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Figure 1. Our NeuralDome pipeline for processing multi-view video sequences on human object interactions. NeuralDome supports
tracking, modeling, and rendering of individual human subjects and objects. To validate NeuralDome, we collect a large dataset HODome
over a total of 71 million video frames across 76 viewpoints and process the datasets using NeuralDome for a variety of inference and
neural modeling and rendering tasks.

Abstract

Humans constantly interact with objects in daily life
tasks. Capturing such processes and subsequently conduct-
ing visual inferences from a fixed viewpoint suffers from
occlusions, shape and texture ambiguities, motions, etc.
To mitigate the problem, it is essential to build a train-
ing dataset that captures free-viewpoint interactions. We
construct a dense multi-view dome to acquire a complex
human object interaction dataset, named HODome, that
consists of ∼71M frames on 10 subjects interacting with
23 objects. To process the HODome dataset, we develop
NeuralDome, a layer-wise neural processing pipeline tai-

* These authors contributed equally.
†Corresponding author.

lored for multi-view video inputs to conduct accurate track-
ing, geometry reconstruction and free-view rendering, for
both human subjects and objects. Extensive experiments
on the HODome dataset demonstrate the effectiveness of
NeuralDome on a variety of inference, modeling, and ren-
dering tasks. Both the dataset and the NeuralDome tools
will be disseminated to the community for further devel-
opment, which can be found at https://juzezhang.
github.io/NeuralDome

1. Introduction

A key task of computer vision is to understand how hu-
mans interact with the surrounding world, by faithfully cap-
turing and subsequently reproducing the process via mod-
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eling and rendering. Successful solutions benefit broad ap-
plications ranging from sports training to vocational educa-
tion, digital entertainment to tele-medicine.

Early solutions [11, 12, 51] that reconstruct dynamic
meshes with per-frame texture maps are time-consuming
and vulnerable to occlusions or lack of textures. Recent
advances in neural rendering [37, 62, 71] bring huge po-
tential for human-centric modeling. Most notably, the
variants of Neural Radiance Field (NeRF) [37] achieve
compelling novel view synthesis, which can enable real-
time rendering performance [38, 59, 67] even for dynamic
scenes [45, 63, 77], and can be extended to the generative
setting without per-scene training [23, 69, 80]. However,
less attention is paid to the rich and diverse interactions be-
tween humans and objects, mainly due to the severe lack
of dense-view human-object datasets. Actually, existing
datasets of human-object interactions are mostly based on
optical markers [61] or sparse RGB/RGBD sensors [6, 26],
without sufficient appearance supervision for neural render-
ing tasks. As a result, the literature on neural human-object
rendering [21,57] is surprisingly sparse, let alone further ex-
ploring the real-time or generative directions. Besides, ex-
isting neural techniques [52,77] suffer from tedious training
procedures due to the human-object occlusion, and hence
infeasible for building a large-scale dataset. In a nutshell,
despite the recent tremendous thriving of neural rendering,
the lack of both a rich dataset and an efficient reconstruction
scheme constitute barriers in human-object modeling.

In this paper, we present NeuralDome, a neural pipeline
that takes multi-view dome capture as inputs and conducts
accurate 3D modeling and photo-realistic rendering of com-
plex human-object interaction. As shown in Fig. 1, Neural-
Dome exploits layer-wise neural modeling to produce rich
and multi-modality outputs including the geometry of dy-
namic human, object shapes and tracked poses, as well as a
free-view rendering of the sequence.

Specifically, we first capture a novel human-object dome
(HODome) dataset that consists of 274 human-object inter-
acting sequences, covering 23 diverse 3D objects and 10
human subjects (5 males and 5 females) in various appar-
els. We record multi-view video sequences of natural inter-
actions between the human subjects and the objects where
each sequence is about 60s in length using a dome with 76
RGB cameras, resulting in 71 million video frames. We
also provide an accurate pre-scanned 3D template for each
object and utilize sparse optical markers to track individual
objects throughout the sequences.

To process the HODome dataset, we adopt an extended
Neural Radiance Field (NeRF) pipeline. The brute-force
adoption of off-the-shelf neural techniques such as Instant-
NSR [79] and Instant-NGP [38], although effective, do not
separate objects from human subjects and therefore lack
sufficient fidelity to model their interactions. We instead

introduce a layer-wise neural processing pipeline. Specif-
ically, we first perform a joint optimization based on the
dense inputs for accurately tracking human motions using
the parametric SMPL-X model [43] as well as localizing
objects using template meshes. We then propose an ef-
ficient layer-wise neural rendering scheme where the hu-
mans and objects are formulated as a pose-embedded dy-
namic NeRF and a static NeRF with tracked 6-DoF rigid
poses, respectively. Such a layer-wise representation ef-
fectively exploits temporal information and robustly tack-
les the occluded regions under interactions. We further in-
troduce an object-aware ray sampling strategy to mitigate
artifacts during layer-wise training, as well as template-
aware geometry regularizers to enforce contact-aware de-
formations. Through weak segmentation supervision, we
obtain the decoupled and occlusion-free appearances for
both the humans and the objects at a high fidelity amenable
for training the input multi-view inputs for a variety of tasks
from monocular motion capture to free-view rendering from
sparse multi-view inputs.

To summarize, our main contributions include:

• We introduce NeuralDome, a neural pipeline, to ac-
curately track humans and objects, conduct layer-wise
geometry reconstruction, and enable novel-view syn-
thesis, from multi-view HOI video inputs.

• We collect a comprehensive dataset that we call
HODome that will be disseminated to the community,
with both raw data and the output modalities including
separated geometry and rendering of individual objects
and human subjects, their tracking results, free-view
rendering results, etc.

• We demonstrate using the dataset to train networks for
a variety of visual inference tasks with complex human
object interactions.

2. Related Works
2.1. Neural Human Rendering

Various 3D data representations have been explored for
neural human rendering, such as point-clouds [4, 41, 72],
textured meshes [14, 28, 29, 54], and volumes [31, 32]. Im-
plicit occupancy function-based methods [17, 19, 48, 49]
can recover detailed 3D human geometry from sparse 2D
images without faithful appearance synthesis. The recent
NeRF [37] technique brings huge potential for 3D photo-
realistic view synthesis [9, 10, 30, 34, 36, 38, 39, 64, 69, 75]
and geometry modeling [7, 33, 68]. Further explorations
extend it to dynamic scenes [7, 35, 42, 46, 67, 77], es-
pecially for humans. Existing works equip NeRF with
pose-embeddings [23, 27, 40, 45, 80], learnable skinning
weights [25, 44, 70] and even generalization across indi-
viduals [23, 66, 80]. However, these works only focus on
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Datasets #Cam-view # Frame(M) Resolution Fps Marker Obj.
Num.

Human
Annot. Novel views Geometry Human

Textured
Neural

Representation
Object

Appearance
NTU [26] 3 ∼ 34 1920 × 1080 30 × NA ! NA × × × ×
PiGr [50] 1 0.1 960 × 540 5 × NA ! NA × × × !

GRAB [61] × NA NA NA ! 51 × × × × × ×
PROX [16] 1 0.1 1920 × 1080 30 ! NA ! × × × × !

BEHAVE [6] 4 0.15 2048 × 1536 30 × 20 × × × × × !
InterCap [18] 6 0.07 1920 × 1080 30 × 10 ! × × × × !

Our 76 71 3840× 2160 60 ! 23 ! ! ! ! ! !

Table 1. Dataset Comparisons. We compare our proposed HODome dataset with the existing publicly available human-object dataset.
HODome has the largest scale of human-object interactions in terms of the number of frames (#Frame), camera view (#Cam-view), and
modality. “Obj. Num.” represents the object number. “Human Annot.” represents annotation from professional annotators.

c) Mocap
e) Neural

arepresentation
d) Geometry f) Novel view g) Keypointsa) Color image b) Homask

Figure 2. HODome Modality. HODome features multiple modal-
ities of data format and annotations, including a) Color image, b)
Human-object mask (Homask), c) MoCap (SMPL-X parameters
and located object template), d) Geometry, e) digital assets in neu-
ral representations, f) Novel view and g) Keypoints (25 for bodies
and 42 for hands with human annotation).

a single person. The most relevant works [53, 77] aim
to model multi-person interactions, but they cannot han-
dle more complex interactions due to the lack of large-scale
human-object interactions dataset.

2.2. Human-object Modeling

Only a few works [6,16,18,61,73,78] consider to jointly
model whole-body interactions. Early solutions [11, 12, 51]
that reconstruct meshes with per-frame texture maps, which
are vulnerable to occlusions and lack of textures. Recently,
several works [6, 16, 18, 61] explore the relationship via
several interaction constraints, such as contact map [6, 18,
61], spatial arrangement [78] and physically plausible con-
straint [74]. However, these methods only produce a rel-
ative arrangement. The most relevant works [21, 56, 58]
aim to render human-object interactions with volumetric
fusion [56], neural texturing blending [58] and volumetric
rendering [21]. However, without sufficient appearance su-
pervision, their quality is limited. Comparably, our layer-
wise neural representations can be converted to high-quality
geometry and support separate free-view rendering for hu-
man or object.

2.3. Human-centric Dataset

A variety of human-centric datasets have been devel-
oped for human-only capturing or rendering tasks. Early
datasets combine multi-camera RGB video capture with
synchronized ground-truth 3D skeletons [20, 22, 55], para-
metric model [24, 65], scanned mesh [15, 76], without
human-object interaction. Recent datasets capture human-
object interactions using optical markers [61] or sparse
RGB sensors [6,26], without sufficient appearance supervi-
sion. As a result, the literature on neural human-object ren-
dering [21,57] is surprisingly rare. High-end works [11,13]
use dense cameras for reconstruction and rendering of hu-
mans and objects through mesh reconstruction and motion
tracking, but without texture and neural representations. To
fill this gap, we propose NeuralDome for capturing and ren-
dering human-object interactions, facilitating various gener-
ative human-object tasks.

3. HODome Dataset

We present the HODome dataset for capturing and ren-
dering photo-realistic human-object interactions. It consists
of 274 human-object interacting sequences, covering 23 di-
verse 3D objects and 10 subjects (5 males and 5 females)
under various apparels. For each sequence, we record the
naturally interacting scene for about 60s using 76 RGB
cameras for dense-view at 3840 × 2160 resolution and 60
frame-per-seconds (Fps), resulting in roughly 71 million
frames. HODome consists of rich labels covering different
aspects of HOI capturing and rendering labels (see Fig.2).
See Tab. 1 for comparison with other datasets.

3.1. Data Capturing System

To construct the HODome dataset, we use 76 Z-CAM
cinema cameras with sufficient appearance supervision for
neural rendering tasks and 16 Optitrack MoCap cameras [1]
for accurate human-object tracking tasks. The Z-CAM sys-
tem and Optitrack system are synchronized to record the
RGB and MoCap data together. We use a publicly avail-
able tool [2] to estimate the intrinsic camera parameters and
extrinsic camera parameters.
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Figure 3. Overview of NeuralDome. Given the 76-view RGB stream as input, we first jointly track human skeletal motion and object rigid
motion. Then with the tracked motion priors, we decouple the human-object interaction scenes via a layer-wise neural rendering scheme,
to generate human/object renderings separately and corresponding acceptable segmentation maps. Blending with the high-fidelity captured
views, we obtain the layer-wise neural representations in our HODome dataset.

3.2. Dataset Modality

Human MoCap and Object 6D Pose. For appearance re-
alism, we do not place markers on human actors. Thus we
detect the human joints from 76 RGB images by running the
whole-body Openpose [8] to perform markerless MoCap.
And we treat each object as rigid and solve the rigid ob-
ject pose estimation from markers using the Iterative Clos-
est Point(ICP) algorithm [5, 81]. See Fig. 3 for the pipeline
of our method.
Human-Object Neural Representations. Under the
dense-view setting, one can apply off-the-shell neural tech-
niques, i.e., Instant-NSR [79] and Instant-NGP [38] to effi-
ciently obtain per-frame geometry and novel-view synthesis
of the whole human-object sequence, respectively. How-
ever, neither schemes separate object from human subject.
We therefore propose a layer-wise neural scheme to sep-
arately recover neural representations of human and ob-
ject, enabling both high-fidelity geometry reconstruction
and free-view appearance rendering (Sec. 4.2).
Data Annotation. Our dataset includes 23 objects with
varying scales and interaction types. Each object was
pre-scanned using off-the-shelf multi-view software pack-
ages [2]. Further, following the previous methods [6, 61],
we annotated its pseudo contact label that computes from a
threshold distance. To provide more accurate results for the
quantitative benchmark, we annotate a separate quantitative
subset as our test set with human-annotated segmentation
and hand joints by the professional annotator. Our datasets
will be available for research purposes.

4. Neural Modeling on HODome

We introduce a neural pipeline to produce the rich digital
assets from the dense-view input of each human-object in-
teraction (HOI) sequence in HODome, including accurate
tracking, high-quality geometry reconstruction and novel-

view rendering. As illustrated in Fig. 3, given 76-view
videos, we first perform a joint optimization scheme to ac-
curately capture both the human skeletal motions and object
rigid motion (Sec. 4.1). Then, based on the tracked human-
object motions and shape priors, we decouple the humans
and objects in HOI scenarios via a layer-wise neural human-
object rendering scheme and a corresponding HOI-aware
optimization strategy (Sec. 4.2). Such digital assets of hu-
mans, objects and the entire HOI scenes can naturally en-
able further geometry and appearance analysis of HOI sce-
narios.

4.1. Human-object Tracking

Here we introduce our human-object tracking scheme
with the aid of object markers.
Tracking initialization. We initialize the human tracking
process by fitting the SMPL-X model to the keypoints of
each view. Note that we utilize the off-the-shell toolbox
Easymocap [3] to get the initial per-frame parameters, i.e.,
pose θt, shape βt, facial expression ψt, and translation γt
on each frame t. As for the object, following GRAB [61],
we regard each object as rigid and only estimate the rotation
Rt ∈ SO(3) and rigid translation Tt ∈ R3 with respect to
its pre-scanned template. Specifically, we conduct the rigid-
ICP technique [5, 81] to compute the rigid transformation
between the per-frame markers, which serves as the initial
object pose.
Joint optimization for human-object tracking. With hu-
man and object pose initialization, we further perform a
joint optimization scheme to ensure correct human-object
contact. We impose constraints to ensure plausible interac-
tions as the following form:

E(βt, θt, ψt, γt, Rt, Tt) = Esmpl + λcontactEcontact+

λhomaskEhomask + λmakerEmaker,
(1)
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Figure 4. Layer-wise Neural Human-Object Rendering De-
tails. We sample a ray uniformly in the bounding box of the per-
former and near the template for the object. We condition both the
human and object layer with appearance codes (lco, lch). The dy-
namic human layer contains an additional pose embedding (Ep)
conditioned deformation field. The sample colors and densities
are merged, sorted and accumulated into pixel colors.

where Esmpl is the multi-view data fitting term describing
the ℓ2 distance between estimated joints and detected joints,
following SMPLify-X [43] and PROX [16]. Besides, we
impose contact term Econtact, human-object silhouette loss
term Ehomask, and object marker align term Emaker to ensure
the plausibility of human-object interaction tracking. Due
to page limitation, we have to defer more details of these
terms in the Appendix.

4.2. Layer-wise Neural Human-Object Rendering

Here we introduce our layer-wise image generation
pipeline via neural rendering, without tedious manual ef-
forts for geometry separation.
Layered neural human-object modeling. For ease of in-
stances separation, we represent the human-object interac-
tion (HOI) scenes as a continuous layered neural radiance
field, following ST-NeRF [77], as shown in Fig. 4. To
leverage the shape prior imposed by the captured paramet-
ric SMPL-X model, we adopt a pose embedded dynamic
NeRF similar to HumanNeRF [80] as the human layer. We
use the skeletal pose to bridge the live frames to canonical
space and an additional deformation MLP to learn subtle
non-rigid deformation. Rather than using the pixel-aligned
image feature, we leverage latent codes for time-varying hu-
man appearance capture to get rid of input images. Opposite
to the human layer, we model objects as rigid static radiance
fields in canonical space. The live frames are transformed to
canonical space via object poses to maintain a globally con-
sistent density field. Similarly, we adopt appearance latent
codes for the time-varying shadow during interactions.

Dynamic human-object volume rendering. We utilize
the layered volume rendering technique described in ST-
NeRF [77] to render our neural human-object scenes. For
a camera ray intersecting with the ith entity at any times-
tamp, we compute the ray segment as the depth of intersec-
tion points djf and dif . We evenly partition each segment
into N bins and sample one point uniformly from each bin:

pij ∼U
[
din+

j−1

N
(dif−din), d

i
n+

j

N
(dif−din)

]
, j∈ [1, 2, ..., N ],

(2)
where U means uniform distribution. We impose the shape
prior encoded in the tracked object template, on the ray sam-
pling scheme for efficient training. We compute the ray-
object intersection and uniformly sample a few points in
the narrow segment where the first intersection point lies.
For human, we simply sample in the ray-bounding box in-
tersection segment. The samples from different segments
are then merged and sorted by depth into M samples in to-
tal. We then compute a pixel’s color by accumulating the
radiance at sampled points:

C =

M∑
i=1

T (pi)[(1− e−σpi
δpi )cpi

], (3)

where δpi
is the distance between adjacent points, cpi

and
σpi are color and density, and T (pi) =

∏i−1
j e−σpj

δpj .
HOI-aware training scheme. Here we introduce an effec-
tive optimization scheme to train our neural layer-wise HOI
model. We first leverage a photometric loss:

Lc =
∑
r∈R

∥Cr − Ĉr∥22, (4)

where r is a ray in the training ray set R, Cr and Ĉr are the
corresponding rendered and observed colors.

Note that in HOI scenarios, the human layer inevitably
intersects with other object layers. This fact introduces am-
biguities and cannot be addressed by a simple photometric
loss. Thus we design three additional regularizers based on
the tracked object template to alleviate this issue. To en-
force the object layers to be solid surface radiance fields
that do not contribute to human appearance, we adopt an
occupancy and a sparsity regularizer inside and outside the
object template, i.e.,

Lo =
∑
p∈O

(Ω−(p,M)∥e(−σp)∥22 +Ω+(p,M)∥σp∥22), (5)

where M is the template mesh, O is a set of points ran-
domly sampled in the object’s bounding box, Ω+ and Ω−
indicate whether a point locates outside or inside the mesh.

Recall that we have encoded human-object contact prior
by jointly tracking human-object at the skeletal-pose level
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Figure 5. The geometry, MoCap and neural modeling results from our dataset. HODome includes various interaction sequences, such
as “holding a vase”, “opening the cupboard”, “sitting on the sofa” and “moving the table”.

(Eq. 1). However, due to the misalignment of SMPL shape
and actual human geometry, the human body and clothes
may still overlap the object space, which goes against real-
world physics. Therefore, we implicitly constrain the defor-
mation net to predict contact-aware non-rigid deformation:

Lh =
∑
p∈H

Ω−(p,M)∥σp∥22, (6)

where H is the set of random samples in the human’s
bounding box.

We further explore a weakly-supervising scheme that uti-
lizes object texture cues to help decouple the human and ob-
ject entities. The key observation is that, with accurate ob-
ject tracking, the object radiance field fused across frames
can be rendered with higher confidence. That is, we train
the entire scene first and render the objects only to capture
views, and the pixels similar to the captured ones are la-
beled as object pixels. In this way, we obtain coarse object
segmentation maps S that serve as pseudo supervision: we
adopt label-wise integration [53] to render the layer labels s
of rays:

s =

M∑
i=1

T (pi)[(1− e−σpi
δpi )lpi ], (7)

where lpi
is one-hot label indicates which layer the point pi

belongs to. We apply a semantic loss for object rays So:

Ls =
∑
r∈So

∥sr − ŝr∥22, (8)

where ŝr is the pseudo semantic label of ray r. Note that ad-
ditional loss can be applied if accurate labels are provided.
Layer-wise neural representation in HODome. To fur-
ther use the data, we can render reliable segmentation maps
and occlusion-free appearances for humans and objects re-
spectively. However, the renderings tend to be blurred since

the information of all the frames is fused. Hence we in-
troduce an enhancement scheme to construct separate high-
quality per-frame neural representation for human/object:
we blend the visible regions of the high-fidelity observed
input views to rendered human/object images using the
segmentation maps. The Instant-NGP [38] and Instant-
NSR [79] techniques are then applied to reconstruct sep-
arate human/object in tens of seconds. Finally, we obtain
layer-wise representation which enables real-time photo-
realistic rendering and benefits the thorough analysis of
HOI scenarios.
Implementations. To build our neural representations, we
train our layered models using Adam optimizer with a learn-
ing rate that starts from 5e−4 and decays exponentially. Us-
ing the 76-view 4K resolution videos, the training process
takes 8-10 hours on a single NVIDIA 3090 GPU for ac-
ceptable appearance and segmentation rendering. Thanks
to Instant-NGP [38] and Instant-NSR [79], the layer-wise
neural modeling process is conducted in seconds per frame.

5. Experiments

In this section, we compare our neural pipeline with ex-
isting state-of-the-arts. We first demonstrate the effective-
ness and the generalization ability of our neural modeling
approach (5.1). Next, we implement NeuralDome on three
specific tasks (5.2).

5.1. Analysis of Neural Rendering

Comparisons. Here we compare our layer-wise neural
human-object rendering approach, denoted as ’Ours-layer’,
with recent state-of-the-art methods, i.e., ST-NeRF [77],
NeuralBody(NB) [45], in human-object interaction sce-
nario. For fair comparisons, we select 20 cameras surround-
ing the performer for training and others for evaluation. We
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Ground Truth NeuralBody ST-NeRF Ours-layer Ours-HODome

Figure 6. Qualitative comparisons of novel view synthesis re-
sults. We show ground truth and synthesized images of novel
view for NeuralBody [45], and ST-NeRF [77] and our layered
human-object representation. Our approach achieves the best per-
formance. We further illustrate our high-fidelity neural represen-
tations in HODome in the last column.

Methods NB [45] ST-NeRF [77] Ours

Scenes PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
Bigsofa 19.33 0.896 24.02 0.886 32.28 0.958
Sofa 26.73 0.965 28.49 0.958 35.62 0.987
Table 21.94 0.933 22.44 0.900 27.88 0.949
Average 22.67 0.931 24.99 0.915 31.93 0.964

Table 2. Quantitative comparisons of novel view synthesized
appearance on different human-object interaction sequences.

remove the background layer and train ST-NeRF without
the semantic label as ours. Fig. 6 shows several appearance
synthesis results. NeuralBody has no ability to model ob-
jects which leads to artifacts in the density field. ST-NeRF
fails as the bounding boxes of the performer and object al-
most completely overlap. Our method achieves both hu-
man and object modeling and rendering and thus further en-
ables generating high-fidelity neural representation denoted
as ’Ours-HODome’. Tab. 2 further illustrates our method
significantly outperforms the baselines.
Evaluation. Here we further evaluate how our scheme
contributes to the generated layer-wise neural representa-
tions. Fig. 7 shows the single human layer where the per-
former is ”sitting” in the air. Note that we have no ground
truth of the specific human/object layer, thus we conduct
qualitative evaluations only. Let w/o pseudo segmentation
and w/o blending denote our human assets generated with-
out pseudo semantic loss and blending-based enhancement
scheme. It demonstrates that the pseudo semantic loss ef-
fectively helps decouple the human and object layer and our
blending scheme further boosts the appearance fidelity of
the blurred temporal-fused model to a photo-realistic level.

Reference w/o pseudo 
segmentation

w/o blending Ours

Figure 7. Qualitative evaluation of each strategy’s contribu-
tion to layer-wise neural representation generation. The weakly-
supervising scheme effectively helps decouple human and object
and our blending scheme generates high-quality digital assets.

Method
Separated evaluation Joint evaluation

MPJPE↓ PA-MPJPE↓ Chamferh ↓ Chamfero ↓ V2V↓ p.V2V↓
Fit to input 16.11 6.94 86.66 18.14 61.57 28.92

PHOSA [78] 14.88 6.94 77.62 16.64 54.59 26.09
CHORE [73] 10.21 6.14 86.58 7.69 44.93 14.93

Table 3. Human object capture benchmark. ”Fit to input” rep-
resents the vanilla method that fits the object template to image
and capture human with Frankmocap [47].

5.2. Task and benchmark

Human-object Capture Benchmark. HODome provides
multi-view sequences with synchronized ground truth of
capturing. To demonstrate the capability, we provide a
benchmark for human-object capture, shown in Tab. 3.
For detailed metric explanation please refer to [6, 73, 74].
PHOSA [78] used the contact map from hand-crafted anno-
tations, suffering from coarse contact information. While
CHORE [73] outperforms it with the distance fields pre-
dicted from neural networks. It shows the importance of
a prepared human-object dataset that supports data-driven
human-object capture model. Check out the full captur-
ing benchmark of the dataset at https://arxiv.org/
abs/2212.07626.
Human-object Geometry Reconstruction Benchmark.
Benefiting from the dense-view setting, various human-
only geometry reconstruction methods can step towards
a human-object geometry reconstruction setting. We can
benchmark the state-of-the-art algorithms in sparse view ge-
ometry reconstruction tasks. Hence, we evaluate PIFu [48]
by training on a subset of HODome. As shown in Fig. 8, we
compare the quality result between original PIFu and PIFu-
trained on HODome and in-the-wild images. Compared to
the original PIFu, our training set can improve the quality of
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Figure 8. Qualitative evaluation on human-object reconstruction.
We compare the original PIFu [48] with trained PIFu on both im-
ages from our dataset and in-the-wild images. The original PIFu
fails to predict the object depth, and PIFu trained on our dataset
can approximately predict the shape of the object.

Method P2S ×10−4 ↓ Chamfer ×10−4 ↓
Origin PIFu [48] 38.726 40.947
Monocular PIFu-trained 14.653 14.483
6-View PIFu-trained 3.376 4.901

Table 4. Geometry reconstruction benchmark. Origin PIFu [48]
uses the pre-trained model to infer. Monocular PIFu is trained on
a single view. 6-View PIFu is trained on 6-view inputs.

Method PSNR↑ SSIM↑
IBRnet [69] 21.43 0.892
Neuray [30] 23.34 0.909
NeuralHumanFVV [60] 21.69 0.914
NeuralHOIFVV 23.10 0.912

Table 5. Neural rendering benchmark in sparse-view setting.

the reconstructed shape of the objects. For further quanti-
tative analysis, we evaluate the performance using P2S and
CD in Tab. 4.
Sparse-View Human-object Rendering Benchmark. Our
HODome supports various neural rendering tasks, even for
human-object interactions. We provide a benchmark on
sparse-view rendering tasks and evaluate on IBRNet [69],
NeuRay [30] and NeuralHumanFVV [60]. Besides, we also
provide a baseline, named NeuralHOIFVV, which uses the
projection of trained PIFu’s [48] results as depth input, then
applies the Neural Blending method presented in [79] to
obtain novel-view synthesis. More details about Neural-
HOIFVV are referred to the Appendix. We analyze the
above methods on HODome and in-the-wild images. The
qualitative and quantitative results are shown in Fig. 9 and
Tab. 5. Our proposed NeuralHOIFVV can obtain generative
novel-view synthesis on HODome and in-the-wild inputs.

5.3. Limitations

Although NeuralDome can provide accurate capturing
results and layer-wise neural representations, we also want

GT IBRNet NeuRay Neural
HumanFVV

Neural
HOIFVV

Input

NA

Figure 9. Qualitative evaluation on neural human-object render-
ing. We show the comparison of IBRNet [69], NeuRay [30], Neu-
ralHumanFVV [60] and our proposed NeuralHOIFVV. We render
one novel view between two input camera views.

to highlight some potential limitations of this pipeline.
First, NeuralDome only considers single-person interaction
with objects and the single-person task is already quite chal-
lenging for current research. It is non-trivial to extend the
current algorithm to multi-person settings, especially in a
crowd scene. Secondly, the reconstruction of 3D holistic
scene is not covered in our pipeline. We leave the joint
modeling of humans, objects and scene in the future work.
Moreover, our dataset was collected under fixed illumina-
tion conditions with few backgrounds variance, limiting its
generalization ability for other environments.

6. Conclusion

We have presented HODome, the first dataset to jointly
capture and render human-object interaction using dense
RGB cameras and the Optitrack system. To process the
HODome dataset, we have further developed NeuralDome,
a neural pipeline that can accurately track humans and ob-
jects, conduct layer-wise geometry reconstruction, and en-
able novel-view synthesis for both the subjects and objects.
We believe the dataset could boost the development of cap-
turing and rendering human-object interactions and is very
valuable to the community for a wide range of human-
object capturing and rendering tasks.
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