This CVPR paper is the Open Access version, provided by the Computer Vision Foundation. Except for this watermark, it is identical to the accepted version; the final published version of the proceedings is available on IEEE Xplore.

Object Detection with Self-Supervised Scene Adaptation

Zekun Zhang¹

Minh Hoai^{1,2}

¹Stony Brook University, Stony Brook, NY 11794, USA ²VinAI Research, Hanoi, Vietnam {zekzhang,minhhoai}@cs.stonyrbook.edu

Abstract

This paper proposes a novel method to improve the performance of a trained object detector on scenes with fixed camera perspectives based on self-supervised adaptation. Given a specific scene, the trained detector is adapted using pseudo-ground truth labels generated by the detector itself and an object tracker in a cross-teaching manner. When the camera perspective is fixed, our method can utilize the background equivariance by proposing artifact-free object mixup as a means of data augmentation, and utilize accurate background extraction as an additional input modality. We also introduce a large-scale and diverse dataset for the development and evaluation of scene-adaptive object detection. Experiments on this dataset show that our method can improve the average precision of the original detector, outperforming the previous state-of-the-art selfsupervised domain adaptive object detection methods by a large margin. Our dataset and code are published at https://github.com/cvlab-stonybrook/scenes100.

1. Introduction

The need to detect objects in video streams from stationary cameras arises in many computer vision applications, including video surveillance and autonomous retail. In general, different applications require the detection of different object categories, and each computer-vision-based product will have its own detector. However, for a specific product, there is typically a *single* detector that will be used for *many* cameras/scenes. For example, a typical video surveillance product would use the same detector to detect pedestrians and vehicles for network cameras installed at different locations. Unfortunately, a single detector might not work well for all scenes, leading to trivial and unforgiving mistakes.

This fundamental problem of many computer vision products stems from the limited generalization power of a single model, due to limited training data, limited model capacity, or both. One can attempt to address this problem by using more training data, but it will incur additional cost for data collection and annotation. Furthermore, in many cases, due to the low latency requirement or the limited computing resources for inference, a product is forced to use a very lightweight network, and this network will have limited representation capacity to generalize across many scenes.

In this paper, instead of having a single scene-generic detector, we propose using scene-specific detectors. This yields higher detection performance as each detector is customized for a specific scene, and allows us to use a lightweight model without sacrificing accuracy as each detector is only responsible for one scene.

Obtaining scene-specific detectors, however, is very challenging. A trivial approach is to train a detector for each scene separately, but this requires an enormous amount of annotated training data. Instead, we propose a selfsupervised method to adapt a pre-trained detector to each scene. Our method records the unlabeled video frames in the past, uses the trained detector to detect objects in those frames, and generates augmented training data based on those detections. Although the detections made by the pre-trained model can be noisy, they can still be useful for generating pseudo annotated data. We further extend those pseudo bounding boxes by applying object tracking [2, 57] along the video timeline, aiming to propagate the detections to adjacent frames to recover some of the false negatives not returned by the detector. We also use multiple detectors to obtain the pseudo labels and train the detector in a crossteaching manner, taking the advantage of the ensemble of models [13, 24].

Exploiting the stationary nature of the camera, we propose two additional techniques to boost the detection performance: location-aware mixup and background-augmented input. The former is to generate more samples during training through object mixup [76] that contains less artifacts, based on the aforementioned pseudo boxes generated from detection and tracking. The latter involves estimating the background image and fusing it with the detector's input.

In short, the main contribution of our paper is a novel framework that utilizes self-supervision, location-aware object mixup, and background modeling to improve the detection performance of a pre-trained object detector on scenes with stationary cameras. We also contribute a large scale and diverse dataset for the development of scene adaptive object detection, which contains sufficient quantity and quality annotations for evaluation.

2. Related Work

Despite much recent improvement in object detection research [3,5,6,8,12,18,19,21,25,28,31,36,40,43,45,47–50, 53–56,64,65,67–69,77,79], trained detectors still encounter problems with domain shift or domain gap. Scene adaptive object detection can be viewed as a special case of domain adaption, in which an object detector trained on a fullysupervised source domain is adapted to a target domain. Most research in this direction focuses on semi-supervised, weakly-supervised, or self-supervised adaptation. In addition, source-free adaptation [26, 33, 35, 71] has been proposed to address the situation where the source domain data is unavailable during adaptation.

Self-labeling methods [11,27,29,33,37,44,46,57,60,73] uses the teacher-student setup from semi-supervised image classification [30, 62]. A teacher detector trained on the source domain generates pseudo bounding boxes on the target domain images, and a student model is trained with those boxes to improve its performance on the target domain. Techniques such as weak/strong augmentation [37,44,60], knowledge distillation [11], and weight averaging [33, 37] have been used to deal with noisy pseudo labels from the teacher detector due to the domain gap. Our proposed pseudo-labeling method uses two teacher models trained on the source domain to train a student model, and their pseudo boxes are aggregated and refined. We further apply tracking as in [57], but with both forward and backward directions, to extend the pseudo labels. The pseudo boxes also form the basis for later location-aware mixup and dynamic background extraction steps.

Domain alignment methods [7, 11, 22, 33, 34, 58, 72, 78] aim to reduce the domain gap by enforcing the models to output similarly on the source and target domain at image, proposal, or instance levels. They use domain adversarial learning through gradient reversal [15, 16] or graph matching [34] for domain alignment. This approach involves adding domain alignment losses to existing object detection models and is complementary to our proposed method.

Another seemingly related research area is continual or incremental learning. Scene adaptive and domain adaptive object detection are in between task-continual learning [38] and data-continual learning [52], for that the object categories of the source and target domains are the same, but the data distribution differs. It is possible to formulate scene adaptive object detection as an online learning problem, but this approach would require additional annotations.

Figure 1. Inference flow of the proposed detector that can adapt to a specific scene. The background image and fusion faster-RCNN model are learned during training, discussed in Sec. 3.

3. Methods

For an object detector pre-trained on a source dataset referred as the base model, we aim to improve its performance on video stream from a stationary camera in a given scene, with unlabeled videos captured by the same camera in the past as adaptation training samples. The categories of object of interest in the scene are also present in the source dataset, but the data distribution is shifted. The base model is adapted to each scene independently.

Assuming the distribution shift is moderate, the base detector can generate partially decent bounding boxes on the unlabeled frames. We use them as pseudo-labels to improve the base model itself. Many objects are ignored by the base detector, as their appearance can be very different from the source dataset. However, videos contain temporal correlation information, making it possible to apply object tracking in both time directions to recover some of those false negatives. The pseudo-labels are then refined to remove lowconfidence boxes and duplicates. We refer to this process of obtaining pseudo bounding boxes as pseudo-labeling.

As data augmentation is beneficial for training on less reliable labels [51], we take advantages of object mixup to generate new sample images. Since the background is stationary, those images contain fewer artifacts, which is beneficial for detectors. We further adopt the idea of ensemble models [13, 24] by using two base detectors to obtain the pseudo labels, for they can be complementary to each other. The pseudo boxes are used to train one base model, which we refer as cross-teaching.

Since the job of a detector is to separate foreground objects from the background, having information about the background is advantageous. In a stationary camera video with moving objects, different parts of the background are covered by objects in different frames, making it possible to model the complete background. We use the aforementioned pseudo bounding boxes to mark the uncovered parts of the background in each frame. Combining the partial

Figure 2. Training flow of the proposed self-supervised scene adaptation object detection framework with sample images. The mixup training images with pseudo bounding boxes and background image are used in the fusion training. The details are discussed in Sec. 3.

background from a sequence of frames can give an accurate and complete background model. We then modify the Faster-RCNN [56] architecture to fuse the background with the input image to improve detection performance.

The overall structure and data flows of the proposed methods are shown in Fig. 1 and Fig. 2. Our proposed methods are highly flexible and can be configured to trade-off between performance and speed. Object tracking can be bypassed to reduce the time to get the pseudo-bounding boxes. Mixup and object mask fusion can also be disabled for faster training and inference. In Sec. 5.5 we will show ablation study results on how those components affect the performance of the adapted models. We now describe each components in more details. For consistency, the images are all from the first video in our collected dataset, which will be described in Sec. 4.

3.1. Base Detection Models on Source Domain

We use Faster-RCNN [56] in our experiments for its high precision and flexible modular architecture. Among the techniques proposed for self-supervised scene adaptation, both pseudo-labeling and mixup can be directly applied to any object detection model. The object mask fusion technique requires modification to the network architecture, but it can be easily extended to most types of detectors by adding a parallel branch to the existing network.

The object labels in MSCOCO training set are remapped to *person* and *vehicle* as described in Sec. 4.2. All objects other than *person*, *car*, *bus*, and *truck* are discarded. We take Faster-RCNNs pre-trained on the original MSCOCO training set, and finetune them on the remapped training set. We choose two models with ResNet-50 and ResNet-101 backbones as base models, referred as **M1** and **M2**.

3.2. Pseudo Labels from Detection and Tracking

We take the frames from the first training portion of each video, and adopt the idea of detection and tracking similar to [57], then apply our proposed bounding box refinement and cross-teaching schemes. Base detectors described in

Sec. 3.1 are applied on the frames, and any bounding box with confidence score higher than λ_{det} is kept as a valid pseudo box.

Single-object trackers are initialized with detected objects having confidence scores higher than λ_{sot} . We use DiMP-50 [2] to track the objects in both forward and backward directions in the video timeline, and the tracked object bounding boxes are used as pseudo boxes. The reason for tracking in both directions is that if an object is moving towards the camera and appears bigger by time, backward tracking is more accurate because the initial bounding box contains more detailed texture. To prevent drifting, the maximum length of each track is capped at two seconds.

Bounding box refinement is applied to eliminate duplicated boxes of the same object from combining pseudo bounding boxes from detector and tracker. Each candidate box in the same frame is regarded as a graph node. If two boxes have the same object label, and their IoU is above a threshold λ_{iou} , then an edge is added to connect them. We assume that each connected component of the graph represents one single object, and the nodes in the component are duplicated. We only keep the node with the highest degree (*i.e.*, the node with the highest number of connected edges). An example of refinement results is shown in Fig. 2b. Refinement can effectively remove duplicated bounding boxes. However, it can neither remove false positives nor recover false negatives.

Both M1 and M2 are used in detection and tracking. The pseudo bounding boxes from both base models are then refined jointly, and the refined boxes are used to train M2 in adaptation. We refer this setting as cross-teaching.

3.3. Location-Aware Object Mixup

Mixup [76] is originally proposed as a simple but powerful data augmentation method in for image classification. It is quickly improved by many modifications [1,23,32,66, 75]. Mixup is also used in object detection tasks [4,75], where it can be applied at image or instance levels. During adaptation training, a frame with its pseudo bounding

Figure 3. An example of location-aware object mixup. Compared to random mixup, less artifacts are introduced.

boxes has the probability p_{mixup} of being paired with another randomly select source frame for mixup. A portion r_{mixup} of the pseudo bounding boxes in the source frame are cropped out and pasted onto the original frame, along with their locations and labels. If a pasted box covers more than α_{cover} of a pseudo box in the original frame, the pseudo box will be excluded from the pseudo labels. An example of this location-aware object mixup is shown in Fig. 2c and Fig. 3. Since the background is stationary, we propose to use location-aware mixup instead of the original random mixup to reduce the amount of artifacts in the generated mixup images and to keep the location distribution of the objects in the scene. This will be shown to be beneficial in the experiments.

3.4. Dynamic Background Extraction

For a video frame \mathcal{I} of dimension $W \times H$ associated with a set of K pseudo-annotated object bounding boxes $\{(x_k^1, y_k^1, x_k^2, y_k^2) | k = 1 \dots K\}$, a background mask \mathcal{M} of the same dimension as \mathcal{I} can be constructed as follows. For each location (x, y) in \mathcal{M} , we set M[x, y] = 0if (x, y) is inside of any pseudo-annotated bounding box and 1 otherwise. Then for a sequence of frame-mask pairs $\{(\mathcal{I}_l, \mathcal{M}_l) | l = 1 \dots L\}$, the background image is determined as

$$\mathcal{B} = \frac{\sum_{l=1}^{L} \mathcal{I}_l \otimes \mathcal{M}_l}{\sum_{l=1}^{L} \mathcal{M}_l},\tag{1}$$

where \otimes is the pixel-wise multiplication operator.

There might exist a location (x', y') that lies inside an object bounding box in every image, *i.e.*, $\mathcal{M}_l[x', y'] = 0$. In this case, the background at this location is never observed and its pixel value cannot be determined. In this case, we "guess" the background value by inpainting inside such areas using the inpainting algorithm of [63].

Fig. 2d shows an example background, which is reasonably accurate. Although in each video, the camera perspective is fixed, the background can change overtime due to some factors such as illumination change. To incorporate this, the background extraction is operated every T_{bg} seconds, giving a dynamic background modeling.

We construct an object mask as an additional input modality for the detector, to utilize the extracted background to improve detection performance during adaptation. For a frame \mathcal{I} and its corresponding background model image \mathcal{B} , we define its object mask image as

$$\mathcal{M}^O = (\mathcal{I} - \mathcal{B} + 1) \times 0.5, \tag{2}$$

where we assume the pixel values in both \mathcal{I} and \mathcal{B} have been normalized to the range [0, 1]. An object mask example is shown in Fig. 1c, in which objects are clearly separated from the background. Note that since \mathcal{I} , \mathcal{B} , and \mathcal{M}^O are linearly dependent, no information is lost.

Before the adaptation training process, the base detector needs to be modified to use object mask input modality and trained on the MSCOCO training set with background images. However, dynamic background extraction on MSCOCO is impossible since it only consists of static images. Therefore, we rely on the object mask annotations in the dataset and apply the same inpainting algorithm [63] to generate the background image for each training image.

3.5. Object Mask Fusion

The architecture of Faster-RCNN [56] is depicted in Fig. 4a. First, a CNN backbone with a feature pyramid network (FPN) [39] is utilized to extract the Feature Pyramid (FP). The first layer in the CNN that takes the input image is also shown here. Then, an RPN [39] is employed to produce object bounding box proposals. Lastly, an ROI head [19,20] is used to assign object labels and refine the bounding boxes on the pooled feature maps of the proposals. The entire network is trained utilizing two sets of losses: localization loss and objectness loss from RPN, and localization loss and classification loss from the ROI head. The fusion models explained below start with the base model that is trained on the remapped MSCOCO training set.

Early-fusion. The input to the Faster-RCNN network is the stacked image $[\mathcal{I}; \mathcal{M}^O]$, with the two modalities stacked along the color channels, as shown in Fig. 4b. To enable the network to take a 6-channel image as input instead of the vanilla 3-channel image, the first layer of the backbone CNN is duplicated and stacked. The convolution kernel weights are first copied, then halved. This ensures that the feature map after the first layer conv1|conv2 is the same as in the vanilla model when $[\mathcal{I}; \mathcal{I}]$ is fed into it, providing a smooth start for adaptation training. This modification introduces only a small number of additional model parameters, and the increase in computational cost is negligible.

Mid-fusion. Both \mathcal{I} and \mathcal{M}^O are fed into the FPN in parallel, which yields two feature pyramid FP1 and FP2, as shown in Fig. 4c. Two sets of RPNs and ROI heads are used in parallel, and their initial weights are copied from the base model. FP1 is used in the left branch with RPN1 and ROI1, which is the same as the vanilla model. In the right branch with RPN2 and ROI2, the input feature pyramid is the fusion of FP1 and FP2:

$$FP_{fusion} = FP1 \oplus FP2. \tag{3}$$

Figure 4. Illustration of different fusion models for Faster-RCNN. Network modules are indicated by green, and feature maps and

outputs are indicated by yellow.

The fused feature pyramid has the same dimension as both FP1 and FP2. The fusion operator can be either nonparametric such as average pooling, or parametric such as convolution layers. The whole network is trained with losses from both branches

$$\mathcal{L}^{mid} = (1 - \alpha_{mid})(\mathcal{L}_{rpn}^{\mathcal{I}} + \mathcal{L}_{roi}^{\mathcal{I}}) + \alpha_{mid}(\mathcal{L}_{rpn}^{fusion} + \mathcal{L}_{roi}^{fusion}),$$
(4)

where α_{mid} is the weights of different losses.

Late-fusion is similar to mid-fusion as shown in Fig. 4d. The key difference is that only the ROI head is branched. The region proposals are only generated from FP1, and the fused feature pyramid is only used in ROI head in the right branch. As a result, the total loss is

$$\mathcal{L}^{late} = \mathcal{L}_{rpn}^{\mathcal{I}} + (1 - \alpha_{late})\mathcal{L}_{roi}^{\mathcal{I}} + \alpha_{late}\mathcal{L}_{roi}^{fusion}.$$
 (5)

Both mid-fusion and late-fusion introduce significant additional parameters and computation. \mathcal{I} and \mathcal{M}^O need to pass the backbone, requiring more computation even at inference time. The quantitative comparison of inference speed of different fusion models can be found in the supplementary material.

To train the fusion models in adaptation, we first finetune the base models on MSCOCO training set with the inpainted background models described in Sec. 3.4 until convergence. During evaluation, we use the last background image to obtain the object masks, as it is the closest to the evaluation images on the timeline.

4. Scenes100 Dataset

For our proposed scene-adaptive object detection problem, there is no existing dataset with long enough videos of stationary backgrounds for the development and evaluation of self-supervised adaptation techniques. We therefore collected a new dataset called **Scenes100**, which will be described in this section.

Figure 5. Some annotated frames from the evaluation portions. The green mask shows the part of the frame that is excluded for annotation and evaluation. Objects are labeled by bounding boxes. Please see the supplementary material for detailed descriptions.

4.1. Data Collection

We used keywords such as "live view", "street camera", and "live webcam" to search for live streams on YouTube. We look for streams that are of decent quality and have fixed camera perspective. Around 200 candidate videos were recorded between September 2020 and February 2022. We picked 100 videos to compile our Scenes100 dataset, ensuring that each video is longer than two hours and has minimum width and height of 720 pixels. We also aimed for a dataset with high diversities. The 100 videos of Scenes100 were recorded in a variety of 16 countries and territories, and during different time periods of day and year. The dataset contain videos from both indoor and outdoor scenes, with different camera perspectives. The density and scale of visual objects also vary significantly from one video to another. Some sample frames is presented in Fig. 5 to show the diversity of our dataset.

4.2. Manual Annotation

We are interested in detecting objects from two categories: *person* and *vehicle*. The *person* category includes any visible and recognizable people in the frames; this corresponds to the *person* category in MSCOCO [41] dataset. The *vehicle* category includes all vehicles with four or more wheels, so motorbikes, bicycles, tricycles are not included. This category corresponds to the *car*, *bus*, and *truck* categories in MSCOCO.

For each video, we used the first 1.5 hours for selfsupervised and weakly-supervised training, and the remaining part for evaluation. Since many videos were taken with wide-angle lenses, some frames included faraway objects that were too small to be considered in evaluation. To address this, we manually drew polygon masks to exclude

dataset	contain videos	average length	frames	countries	bounding boxes	boxes per video
MSCOCO [41]	No	-	-	-	897K	-
KITTI [17]	No	-	-	1	80K	-
BDD100K [74]	Yes	40s	120M	1	1.8M	18
CityScapes [9]	Yes	1.8s	150K	2	65K	13
Scenes100	Yes	2h	21.6M	16	84K	840

Table 1. Comparison of Scenes100 with other object detection datasets ($K = 10^3$, $M = 10^6$).

these faraway parts from annotation and evaluation. We then estimated the number of visual objects in the unmasked parts by first using a pre-trained detector, and then refining the estimate through human annotation. Frames for annotation were uniformly sampled from the second portion of each video, with the number of frames being inversely proportional to the estimated number of objects in the frames. This ensured that each video had roughly the same number of annotated objects. We contracted a data annotation company to perform bounding box annotation on those sampled frames. Some annotated frame samples for evaluation is shown in Fig. 5.

4.3. Dataset Statistics

In Tab. 1, we compare Scenes100 with some popular object detection datasets. MSCOCO [41] is a fully-supervised general-purpose object detection dataset, which acts as the supervised source domain. KITTI [17] only contains object detection annotation associated to individual images. In BDD100K [74], object detection annotation is given for one key frame in each video. For CityScapes [9], we consider the finely labeled instance-level segmentation masks, which are given for the 20th image from a 30 frame video snippets lasting 1.8s.

The scale of Scenes100 is comparable to that of KITTI and CityScapes. However, Scenes100 has three unique features. First, the videos in Scenes100 are much longer than those in any other datasets with scenes, providing sufficient data for a model to adapt to each of them. Second, Scenes100 has greater diversity. Unlike some other datasets that are recorded in only a few cities with similar camera angles, background environments, and object types, Scenes100 covers several different countries, with varying weather conditions, road conditions, view of field, camera perspectives, and vehicle types. Third, each video in Scenes100 has a fixed camera perspective and stationary background scene, making background modeling possible.

Note that many currently available datasets are not primarily intended for self-supervised adaptive object detection tasks. They may possess other features, such as segmentation masks, multi-modal sensor data, depth maps, or annotations for object tracking. However, despite the absence of these attributes, Scenes100 holds value as the first extensive and varied dataset that features fixed camera perspectives and lengthy videos. As such, it can complement existing dataset collections and serve as a valuable resource for researchers exploring scene adaptive object detection.

5. Experiments

5.1. Evaluation Protocols

We evaluate the performance of object detectors following the COCO evaluation protocol [41] to calculate the average precision at $IoU = 50\% (AP^{50})$ and mean average precision of different IoU thresholds from 0.5 to 0.95 (AP^m) , with some modifications as follows.

Non-evaluation region: before feeding the ground-truth and detected bounding boxes to the COCO evaluator, the bounding boxes that have at least one corner inside the nonevaluation mask will be removed. So the faraway parts in the frames where objects are deemed too small and blurry will not affect the evaluation results. Please see Sec. 4.2 and Fig. 5 for more details.

Category weighting: in the standard COCO evaluation protocol, the overall multi-class AP is the simple average of the APs of the different categories. If a class is sparse in the training set and validation set, the model tends to perform poorly due to the scarcity of the training samples. In this case the average AP does not truly reflect the performance of a detector. Hence we propose an additional multi-class AP metric with weighted average where the weight is determined by the prevalence of ground truth object instances in the evaluation set. This weighted AP can better portray the performance of a detector in the case of long-tailed distribution. We refer the standard classes-mean COCO APas AP_{co} , and the proposed weighted AP as AP_w . We refer the AP averaged over IoU thresholds and IoU = 50% as AP^m and AP^{50} .

Per-video evaluation: we aim to evaluate the performance of a scene adaption method, instead of a specific detection model. For each of the video, a model is adapted to it from the same base model trained on the source dataset. The performance of the base model and adapted model on each video is calculated individually as $\{(AP_{v,base}, AP_{v,adapt})|v = 1...100\}$. Then we evaluate the overall effectiveness of the adaptation method using the averaged AP gain as:

$$APG = \frac{1}{100} \sum_{v=1}^{100} (AP_{v,adapt} - AP_{v,base}).$$
 (6)

5.2. Implementation Details

Our implementation is based on Detectron2 [70]. The DiMP tracker is directly taken from the official PyTracking [10] implementation without any change. More details and hyper-parameters can be found in the supplementary material. During training, we include the same number of images from MSCOCO training set as the number of unlabeled frames from the videos. The hyper-parameters are the same for all videos. We check the training loss for all experiments, including the baseline methods, to ensure convergence. We also train "compound" models where all videos are used together for adaptation. The results and further details can be found in the supplementary material.

5.3. Domain Adaptation Baselines

We compare our methods with several domain adaptive object detection baselines. In their original papers, the methods are evaluated on other domain adaptive object detection datasets. However, those datasets do not contains videos with fixed camera perspectives, so the proposed location-aware mixup and dynamic background extraction cannot be applied. We instead apply the methods in other papers on Scenes100. For a fair comparison, all methods start with the same base model and weights, and then are adapted to and evaluated on each scene individually. We keep the values of the hyper-parameters that are specific to a baseline method used in the original papers. We use the same learning rate, batch size, and number of iterations as our experiments in those baseline methods. More details can be found in the supplementary material.

Self-Train (ST) [57] is a method that uses detection and tracking to obtain pseudo bounding boxes, similar to ours. But ST applies tracking only in one direction. It assigns different weights to the pseudo bounding boxes during training, but no refinement nor cross-teaching.

STAC [60] uses the base model to get pseudo bounding boxes, and trains the model on a strongly augmented version of the target domain image with those boxes.

Adaptive Teacher (AT) [37] also uses self-training, but the pseudo bounding boxes are detected on the fly. It utilizes exponential moving average to update the model gradually. It also uses weak/strong data augmentation, and a domain classifier to align the features of the two domains.

 $H^{2}FA$ R-CNN [72] applies feature alignment of source and target domains at various levels of Faster-RCNN. It assumes that image-level weak annotation is available for the target domain. So we use the labels from our pseudo-labeling process as image-level class labels.

TIA [78] is a method that instantiates feature alignment by using both domain classifier and auxiliary classification and localization heads. The model is trained in a mini-max manner using gradient reverse layers [15].

LODS [33] uses style enhancement as data augmentation. The pseudo bounding boxes are generated from the original images, and the features from both version of the same image are aligned. It also utilizes exponential moving average for the weights. It does not use any supervised training data from the source domain.

Model	# params	MSCOCO		Scenes100			
		$\overline{AP^m_{co}}$	AP^{50}_{co}	$\overline{AP^m_{co}}$	AP^{50}_{co}	AP_w^m	AP_w^{50}
M1 (R-50)	41.4M	50.05	76.48	40.52	62.12	41.28	64.65
M2 (R-101)	60.5M	51.29	77.46	41.11	63.10	41.96	65.74

Table 2. Performance of base models on MSCOCO validation set with remapped categories and Scenes100 before any adaptation. For Scenes100, APs are evaluated on each video individually and then averaged. R- stands for ResNet. # indicates the number of parameters (M=10⁶). See Sec. 5.1 for AP notation details.

5.4. Results

The performance of the base models is shown in Tab. 2, along with their number of trainable parameters. M2 is a bigger model with more parameters and representation capacity, so it outperforms M1 by a noticeable margin in all the metrics before adaptation. All the AP gains shown in other tables are based on the performance of base model M2. Note that the AP numbers on Scenes100 is already relatively high at only about 10 points below the performance on MSCOCO, so we do not observe very high (> 5 points) AP gains in the results shown later.

We compare the performance of different adaptation methods in terms of average AP gain in Tab. 3. Here we show our best combination of methods, which incorporates pseudo-labeling, location-aware mixup, and object mask mid-fusion. Among the baseline methods for domain adaptive object detection, only ST and LODS improves the performance significantly. AT only yields marginal improvement in classes-weighted AP. STAC, H²FA, and TIA actually degrade the performance on Scenes100. LODS performs surprisingly well considering it does not use source domain images. However, we found that any training schedule longer than 1000 iterations would lead to severe performance degradation. The proposed method yields much higher, consistent, and stable improvement.

In general, self-training-based methods (ST, AT, STAC, and the proposed method) perform better than domain alignment-based methods (H²FA and TIA). Domain alignment is usually achieved through adversarial learning, which is known to have unstable objectives and is more difficult to optimize [14, 42, 59, 61]. Therefore, these methods are more sensitive to hyperparameters and training schedules, making it challenging to determine the optimal settings for all datasets. Applying domain alignment methods directly to our scene adaptive dataset without careful tuning can cause problems as our dataset has less in-domain variance than domain adaptation datasets. Furthermore, since the scenes in our dataset are very different, they might require different settings. This implies that Scenes100 has its uniqueness compared to more generally purposed domain adaptive object detection datasets. Our proposed method is more robust to this setting and does not rely heavily on

Method	APG_{co}^m	APG_{co}^{50}	APG_w^m	APG_w^{50}
ST [57]	+0.80	+0.24	+1.39	+1.03
STAC [60]	-1.26	-5.12	-1.97	-6.64
AT [37]	-0.75	-1.11	+0.06	+0.04
H ² FA [72]	-3.10	-4.97	-3.77	-6.01
TIA [78]	-0.32	-0.37	-0.32	-0.33
LODS [33]	+0.45	+1.28	+1.02	+2.28
Proposed	+3.76	+4.45	+3.78	+4.65

Table 3. Averaged AP gain of different adaptation methods. See Sec. 5.1 for AP notation details.

Mixup	Fusion	APG^m_{co}	APG_{co}^{50}	APG_w^m	APG_w^{50}
×	X	+0.95	+0.54	+1.67	+1.55
Location-aware	X	+1.72	+1.67	+2.25	+2.53
Random	X	+1.22	+1.13	+1.76	+2.03
×	early	+1.85	+2.12	+2.22	+2.73
×	mid	+3.40	+3.81	+3.67	+3.98
×	late	+3.34	+3.60	+3.38	+3.72
Location-aware	early	+2.25	+2.82	+2.59	+3.46
Location-aware	mid	+3.76	+4.45	+3.78	+4.65
Location-aware	late	+3.66	+4.10	+3.73	+4.31

Table 4. Ablation study for the proposed components of our sceneadaptive object detection method. X means not being applied. Pseudo-labeling is always applied. This table shows the averaged *AP* gain; see Sec. 5.1 for *AP* notation details.

Mixup	Fusion	APG^m_{co}	APG_{co}^{50}	APG_w^m	APG_w^{50}
×	AVG	+3.40	+3.81	+3.67	+3.98
×	CNN	+3.25	+3.52	+3.26	+3.79
×	ATTN	+3.22	+3.73	+3.23	+3.95
Location-aware	AVG	+3.76	+4.45	+3.78	+4.65
Location-aware	CNN	+3.60	+4.20	+3.71	+4.50
Location-aware	ATTN	+3.30	+3.89	+3.45	+4.26

Table 5. Ablation study on different feature pyramid fusion methods in term of averaged AP gain. AVG, CNN, and ATTN indicate mid-fusion based on average pooling, CNN, or attention module, respectively. X means not being applied. Pseudo-labeling is always applied. See Sec. 5.1 for AP notation details.

hyperparameter tuning, as we use the same set of hyperparameters across all 100 videos. Additional analysis and success/failure cases can be found in the supplementary material.

5.5. Ablation Study

We explore the effect of the different components in our methods by experimenting various combinations of them. For all experiments, we keep the pseudo-labeling unchanged, as it is the basis of other components. We compare different types of object mask fusion (Fusion): early, mid, and late. We also compare the proposed Location-aware object mixup with Random mixup. Tab. 4 shows the results. The experiments on hyper-parameters can be found in the supplementary material.

The proposed pseudo-labeling, mixup, and object mask fusion all benefit the adaptation performance. Applying only the pseudo-labeling already leads to AP gain higher than ST, which is more complicated involving pseudo box weighting. Location-aware mixup is also more advantageous than Random mixup, validating the assumption in Sec. 3.3 that having fewer artifacts is better for adaptation. Among three fusion options, mid-fusion yields the best result. That is perhaps because in a mid-fusion model, the RPN utilizes the fused feature pyramid, which can contain critical information of object boundaries. The combination of mixup and object mask fusion can further improve the performance.

We also compare different feature pyramid fusion methods described in Eq. (3). In our main experiments, we simply average the feature pyramids from the original image and the object mask. Now at each level of the pyramid, we use a separate CNN or an attention module to fuse the feature maps. The comparison is shown in Tab. 5. The parametric method performs slightly worse than averagepooling, probably because the newly introduced modules have randomly initialized weights and thus require additional supervised training data.

6. Summary

We have presented a self-supervised framework for scene-adaptive object detection. Base detectors and generic trackers are used to generate pseudo object labels as the adaptive training targets in a cross-teaching manner. To fully utilize the background equivariance when camera perspective is fixed, we propose artifacts-free location-aware object mixup to augment the input images, and dynamic background extraction for additional input modality to the detector. We also introduce the first large-scale scene adaptive object detection dataset, Scenes100, with several unique features compared to other domain adaptive object detection datasets. Our method outperforms domain adaptive object detection baselines by a large margin on Scenes100. We also conduct extensive experiments to illustrate the effectiveness of the components in our framework. We hope this work has demonstrated the importance of scene adaptation, and it will spur further research interest in this impactful but understudied area.

Acknowledgements. This research was partially supported by NSF grants IIS-1763981 & NSDF DUE-2055406.

References

- David Berthelot, Nicholas Carlini, Ian Goodfellow, Avital Oliver, Nicolas Papernot, and Colin Raffel. Mixmatch: A holistic approach to semi-supervised learning. In *Conference* on Neural Information Processing Systems (NeurIPS), 2019.
 3
- [2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning discriminative model prediction for tracking. In *International Conference on Computer Vision* (*ICCV*), 2019. 1, 3
- [3] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and accuracy of object detection. In *ArXiv*, 2020. 2
- [4] Shahine Bouabid and Vincent Delaitre. Mixup regularization for region proposal based object detectors. In ArXiv, 2020. 3
- [5] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2018. 2
- [6] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-toend object detection with transformers. In *European Conference on Computer Vision (ECCV)*, 2020. 2
- [7] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Domain adaptive faster r-cnn for object detection in the wild. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2018. 2
- [8] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen. Twins: Revisiting the design of spatial attention in vision transformers. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2021. 2
- [9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2016. 6
- [10] Martin Danelljan, Goutam Bhat, Christoph Mayer, and Matthieu Paul. Pytracking. https://github.com/ visionml/pytracking, 2019. 6
- [11] Jinhong Deng, Wen Li, Yuhua Chen, and Lixin Duan. Unbiased mean teacher for cross-domain object detection. In Computer Vision and Pattern Recognition Conference (CVPR), 2021. 2
- [12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations (ICLR)*, 2021. 2
- [13] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. *Journal of Computer and System Sciences*, 55(1):119–139, 1997. 1, 2

- [14] Angus Galloway, Anna Golubeva, Thomas Tanay, Medhat Moussa, and Graham W. Taylor. Batch normalization is a cause of adversarial vulnerability. In *ArXiv*, 2020. 7
- [15] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In *International Conference* on Machine Learning (ICML), 2015. 2, 7
- [16] Yaroslav Ganin, E. Ustinova, Hana Ajakan, Pascal Germain, H. Larochelle, Franccois Laviolette, Mario Marchand, and Victor S. Lempitsky. Domain-adversarial training of neural networks. In *Journal of Machine Learning Research*, 2016. 2
- [17] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2012. 6
- [18] Ross Girshick. Fast r-cnn. In International Conference on Computer Vision (ICCV), 2015. 2
- [19] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2014. 2, 4
- [20] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *International Conference on Computer Vision (ICCV)*, 2017. 4
- [21] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 37, 2015. 2
- [22] Zhenwei He and Lei Zhang. Multi-adversarial faster-rcnn for unrestricted object detection. In *International Conference on Computer Vision (ICCV)*, 2019. 2
- [23] Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshminarayanan. AugMix: A simple data processing method to improve robustness and uncertainty. In *International Conference on Learning Repre*sentations (ICLR), 2020. 3
- [24] Tin Kam Ho. Random decision forests. In International Conference on Document Analysis and Recognition (ICDAR), volume 1, 1995. 1, 2
- [25] Minh Hoai and Andrew Zisserman. Talking heads: Detecting humans and recognizing their interactions. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2014. 2
- [26] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu. Model adaptation: Historical contrastive learning for unsupervised domain adaptation without source data. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2021. 2
- [27] Naoto Inoue, Ryosuke Furuta, Toshihiko Yamasaki, and Kiyoharu Aizawa. Cross-domain weakly-supervised object detection through progressive domain adaptation. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2018. 2
- [28] Glenn Jocher. Yolov5. https://github.com/ ultralytics/yolov5, 2020. 2
- [29] Seunghyeon Kim, Jaehoon Choi, Taekyung Kim, and Changick Kim. Self-training and adversarial background regularization for unsupervised domain adaptive one-stage object detection. In *International Conference on Computer Vision* (*ICCV*), 2019. 2

- [30] Samuli Laine and Timo Aila. Temporal ensembling for semisupervised learning. In *International Conference on Learning Representations (ICLR)*, 2017. 2
- [31] Chuyi Li, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang Li, Zaidan Ke, Qingyuan Li, Meng Cheng, Weiqiang Nie, Yiduo Li, Bo Zhang, Yufei Liang, Linyuan Zhou, Xiaoming Xu, Xiangxiang Chu, Xiaoming Wei, and Xiaolin Wei. Yolov6: A single-stage object detection framework for industrial applications. In *ArXiv*, 2022. 2
- [32] Junnan Li, Richard Socher, and Steven C.H. Hoi. Dividemix: Learning with noisy labels as semi-supervised learning. In *International Conference on Learning Representations (ICLR)*, 2020. 3
- [33] Shuaifeng Li, Mao Ye, Xiatian Zhu, Lihua Zhou, and Lin Xiong. Source-free object detection by learning to overlook domain style. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2022. 2, 7, 8
- [34] Wuyang Li, Xinyu Liu, and Yixuan Yuan. Sigma: Semantic-complete graph matching for domain adaptive object. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2022. 2
- [35] Xianfeng Li, Weijie Chen, Di Xie, Shicai Yang, Peng Yuan, Shiliang Pu, and Yueting Zhuang. A free lunch for unsupervised domain adaptive object detection without source data. In AAAI Conference on Artificial Intelligence (AAAI), 2021.
 2
- [36] Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, and Christoph Feichtenhofer. Mvitv2: Improved multiscale vision transformers for classification and detection. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2022. 2
- [37] Yu-Jhe Li, Xiaoliang Dai, Chih-Yao Ma, Yen-Cheng Liu, Kan Chen, Bichen Wu, Zijian He, Kris Kitani, and Peter Vajda. Cross-domain adaptive teacher for object detection. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2022. 2, 7, 8
- [38] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(12):2935–2947, dec 2018. 2
- [39] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object detection. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2017. 4
- [40] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In *International Conference on Computer Vision (ICCV)*, 2017.
 2
- [41] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context. In *ArXiv*, 2014. 5, 6
- [42] Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, and Sabine Süsstrunk. On the loss landscape of adversarial training: Identifying challenges and how to overcome them. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2020. 7
- [43] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.

Berg. Ssd: Single shot multibox detector. In European Conference on Computer Vision (ECCV), 2016. 2

- [44] Yen-Cheng Liu, Chih-Yao Ma, Zijian He, Chia-Wen Kuo, Kan Chen, Peizhao Zhang, Bichen Wu, Zsolt Kira, and Peter Vajda. Unbiased teacher for semi-supervised object detection. In *International Conference on Learning Representations (ICLR)*, 2021. 2
- [45] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *International Conference on Computer Vision (ICCV)*, 2021. 2
- [46] Muhammad Akhtar Munir, Muhammad Haris Khan, M. Saquib Sarfraz, and Mohsen Ali. Ssal: Synergizing between self-training and adversarial learning for domain adaptive object detection. In Conference on Neural Information Processing Systems (NeurIPS), 2021. 2
- [47] Supreeth Narasimhaswamy, Trung Nguyen, and Minh Hoai. Detecting hands and recognizing physical contact in the wild. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2020. 2
- [48] Supreeth Narasimhaswamy, Thanh Nguyen, Mingzhen Huang, and Minh Hoai. Whose hands are these? hand detection and hand-body association in the wild. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2022. 2
- [49] Supreeth Narasimhaswamy, Zhengwei Wei, Yang Wang, Justin Zhang, and Minh Hoai. Contextual attention for hand detection in the wild. In *International Conference on Computer Vision (ICCV)*, 2019. 2
- [50] Thanh Nguyen, Chau Pham, Khoi Nguyen, and Minh Hoai. Few-shot object counting and detection. In *European Conference on Computer Vision (ECCV)*, 2022. 2
- [51] Kento Nishi, Yi Ding, Alex Rich, and Tobias Höllerer. Augmentation strategies for learning with noisy labels. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2021. 2
- [52] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual lifelong learning with neural networks: A review. *Neural Networks*, 113:54–71, 2019. 2
- [53] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. In *ArXiv*, 2015. 2
- [54] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. In ArXiv, 2016. 2
- [55] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. In *ArXiv*, 2018. 2
- [56] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2015. 2, 3, 4
- [57] Aruni RoyChowdhury, Prithvijit Chakrabarty, Ashish Singh, SouYoung Jin, Huaizu Jiang, Liangliang Cao, and Erik Learned-Miller. Automatic adaptation of object detectors to new domains using self-training. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2019. 1, 2, 3, 7, 8

- [58] Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate Saenko. Strong-weak distribution alignment for adaptive object detection. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2019. 2
- [59] Chawin Sitawarin, Supriyo Chakraborty, and David A. Wagner. Improving adversarial robustness through progressive hardening. In *ArXiv*, 2020. 7
- [60] Kihyuk Sohn, Zizhao Zhang, Chun-Liang Li, Han Zhang, Chen-Yu Lee, and Tomas Pfister. A simple semi-supervised learning framework for object detection. In *arXiv*, 2020. 2, 7, 8
- [61] Arvind P. Sridhar, Chawin Sitawarin, and David Wagner. Mitigating adversarial training instability with batch normalization. In *International Conference on Learning Representations Workshop (ICLRW)*, 2021. 7
- [62] Antti Tarvainen and Harri Valpola. Weight-averaged consistency targets improve semi-supervised deep learning results. In *Conference on Neural Information Processing Systems (NeurIPS)*, 03 2017. 2
- [63] Alexandru Cristian Telea. An image inpainting technique based on the fast marching method. *Journal of Graphics Tools*, 9:23 – 34, 2004. 4
- [64] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: Fully convolutional one-stage object detection. In *International Conference on Computer Vision (ICCV)*, 2019. 2
- [65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2017. 2
- [66] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In *International Conference on Machine Learning (ICML)*, 2019. 3
- [67] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In *ArXiv*, 2022. 2
- [68] Chien-Yao Wang, I-Hau Yeh, and Hongpeng Liao. You only learn one representation: Unified network for multiple tasks. In *ArXiv*, 2021. 2
- [69] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In *International Conference* on Computer Vision (ICCV), 2021. 2
- [70] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. https://github. com/facebookresearch/detectron2, 2019. 6
- [71] Lin Xiong, Mao Ye, Dan Zhang, Yan Gan, Xue Li, and Yingying Zhu. Source data-free domain adaptation of object detector through domain-specific perturbation. *International Journal of Intelligent Systems*, 36:3746 – 3766, 2021. 2
- [72] Yunqiu Xu, Yifan Sun, Zongxin Yang, Jiaxu Miao, and Yi Yang. H²FA R-CNN: Holistic and hierarchical feature alignment for cross-domain weakly supervised object detection. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2022. 2, 7, 8

- [73] Jihan Yang, Shaoshuai Shi, Zhe Wang, Hongsheng Li, and Xiaojuan Qi. St3d: Self-training for unsupervised domain adaptation on 3d object detection. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2021. 2
- [74] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2020. 6
- [75] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In *International Conference on Computer Vision* (*ICCV*), 2019. 3
- [76] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. In ArXiv, 2017. 1, 3
- [77] Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei Zhang, and Jianfeng Gao. Multi-scale vision longformer: A new vision transformer for high-resolution image encoding. In *International Conference on Computer Vision* (*ICCV*), 2021. 2
- [78] Liang Zhao and Limin Wang. Task-specific inconsistency alignment for domain adaptive object detection. In *Computer Vision and Pattern Recognition Conference (CVPR)*, 2022. 2, 7,8
- [79] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable DETR: deformable transformers for end-to-end object detection. In *ArXiv*, 2020. 2