2) common knowledge
about categories across domains on which models can rely
on to conduct valid predictions on unseen domains [34,93].
The common knowledge requires the alignment between la-
beling functions of source domains and target domains, i.e.,
a moderate concept shift. When there is a strong inconsis-
tency between labeling rules on training and test data, the

classification loss instructing biased connections between
visual features and concepts is misleading for generaliza-
tion to test data. Thus models can hardly learn strong pre-
dictors for test data without knowledge of test domains.

To analyze the intuitions theoretically, we first propose
an upper bound for the expected loss in the test domain for
any hypothesis h ∈ H.

Theorem 4.2. Suppose the loss function ℓ is symmetric and
obeys the triangle inequality. Suppose ftr, fte ∈ H. Then
for any hypothesis h ∈ H, the following holds

εte(h) ≤ εtr(h)+Mcov (Dtr,Dte;H, ℓ)+Mmin
cpt (Dtr,Dte, ftr, fte; ℓ) .

(3)

Remark. Theorem 4.2 is closely related to generalization
bounds in domain adaptation (DA) literature [5, 89, 91, 93].
In detail, [5] first studied the generalization bound from a
source domain to a target domain in binary classification
problems and [89, 91] further extended the results to multi-
class classification problems. However, the bounds in their
results depend on a specific term λ∗ ≜ minh∈H εtr(h) +
εte(h), which is conservative and relatively loose and can
not be measured as concept shift directly [93]. As a re-
sult, [93] developed a bound which explicitly takes con-
cept shift (termed as conditional shift by them) into account.
However, their results are only applied to binary classifica-
tions and ℓ1 loss function. By contrast, Theorem 4.2 can be
applied to multi-class classifications problems and any loss
functions that are symmetric and obeys the triangle inequal-
ity.

Theorem 4.2 quantitatively gives an estimation of the
biggest gap between the performance of a model on train-
ing and test data. If we consider H as a set of deep mod-
els trained on training data with different learning strate-
gies, the estimation indicates the upper bound of the range
in which their performance varies. If we consider h as a
model that fits training data, the bound gives an estimation
of how much the distribution shift of the dataset contributes
to the performance drop between training and test data.

Furthermore, we propose a lower bound for the expected
loss in the test domain for any hypothesis h ∈ H to better
understand how the proposed metrics affect the discrimina-
tion ability of datasets.

Theorem 4.3. Suppose the loss function ℓ is symmetric and
obeys the triangle inequality. Suppose ftr, fte ∈ H. Then
for any hypothesis h ∈ H, the following holds

εte(h) ≥ Mmax
cpt (Dtr,Dte, ftr, fte; ℓ)−Mcov (Dtr,Dte;H, ℓ)− εtr(h).

(4)

As shown in Theorem 4.3, for any hypothesis h ∈ H,
the term (Mcpt−Mcov) determines the lower bound of the
test loss and further determines the upper bound of the test
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performance of h. The bound is critical to evaluate a dataset
since the performance of any well-trained model on test data
is upper bounded by the properties (concept shift and co-
variate shift) of the dataset, disregarding how the model is
designed or learned. Specifically, consider the stop training
condition of a any possible model h is that the loss on the
training data is smaller than γ, which is rational with most
of current training strategies, the performance of the model
on test data is upper bounded by γ −Mcpt +Mcov, which
is irrelevant to the choice of h and the learning protocol.
Intuitively, when the discrepancy between labeling func-
tions between training and test data, the better the model fits
training data, the worse it generalizes to test domains. Con-
versely, with more aligned labeling functions, the common
knowledge between training and test data is richer and more
instructive, so that the ceiling of generalization is higher.
Moreover, the covariate shift Mcov contributes positively
to the upper bound of the test performance, given that the
concept shift Mcpt can be considered as integral of proba-
bility density ptr(x) (or pte(x)) over points with unaligned
labeling functions, where the covariate shift Mcov helps to
counteract the impact of labeling mismatch.

As a result, the drop given by Theorem 4.3 is unsolv-
able for algorithms but modifiable by suppressing the con-
cept shift or enhancing the covariate shift. To better evalu-
ate generalization ability, an DG benchmark requires small
concept shift and large covariate shift.

4.3. Empirical Evaluation

We compare NICO++ with current DG datasets in both
covariate shift and concept shift. Please see details of the
implementation in Appendix B.

Results are shown in Table 1. Concept shift on NICO++

is significantly lower than other datasets, indicating more
aligned labeling rules across domains and more instructive
common knowledge of categories can be learned by models.
The covariate shifts of NICO++, PACS, and DomainNet are
comparable, which demonstrates that the distribution shift
on images caused by the background can be as strong as
style shifts. It is worth noticing that the term Mcpt−Mcov

in Theorem 4.3 is larger than 0 on current DG datasets while
lower than 0 on NICO++, indicating that the drop caused
by a shift of labeling function across domains is significant
enough to damage the upper generalization bound while the
common knowledge across domains in NICO++ is suffi-
cient for models to approach the oracle performance.

5. Experiments
Inspired by [87], we present two evaluation settings,

namely classic domain generalization and flexible domain
generalization, and perform extensive experiments on both
settings. We design experimental settings to evaluate cur-
rent DG methods and illustrate how NICO++ contributes to

filling in the evaluation on generalization to multiple unseen
domains. Due to space limitations, we only report major re-
sults, and more experimental details are in Appendix D.

5.1. Evaluation Metrics for Algorithms

Despite the fact that the widely adopted evaluation meth-
ods in DG effectively show the generalization ability of
models to the unseen target domain, they fail to sufficiently
simulate real application scenarios. For example, the most
popular evaluation method, namely leave-one-out evalua-
tion [40,64], tests models on a single target domain for each
training process, while in real applications, a trained model
is required to be reliable under any possible scenarios with
various data distributions. The compromise on the limita-
tion of domain numbers in current benchmarks, including
PACS, VLCS, DomainNet, Office-Home, can be addressed
by NICO++ with sufficient aligned and unique domains.
The superiority supports designing more realistic evaluation
metrics to evaluate generalizability comprehensively.

We consider three simple metrics to evaluate DG algo-
rithm, namely average accuracy, overall accuracy, and the
standard deviation of accuracy across domains. The metrics
are defined as follows.

Average =
1

K

K∑
k=1

acck,Overall =
1∑K

k=1 Nk

K∑
k=1

Nkacck,

Std =

√√√√ 1

K − 1

K∑
k=1

(acck −Average)2.

(5)
Here K is the number of domains in the test data, Nk is the
number of samples in the k-th domain, and acck is the pre-
diction accuracy in the k-th domain. The metric Average
is widely used in DG literature, where both training and
test domains for different categories are aligned. The metric
Overall is more reasonable when the domains can be vari-
ous for different categories or the test data are a mixture of
unknown domains, and thus the accuracy for each domain
is incalculable. The metric Std indicates the standard de-
viation of the performance across different domains. Since
learning models that are consistently reliable in any possi-
ble environment is the target of DG and many methods are
designed to learn invariant representations [22], Std is ra-
tional and instructive. Please note that Std is insignificant
in the leave-one-out evaluation method where models tested
on different target domains are trained on different combi-
nations of source domains, while domains of NICO++ are
rich enough to evaluate models on various target domains
with fixed source domains.

5.2. Benchmark for Standard DG

The common domains in NICO++ are rich and consis-
tent for all categories, which supports multiple test domains
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Table 1. Results of estimated covariate shift and concept shift of NICO++ and current DG datasets. ↑ donates that the higher the metric is,
the better and ↓ is the opposite. The best results of all datasets are highlighted in bold font.

I.I.D. PACS DomainNet VLCS Office-Home MNIST-M NICO++

Mcov ↑ 0 0.325(±0.053) 0.302(±0.039) 0.256(±0.041) 0.238(±0.049) 0.225(±0.034) 0.338(±0.031)

Mmin
cpt ↓ 0 0.434(±0.023) 0.247(±0.055) 0.303(±0.064) 0.353(±0.086) 0.243(±0.048) 0.152(±0.034)

Mmax
cpt ↓ 0 0.537(±0.054) 0.612(±0.057) 0.523(±0.044) 0.505(±0.084) 0.449(±0.030) 0.192(±0.040)

Table 2. Results of the DG setting on NICO++. Oracle donates the model trained with data sampled from the target distribution (yet none
of the test images is seen in the training). Ova. and Avg. indicate the overall accuracy of all the test data and the arithmetic mean of the
accuracy of 6 domains, respectively. They are different because the capacities of different domains are not equal. The reported results are
the average over three repetitions of each run. The best results are highlighted with bold font and the second best with underline.

Method Training: Di, G, O, Wa Training: A, R, O, Wa Training: A, R, Di, G

A R Di G O Wa Ova. Avg. Std

ERM 81.89 79.76 72.42 82.31 76.80 71.01 77.08 77.36 4.39
SWAD [11] 82.98 81.21 74.59 83.50 78.43 72.81 78.65 78.92 4.06
MMLD [48] 80.62 79.63 73.17 81.24 78.08 71.23 77.09 77.33 3.80

RSC [33] 81.26 79.99 71.91 81.67 76.51 70.78 76.73 77.02 4.35
AdaClust [70] 79.25 78.93 71.41 81.48 74.23 70.13 75.71 75.91 4.24
SagNet [52] 83.12 81.17 73.72 83.42 78.43 73.03 78.56 78.81 4.18

EoA [3] 82.88 81.86 75.83 83.29 78.63 72.80 78.88 79.22 3.87
MixStyle [96] 75.83 73.51 65.89 76.69 70.51 63.41 70.66 70.97 4.93
MLDG [41] 82.24 80.57 72.24 84.14 77.19 71.33 77.76 77.95 4.84
MMD [43] 81.73 79.26 72.33 82.57 77.24 70.90 77.11 77.34 4.41

CORAL [68] 82.89 80.69 73.77 82.90 78.26 73.21 78.38 78.62 3.95
StableNet [87] 82.82 80.30 74.05 83.52 76.91 72.34 78.06 78.32 4.23

FACT [79] 81.55 81.03 74.32 82.16 78.07 71.30 77.74 78.07 4.03
JiGen [9] 82.64 80.36 74.15 83.29 77.14 71.59 77.89 78.19 4.31

GroupDRO [60] 81.81 79.69 72.37 82.11 77.28 71.72 77.26 77.50 4.17
DDG [85] 82.53 79.68 72.42 83.03 77.91 71.86 77.70 77.90 4.42
DNA [12] 82.24 80.62 72.07 82.56 78.00 71.39 77.54 77.81 4.55
Fishr [57] 81.98 79.38 72.62 82.37 77.61 70.91 77.22 77.48 4.37
IRM [2] 81.66 79.82 72.58 82.46 76.83 70.92 77.11 77.38 4.38

Mixup [80, 84] 81.84 80.38 74.02 82.62 78.20 72.36 78.01 78.24 3.85

Oracle 91.18 89.98 89.29 90.27 88.55 86.23 88.99 89.25 1.58

evaluation for domain generalization, as discussed in Sec-
tion 1. In this section, we give the official split of domains
for the standard domain generalization. Currently, 6 out of
10 common domains are publicly available and we select
two of them as test domains while others as training do-
mains for each evaluation. We run 3 individual evaluations
and cover all 6 domains as test domains. Specifically, in the
first evaluation, we select domains [Autumn, Rock] as test
domains and others as training domains. We select domains
[Dim, Grass] and [Outdoor, Water] as test domains for the
second and third evaluations, respectively‡. The results of
current representative methods with ResNet-50 as the back-
bone are shown in Table 2. Models generally show better
generalization when tested on a single cluster of common
domains than the opposite, indicating that generalization to
diverse unseen domains is more challenging. Current SOTA
methods such as EoA, CORAL, and StableNet show their
effectiveness, yet a significant gap between them and ora-
cle shows that the room for improvement is spacious. More
splits and implementation details are in Appendix D.

‡The official splits (i.e., training and test data) of each domain are given
in https://github.com/xxgege/NICO-plus.

5.3. Benchmark for Flexible DG

Compared current DG setting where domains are aligned
across categories, a flexible combination of categories and
domains in both training and test data can be more real-
istic and challenging [64, 87]. In such cases, the level of
the distribution shifts varies in different classes, requiring a
strong ability of generalization to tell common knowledge
of categories from various domains. We present two set-
tings, namely random and compositional. We randomly
select two domains out of common domains as dominant
ones, 12 out of the remaining domains as minor ones and
the other 6 domains as test data for each category for the
random setting. There can be spurious correlations between
domains and labels since a domain can be with class A in
training data and class B in test data. For the compositional
setting, 4 domains are chosen as exclusive training domains
and others as sharing domains. Then 2 domains are ran-
domly selected from exclusive training domains as the ma-
jority, 12 from sharing domains as the minority, and the re-
maining 4 in sharing domains for the test. Thus there are
no spurious correlations between dominant domains and la-
bels. We select all images from the dominant domains and
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Table 3. Results of the flexible DG setting on NICO++.
Method ERM SWAD MMLD RSC AdaClust SagNet EoA MixStyle StableNet FACT JiGen Oracle

Rand. 74.19 75.62 73.25 75.20 73.39 72.79 76.22 73.47 77.37 75.34 75.44 84.60
Comp. 78.01 76.97 76.85 75.76 76.64 76.15 79.62 77.01 78.19 79.39 78.77 86.18
Avg. 76.10 76.30 75.05 75.48 75.02 74.47 77.92 75.24 77.78 77.37 77.11 85.39

Table 4. Standard deviation across epochs and seeds on different datasets.
PACS DomainNet VLCS OfficeHome NICO++

Method Epoch Seed Gap Epoch Seed Gap Epoch Seed Gap Epoch Seed Gap Epoch Seed Gap

ERM 0.96 0.82 2.66 0.61 0.57 0.46 0.83 0.58 3.59 0.77 0.59 0.81 0.22 0.10 0.39
SWAD 0.41 0.76 1.61 0.35 0.30 0.39 0.74 0.49 0.58 0.31 0.25 0.30 0.07 0.05 0.06
MMLD 1.68 2.02 3.25 1.03 0.50 0.85 2.33 1.12 3.97 1.25 0.47 0.56 0.25 0.10 0.15

RSC 0.76 0.81 0.93 0.55 0.35 0.56 1.02 0.61 0.80 0.85 0.37 0.89 0.18 0.05 0.10
AdaClust 1.06 1.74 1.54 0.98 0.41 0.72 1.32 1.79 1.34 1.36 1.30 0.28 0.22 0.04 0.13
SagNet 0.74 2.44 2.78 0.92 0.23 0.54 0.94 1.74 4.19 0.80 0.30 0.44 0.11 0.31 0.61

EoA 0.11 0.36 0.18 0.22 0.16 0.02 0.15 0.45 0.21 0.05 0.29 0.08 0.02 0.04 0.13
MixStyle 1.53 0.63 1.69 0.60 0.36 0.42 1.27 1.78 3.40 0.72 0.43 0.56 0.17 0.16 0.00
MLDG 0.82 1.02 1.24 0.53 0.25 0.55 1.15 1.01 4.14 1.03 0.09 0.23 0.10 0.08 0.12
MMD 1.13 2.39 0.66 0.82 0.24 0.50 1.98 1.32 3.72 0.61 0.02 1.34 0.11 0.11 0.16

CORAL 1.09 1.02 1.18 0.52 0.48 0.47 0.77 0.94 3.18 0.49 0.28 0.50 0.06 0.17 0.19
StableNet 0.90 1.25 1.03 0.34 0.71 0.82 0.86 0.69 0.88 0.44 0.21 0.48 0.09 0.05 0.09

FACT 0.31 0.46 0.52 0.14 0.16 0.37 0.64 0.85 1.17 0.21 0.27 0.68 0.06 0.19 1.09
JiGen 0.33 1.15 0.70 0.16 0.18 0.39 0.51 0.67 1.30 0.20 0.69 0.25 0.05 0.09 0.10

GroupDRO 1.27 0.96 2.09 0.96 0.37 0.54 1.18 0.85 4.93 0.63 0.47 0.55 0.16 0.10 0.16
IRM 3.77 3.02 4.14 2.17 0.89 0.00 6.00 1.74 5.77 2.10 1.59 0.00 0.90 0.54 0.00

50 images from each minor domain for training and 50 im-
ages from each test domain for testing. Results are shown
in Table 3. Current SOTA algorithms outperform ERM by a
noticeable margin, yet the gap to Oracle remains significant.
More splits and discussions are in Appendix D.

5.4. Test Variance and Model Selection

Model selection (including the choice of hyperparame-
ters, training checkpoints, and architecture variants) affects
DG evaluation considerably [3, 27]. The leak of knowledge
of test data in training or model selection phase is criticized
yet still usual in current algorithms [3, 27]. This issue is
exacerbated by the variance of test performance across ran-
dom seeds, training iterations and other hyperparameters in
that one can choose the best seed or the model from the
best epoch under the guidance of the released oracle valida-
tion set for a noticeable improvement. NICO++ presents a
feasible approach by reducing the test variance and thus de-
creasing the possible improvement by leveraging the leak.

As shown in Section 4, the gap between the performance
of a model on training and test data is bounded by the sum
of covariant shift and concept shift between source and tar-
get domains. Intuitively, test variance on NICO++ is lower
than other current DG datasets given that NICO++ guaran-
tees a significantly lower concept shift. Strong concept shift
between source domains introduces confusing mapping re-
lations between input X and output Y, harming the conver-
gence and enlarging the variance. Since most current deep
models are optimized by stochastic gradient descent (SGD),
the test accuracy is prone to jitter as the input sequence de-
termined by random seeds varies. Moreover, concept shift
also grows the mismatch between the performance on vali-
dation data and test data, further widening the gap between

target-guided and source-guided model selection.
Empirically, we compare the test variance and the im-

provement of leveraging oracle knowledge on NICO++

with other datasets across various seeds and training epochs
in Table 4. For the test variance across random seeds, we
train 3 models for each method with 3 random seeds and
calculate the test variance among them. For the test variance
across epochs, we calculate the test variance of the mod-
els saved on the last 10 epochs for each random seed and
show the mean value of 3 random seeds. NICO++ shows
a lower test variance compared with other datasets across
both various random seeds and training epochs, indicating
a more stable estimation of generalization ability robust to
the choice of algorithm-irrelevant hyperparameters. As a re-
sult, NICO++ alleviates the oracle leaking issue by signif-
icantly squeezing the possible improvement space, leading
to a fairer comparison for DG methods.

6. Conclusion
In this paper, we propose a context-extensive large-scale

benchmark named NICO++ along with more rational eval-
uation methods for comprehensively evaluating DG meth-
ods. Two metrics on covariate shift and concept shift are
proposed to evaluate DG datasets upon two novel general-
ization bounds. Extensive experiments showed the superi-
ority of NICO++ over current datasets and benchmarked
DG algorithms comprehensively.
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Thomas Natschläger, and Tom Heskes. Domain generaliza-
tion based on transfer component analysis. In International
Work-Conference on Artificial Neural Networks, pages 325–
334. Springer, 2015. 2

[27] Ishaan Gulrajani and David Lopez-Paz. In search of lost do-
main generalization. In International Conference on Learn-
ing Representations, 2021. 2, 8

16044



[28] Yue He, Zheyan Shen, and Peng Cui. Towards non-iid image
classification: A dataset and baselines. Pattern Recognition,
110:107383, 2021. 2

[29] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, et al. The many faces of robust-
ness: A critical analysis of out-of-distribution generalization.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 8340–8349, 2021. 2

[30] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. arXiv preprint arXiv:1903.12261, 2019. 1, 2

[31] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. Natural adversarial examples. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 15262–15271, 2021. 2

[32] Shoubo Hu, Kun Zhang, Zhitang Chen, and Laiwan Chan.
Domain generalization via multidomain discriminant analy-
sis. In Uncertainty in Artificial Intelligence, pages 292–302.
PMLR, 2020. 2

[33] Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang.
Self-challenging improves cross-domain generalization. In
European Conference on Computer Vision, pages 124–140.
Springer, 2020. 1, 2, 7

[34] Maximilian Ilse, Jakub M Tomczak, Christos Louizos, and
Max Welling. Diva: Domain invariant variational autoen-
coders. In Medical Imaging with Deep Learning, pages 322–
348. PMLR, 2020. 1, 5

[35] Xin Jin, Cuiling Lan, Wenjun Zeng, and Zhibo Chen. Style
normalization and restitution for domaingeneralization and
adaptation. arXiv preprint arXiv:2101.00588, 2021. 2

[36] Rawal Khirodkar, Donghyun Yoo, and Kris Kitani. Domain
randomization for scene-specific car detection and pose esti-
mation. In 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 1932–1940. IEEE, 2019. 2

[37] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 1

[38] Pang Wei Koh, Shiori Sagawa, Henrik Marklund,
Sang Michael Xie, Marvin Zhang, Akshay Balsubra-
mani, Weihua Hu, Michihiro Yasunaga, Richard Lanas
Phillips, Irena Gao, et al. Wilds: A benchmark of in-the-
wild distribution shifts. In International Conference on
Machine Learning, pages 5637–5664. PMLR, 2021. 2

[39] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson,
David Held, Soeren Kammel, J Zico Kolter, Dirk Langer,
Oliver Pink, Vaughan Pratt, et al. Towards fully autonomous
driving: Systems and algorithms. In 2011 IEEE intelligent
vehicles symposium (IV), pages 163–168. IEEE, 2011. 1

[40] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Deeper, broader and artier domain generaliza-
tion. In Proceedings of the IEEE international conference on
computer vision, pages 5542–5550, 2017. 1, 2, 6

[41] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Learning to generalize: Meta-learning for do-
main generalization. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018. 7

[42] Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe
Song, and Timothy M Hospedales. Episodic training for do-
main generalization. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1446–1455,
2019. 2

[43] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot.
Domain generalization with adversarial feature learning. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5400–5409, 2018. 7

[44] Yixiao Liao, Ruyi Huang, Jipu Li, Zhuyun Chen, and Wei-
hua Li. Deep semisupervised domain generalization network
for rotary machinery fault diagnosis under variable speed.
IEEE Transactions on Instrumentation and Measurement,
69(10):8064–8075, 2020. 2

[45] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 2

[46] Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo,
and Elisa Ricci. Best sources forward: domain generaliza-
tion through source-specific nets. In 2018 25th IEEE interna-
tional conference on image processing (ICIP), pages 1353–
1357. IEEE, 2018. 2

[47] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh.
Domain adaptation: Learning bounds and algorithms. arXiv
preprint arXiv:0902.3430, 2009. 4

[48] Toshihiko Matsuura and Tatsuya Harada. Domain general-
ization using a mixture of multiple latent domains. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 11749–11756, 2020. 7

[49] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang,
and Joel T Dudley. Deep learning for healthcare: review,
opportunities and challenges. Briefings in bioinformatics,
19(6):1236–1246, 2018. 1

[50] Krikamol Muandet, David Balduzzi, and Bernhard
Schölkopf. Domain generalization via invariant fea-
ture representation. In ICML, pages 10–18. PMLR, 2013.
2

[51] Hyeonseob Nam and Hyo-Eun Kim. Batch-instance normal-
ization for adaptively style-invariant neural networks. arXiv
preprint arXiv:1805.07925, 2018. 2

[52] Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun
Yoon, and Donggeun Yoo. Reducing domain gap by reduc-
ing style bias. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8690–
8699, 2021. 7

[53] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1406–1415,
2019. 1, 2

[54] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba,
and Pieter Abbeel. Sim-to-real transfer of robotic control
with dynamics randomization. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 3803–
3810. IEEE, 2018. 2

16045



[55] Aayush Prakash, Shaad Boochoon, Mark Brophy, David
Acuna, Eric Cameracci, Gavriel State, Omer Shapira, and
Stan Birchfield. Structured domain randomization: Bridging
the reality gap by context-aware synthetic data. In 2019 In-
ternational Conference on Robotics and Automation (ICRA),
pages 7249–7255. IEEE, 2019. 2
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