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Figure 1. Given only a single semantic map as input (the first row), our approach is able to generate neural fields for view
synthesis of natural scenes. Photorealistic images can be rendered via neural fields (the last two rows).

Abstract

We introduce a novel approach that takes a single seman-
tic mask as input to synthesize multi-view consistent color
images of natural scenes, trained with a collection of single
images from the Internet. Prior works on 3D-aware image
synthesis either require multi-view supervision or learning
category-level prior for specific classes of objects, which
are inapplicable to natural scenes. Our key idea to solve
this challenge is to use a semantic field as the intermedi-
ate representation, which is easier to reconstruct from an
input semantic mask and then translated to a radiance field
with the assistance of off-the-shelf semantic image synthe-
sis models. Experiments show that our method outperforms
baseline methods and produces photorealistic and multi-
view consistent videos of a variety of natural scenes. The
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project website is https://zju3dv.github.io/paintingnature/.

1. Introduction
Natural scenes are indispensable content in many appli-

cations such as film production and video games. This work
focuses on a specific setting of synthesizing novel views
of natural scenes given a single semantic mask, which en-
ables us to generate 3D contents by editing 2D semantic
masks. With the development of deep generative models,
2D semantic image synthesis methods [24, 46, 61, 66] have
achieved impressive advances. However, they do not con-
sider the underlying 3D structure and cannot generate multi-
view consistent free-viewpoint videos.

To address this problem, a straightforward approach
is first utilizing semantics-driven image generator like
SPADE [46] to synthesize an image from the input semantic
mask and then predicting novel views based on the gener-
ated image. Although the existing single-view view syn-
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thesis methods [31, 34, 45, 52, 67, 70] achieve impressive
rendering results, they typically require training networks
on posed multi-view images. Compared to urban or indoor
scenes, learning to synthesize natural scenes is a challeng-
ing task as it is difficult to collect 3D data or posed videos of
natural scenes for training, as demonstrated in [32], making
the aforementioned methods not applicable. AdaMPI [17]
designs a training strategy to learn the view synthesis net-
work on single-view image collections. It warps images to
random novel views and warps them back to the original
view. An inpainting network is trained to fill the holes in
disocclusion regions to match the original images. After
training, the inpainting network is used to generate pseudo
multi-view images for training a view synthesis network.
Our experimental results in Section 4.5 show that the in-
painting network struggles to output high-quality image
contents in missing regions under large viewpoint changes,
thus limiting the rendering quality.

In this paper, we propose a novel framework for
semantics-guided view synthesis of natural scenes by learn-
ing prior from single-view image collections. Based on the
observation that semantic masks have much lower complex-
ity than images, we divide this task into two simpler sub-
problems: we first generate semantic masks at novel views
and then translate them to RGB images through SPADE.
For view synthesis of semantic masks, the input semantic
mask is first translated to a color image by SPADE, and a
depth map is predicted from the color image by a depth es-
timator [50]. Then, the input semantic mask is warped to
novel views using the predicted depth map and refined by
an inpainting network trained by a self-supervised learning
strategy on single-view image collections. Our experiments
show that, in contrast to images, the novel view synthesis of
semantic masks is much easier to learn by the network.

It is observed that semantic masks generated by the in-
painting network tend to be view-inconsistent. As a result,
SPADE could generate quite different contents in these re-
gions even when the inconsistency is minor between the se-
mantic masks. Fig. 4 presents two examples. To solve this
issue, we learn a neural semantic field to fuse and denoise
these semantic masks for better multi-view consistency. Fi-
nally, we translate the multi-view semantic masks to color
images by SPADE and reconstruct a neural scene represen-
tation for view-consistent rendering.

Extensive experiments are conducted on the LHQ
dataset [58], a widely-used benchmark dataset for semantic
image synthesis. The results demonstrate that our approach
significantly outperforms baseline methods both qualita-
tively and quantitatively. We also show that by editing the
input semantic mask, our approach is capable of generating
various high-quality rendering results of natural scenes, as
shown in Fig. 1.

2. Related Work

Semantics-guided view synthesis. This task takes a sin-
gle 2D semantic mask as input and outputs free-viewpoint
videos of the 3D scene. Only a few works attempt to tackle
this challenging task. GVS [16] and SVS [22] can generate
MPI representations [76] from a single semantic mask and
render free-viewpoint videos. However, they need to train
their model on datasets of posed videos [4, 10, 76]. The
problem with this training strategy is that obtaining a large
number of videos with calibrated camera poses in real life
could be expensive and limit the diversity of training data.
Qiao et al. [49] mainly focus on novel-view scene layout
generation and their model is also trained on posed images,
while we concentrate on rendering consistent RGB images
with single image collections for training.

Single-image view synthesis. Recently, many works
have focused on single-view view synthesis with monoc-
ular RGB image as the input to generate free-viewpoint
videos [21, 29, 34, 43, 51, 52, 56, 63, 67]. Among exist-
ing works, some use explicit 3D representations, such as
layered depth image (LDI) [19, 55] and multi-plane image
(MPI) [76], which can capture visible contents and infer
disocclusion regions. Another line of research predicts neu-
ral radiance fields [36] from a single image. For example,
PixelNeRF [70] extracts image features using 2D CNN and
constructs an aligned feature field to render novel views.
Li et al. [31] combine MPI and NeRF representations and
learn a continuous 3D field. These works learn 3D repre-
sentations to perform novel-view synthesis, and the learn-
ing is mainly based on multi-view images or posed videos
for supervision. However, similar to the dataset constraint
in semantic view synthesis, large-scale multi-view datasets
are rare, thus bringing challenges for high-quality view syn-
thesis for natural scenes.

Some methods have utilized single-view image collec-
tions to train a neural network that performs novel view
synthesis given a single-view image. For example, [29]
and [56] use a monocular depth estimation network to con-
struct LDI representation and leverage the inpainting net-
work to synthesize disocclusion content to perform view
synthesis. AdaMPI [17] proposes a warp-back training
strategy to train MPI on the COCO [5] datasets. Li
et al. [32] propose a cycle-rendering strategy to train their
networks on single image collections. Still, no prior works
have attempted to train models solely using single-view
image collections while performing novel view synthesis
from a single semantic mask. A solution to leverage exist-
ing single-view image collections [58] to learn semantics-
guided semantic view synthesis is extending the above ap-
proaches [17,56] through a two-stage scheme: first convert-
ing the semantic mask to an RGB image and then applying
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the view synthesis model. However, this solution does not
fully utilize semantic information, thus leading to limited
performance.

Neural radiance fields. Neural radiance fields [36] and
its subsequent works significantly advance the realm of
novel view synthesis [1, 2, 40, 68, 73] and 3D reconstruc-
tion [11,44,74]. While the above works focus on rendering
realistic novel view images or reconstructing accurate 3D
geometry, Semantic-NeRF [75] and later works [13, 30, 62]
use NeRFs as a powerful 3D fusion tool to fuse 2D seman-
tic information. Some works currently aim to exploit 2D
pretrained models to learn a priori knowledge for the neu-
ral field. Examples include creating 3D objects driven by
text [25,48,64], animating NeRFs by audio signals [15,35],
and stylizing scenes [23, 39, 72]. In contrast to previous ap-
proaches, this paper exploits 2D pretrained models to gen-
erate neural fields based on a single semantic mask. An-
other line of work [9, 59, 60] extends 3D-aware generative
modeling [7, 41, 42, 53, 54] to edit 3D appearance and ge-
ometry via a semantic mask, but they mainly conduct their
experiments on object-centric datasets (e.g., FFHQ [28])
with known camera distribution and fail to generate com-
plex scenes on the nature scene datasets. A closely related
work GANcraft [18] and its extended work [26] use image-
to-image translation techniques [24,46,61,66] to synthesize
pseudo ground truths and discriminators to make generative
free-viewpoint videos more realistic from 3D semantic la-
bels. But they need 3D semantic labels to render consistent
2D semantic masks and are inapplicable when only a single
semantic mask is available as input.

Image-to-image translations Image-to-image transla-
tions [24, 46, 61, 66] have made tremendous development
and can synthesize realistic natural images. Pix2Pix [24]
firstly leverages conditional GAN [37] to improve the per-
formance of semantic image synthesis. The performance of
image synthesis is significantly enhanced by SPADE [46],
which proposes a spatial-varying normalization layer. OA-
SIS [61] proposes a novel discriminator for semantic image
synthesis [27]. However, these works focus on single-image
synthesis, which are not able to generate multi-view images
of 3D scenes.

3. Methods
Our goal is to perform photorealistic view synthesis of

natural scenes, given a single semantic mask, by learning
prior from single-view image collections. To this end, we
divide this task into two simpler sub-problems. Section 3.1
first introduces how to generate multi-view consistent se-
mantic masks from the given semantic mask. Then, Sec-
tion 3.2 discusses how to translate the multi-view seman-

tic masks to RGB images by SPADE and recover a neural
scene representation for view-consistent rendering.

3.1. Generating view-consistent semantic masks

Fig. 2 illustrates the overview of generating multi-view
consistent semantic masks from a single semantic mask.
Specifically, we first warp the given semantic mask to novel
views. Then, an inpainting network is utilized to fill in
the disocclusion areas of the warped semantic mask at
each novel view. After obtaining multiple infilled semantic
masks at different viewpoints, we recover a neural seman-
tic field that can fuse and denoise the multi-view semantic
information. Finally, multi-view semantic masks can be ob-
tained by the semantic field.

Warping semantic mask. Our approach warps the given
semantic mask to novel views through the depth-based
warping technique. We first convert the input semantic map
to the corresponding RGB image using SPADE [46], and
then use a monocular depth estimation network [50] to pre-
dict the depth map from the generated RGB image. Then,
a 3D triangular mesh is constructed based on the predicted
depth following Shih et al. [56]. The semantic mask is lifted
to the mesh, whose vertices’ color is assigned as the corre-
sponding semantic label. The generated 3D triangular mesh
in such a manner may contain spurious edges due to the
depth discontinuities in the depth map. To solve this prob-
lem, we remove the edges whose vertices are far from each
other. Eventually, we warp the semantic mask to the novel
views using a mesh renderer following [56].

Semantic mask inpainting. Directly warping the given
semantic mask to novel views brings many holes in disoc-
clusion regions. To inpaint the missing contents, we train a
semantic inpainting network on single-view natural image
collections [58] using the self-supervised technique in [17].
Fig. 3 shows our training strategy for semantic inpainting
networks. Specifically, we first use a pre-trained image
segmentation model [8] and a monocular depth estimation
model [50] to produce semantic masks and depth maps for
the natural images. At each training iteration, an image is
randomly sampled from the dataset as the source image Ii.
We then use the corresponding depth map D̂i to warp the
original semantic mask Si to a random target view j, pro-
ducing warped semantic mask Si→j and depth map D̂i→j

at target view j. Next, we warp semantic mask Si→j back
to the source view using depth map D̂i→j , which gener-
ates a semantic mask Si→j→i with holes. Finally, we input
Si→j→i into the semantic inpainting network and train the
network to infill these holes, which is supervised with the
original semantic mask Si.

At test time, we first randomly sample a set of view-
points, then warp the given semantic mask S0 to these view-
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Learning a priori knowledge

Generating semantic masks 
with inpainting network

Learning a semantic field

Rendering multi-view 
consistent semantic masks

Generating pseudo
ground truth images

Learning a neural scene
representation

Single-view image collections

Optimizing 3D neural fields from a single semantic mask

Input

Figure 2. Illustration of our pipeline. Left: Our pipeline can be divided into two steps: we first generate multi-view
semantic masks with an inpainting network and then convert semantic masks to RGB images using SPADE. In order to
denoise and fuse semantic information, a semantic field is learned for rendering multi-view consistent masks. Finally, a
neural scene representation is optimized to fuse appearance information provided by SPADE, which enables view-consistent
rendering. Right: Our semantic inpainting network and SPADE are trained on single-view image collections.

InpaintingSupervision Input

Figure 3. Training a semantic inpainting network. We
produce a semantic mask Si and a depth map D̂i from a ran-
domly sampled image Ii, then warp them to a random novel
view generating Si→j and D̂i→j , and warp Si→j back to
the source view to generate Si→j→i with holes. Our se-
mantic inpainting network takes the Si→j→i as input and is
trained to recover the Si.

points to generate warped semantic masks, and finally apply
the inpainting network to fill in their disocclusion regions to
generate the infilled multi-view semantic masks.

Semantic field fusion. We observed that the infilled se-
mantic masks are not view-consistent. Although the artifact
regions in semantic masks seem trivial, the generated im-
ages from SPADE could be very different on these regions
across different viewpoints. Fig. 4 presents an example. To
tackle this problem, a semantic field is introduced to fuse
and denoise infilled semantic masks. We adopt a contin-
uous neural field to represent the semantics and geometry

of a 3D scene, similar to [14]. For any query point x in 3D
space, an MLP network fθ maps it to an SDF value d and an
intermediate feature z, and another MLP network fϕ maps
z to a semantic logits s. The neural field is defined as:

fθ : x ∈ R3 7→ (d ∈ R, z ∈ Rc)

fϕ : z ∈ Rc 7→ s ∈ RMs ,
(1)

where Ms denotes the number of semantic classes. We ren-
der the semantic field into semantic logits and depth through
the SDF-based volume rendering [65, 69].

Considering that the sky is very distant from the fore-
ground, we handle the foreground and the sky separately,
following the practice in [18]. The sky is assumed to be a
distant 2D plane, and the semantic probability of the sky is
defined as a constant one-hot vector Psky. The final seman-
tic probability is formulated as:

Y(r) = Pfg(r)Tfg(r) + (1− Tfg(r))Psky, (2)

where Tfg is the accumulated transmittance of the fore-
ground along camera ray r, and Pfg is the semantic prob-
ability obtained by applying the softmax layer to the ren-
dered semantic logits.

To learn the semantic field, the cross entropy loss is ap-
plied to compare the rendered semantic probability P(r)
and the semantic probability P∗(r) provided by the infilled
semantic masks:

LP = −
∑
r∈R

Ms∑
k=1

P∗
k(r) logPk(r). (3)
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w/ semantic field w/o semantic field

Figure 4. The effectiveness of semantic field. The cropped
patch clearly indicates the minor change in the seman-
tic masks across different viewpoints (the first and second
columns are adjacent viewpoints) brings the unwanted large
region change in RGB images generated by SPADE.

In addition, we use depth maps to learn the geometry of
the semantic field. In detail, the infilled semantic masks are
first converted to RGB images via SPADE, then processed
by a monocular depth estimation network [50] to predict
depth maps. A scale- and shift-invariant loss [50, 71] is uti-
lized to calculate the difference between the rendered depth
map D and the predicted depth map D̂, which is defined as:

Ldepth =
∑
r∈R′

∥(wD(r) + q)− D̂(r)∥2, (4)

where R′ means camera rays of image pixels excluding the
sky region. w and q are used to align the scale and shift
of D and D̂, which can be obtained using a least-squares
criterion [12, 50].

To separate the foreground and the sky region, we apply
a loss on the accumulated transmittance:

Ltrans =
∑
r∈R

(log(Tfg(r)) + log(1− Tfg(r))). (5)

This loss enforces the transmittance to be either 0 or 1. The
overall loss is described in the supplementary material.

3.2. Natural scene representations

Directly translating multi-view semantic masks obtained
in Section 3.1 to RGB images through SPADE fails to pro-

duce multi-view consistent rendering, as shown in the sup-
plementary material. To resolve this issue, we learn a natu-
ral scene representation to fuse appearance information pro-
vided by SPADE. This section describes the generation of
natural scenes from the learned semantic field. We first in-
troduce the neural representation of natural scenes. Then,
the rendering and training of the scene representation are
described.

The geometry of the scene is directly modeled as the
trained MLP network fθ (Eq. 1) of the semantic field. To
represent the scene’s appearance, we recover an appearance
field fξ. Following EG3D [6], a tri-plane feature map is
adopted to map a point to a feature vector. Specifically,
given a point x, it is orthogonally projected to the feature
planes to retrieve three feature vectors, which are concate-
nated into the final feature vector. We use an MLP network
to regress the RGB value c from the aggregated feature vec-
tor. The appearance field is defined as:

fξ : x ∈ R3 7→ c ∈ R3 (6)

For the scene representation, we separately model the
foreground and the sky region. The sky is implemented as a
2D image plane generated by a 2D generator network, and
we place it at a distance. For a ray classified as ‘sky’, the
sky image plane maps the intersection point (u, v) between
the ray and the sky plane to the RGB value.

To efficiently render the scene representation, we lever-
age the pre-learned scene geometry to guide the sampling
of points along camera rays. The mesh is first extracted
from the trained MLP network fθ. Then, for each camera
ray, we only predict the color for the point on the mesh sur-
face, similar to [33,38]. With surface-guided rendering, the
computational cost of synthesizing full-resolution images is
significantly reduced.

During training, the geometry network fθ is fixed. The
appearance network is optimized based on perceptual and
adversarial losses. We first use the learned semantic field
to render multi-view semantic masks which are then trans-
lated into images using SPADE. The perceptual loss [27]
is adopted to compare the rendered image C and generated
image Ĉ:

Lfeat (Ĉ,C) =
∥∥∥ϕ(Ĉ)− ϕ(C)

∥∥∥2
2
, (7)

where ϕ denotes the VGG network [57]. Perceptual loss
makes training procedure more stable and faster.

Additionally, the adversarial loss is applied to make the
rendered images more photorealistic and prevent blurriness
caused by the inconsistency of input views, which is demon-
strated in GANcraft [18]. Our rendered images are taken as
“fake” samples, and generated images are taken as “real”
samples. We adopt the OASIS discriminator [61] as our
discriminator, and use the same generator and discriminator
loss as [61].
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Methods FID↓ KID↓
SPADE [46]+InfiniteNatureZero [32] 149.80 0.080

SPADE [46]+3DPhoto [56] 127.74 0.064
SPADE [46]+AdaMPI [17] 185.96 0.115

GVS∗ [16] 141.64 0.084
Ours 109.85 0.050

Table 1. Quantitative comparisons on the LHQ dataset.
“SPADE + *” means a two-stage pipeline that first generates
an image with SPADE and then performs single-view view
synthesis. “GVS∗” means that we train GVS on the LHD
dataset using the strategy in AdaMPI.

4. Experiments
4.1. Datasets

We use the LHQ dataset [58] to train our SPADE and se-
mantic refinement network. The LHQ dataset is a large col-
lection of landscape photos collected from the Internet. To
prepare the semantic mask for each image, we use COCO-
Stuff [5] to train a DeepLab v2 [8] network. The training
data for semantic inpainting is synthesized by the back-
warping strategy as mentioned in Section 3.1.

4.2. Implementation details

To train the semantic field, 1024 rays are sampled per
learning iteration. For the neural appearance field, we train
the neural appearance field at a 256 × 256 resolution. We
train our semantic field and appearance field on 1 NVIDIA
RTX 3090 with 24GB of memory. For the semantic field,
each model is trained for 48k iterations with batch size 1,
which takes approximately 13 hours. For the appearance
field, each model is trained for 12k iterations with batch
size 4, which takes approximately 3 hours. We use a com-
bination of GAN loss, L2 loss, and perceptual loss for the
appearance field. Their weights are 1.0, 10.0, and 10.0, re-
spectively. More training details are described in the sup-
plementary material.

4.3. Metrics

Following Gancraft [18], we use both quantitative and
qualitative metrics to evaluate our synthesis methods.

Quantitative metrics. We adopt the widely used metrics,
FID [20, 47] and KID [3, 47], to measure the distance be-
tween the real and generated distributions. Our experiments
are conducted on 6 test scenes. A collection of landscape
images from Flickr is obtained to evaluate the quality of our
generated images. We make sure that test images are not
presented in the LHQ dataset for training. The input seman-
tic mask is obtained by a pretrained semantic segmentation
model [8]. For each test scene, we render 330 images us-
ing a randomly sampled style code from uniformly sampled

camera poses. For both FID and KID metrics, lower values
indicate better image quality.

Qualitative metrics. To quantify the aspects that are not
addressed by automatic evaluation metrics, we conduct a
user study to compare our method with the baseline meth-
ods. Specifically, we consider two aspects for human ob-
servers: 1) view consistency and 2) photo-realism. 18 visual
designers in a 3D content designing company are asked to
assign a score on a continuous scale of 1-5 for each aspect
per video, where 1 is worse, and 5 is best. Two video se-
quences of the same scene rendered by two different meth-
ods are presented at the same time in random orders. A total
of 9 videos per method is rendered for evaluation for each
user. For more details about the user study, please refer to
the supplementary material.

4.4. Comparisons with baseline methods

We compare our approach with four strong baselines, all
of which are evaluated at a 256× 256 resolution:

SPADE [46]+3DPhoto [56]. Using layered depth im-
ages, 3DPhoto [56] generates free-viewpoint videos from
a single image, and it can be trained on the in-the-wild
dataset. Following previous works [32, 34, 52] that directly
use official pretrained models for evaluation, we also use the
official pretrained models for our evaluation. We combine
3DPhoto and SPADE by synthesizing a color image from
the semantic mask using SPADE, then applying 3DPhoto to
generate a novel view image.

SPADE [46]+AdaMPI [17]. AdaMPI [17] regresses the
MPI representation from an image with a network trained
on the in-the-wild dataset. We also use official pretrained
models for our evaluation. This method can also be com-
bined with SPADE to apply in this setting. We obtain gen-
erated images from the given semantic mask using SPADE
and then use AdaMPI to synthesize the multi-plane images.

SPADE [46]+InfiniteNatureZero [32]. InfiniteNature-
Zero is a model that generates flythrough videos of natural
scenes, beginning with a single image. It is trained on the
LHQ dataset. We obtain generated images from the given
semantic mask using SPADE and then use InfiniteNature-
Zero to perform perceptual view generation according to the
camera poses used in our test set.

GVS∗ [16]. We carefully train GVS [16] on the LHQ
dataset, using the same training strategy as AdaMPI [56],
which takes approximately 2 days. To ensure its style is
consistent with other methods, it is finetuned on the test
scenes. We find the official inpainting network pretrained
by AdaMPI [56] can not deal with large disocclusion re-
gions. To prevent these regions from affecting GVS, GVS is
not supervised in these areas. GVS is trained on 3 NVIDIA
TITAN A100 40GB graphics cards with 16 batch sizes.
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Semantic Mask Ours 3DPhoto [56] AdaMPI [17] GVS∗ [16] InfiniteNatureZero [32]

Figure 5. Qualitative comparisons on the LHQ dataset. We produce more realistic results compared to all baselines, as
demonstrated in the supplementary video.

Fig. 5 shows the results of generated videos of differ-
ent methods. Directly combining SPADE with 3DPhoto or
AdaMPI does not fully utilize the semantic layout informa-
tion. Therefore, they are prone to erroneously inpainting
disocclusion regions. In addition, our approach can render
free-viewpoint videos with a wide range of viewpoints, be-
cause it is rather easy for our semantic inpainting network
to synthesize a large disocclusion region and the appearance
information at these regions can be generated via SPADE
effortlessly. As GVS∗ only produces multiple planes at
fixed depths, it struggles to represent complex scene lay-
outs for natural images. InfiniteNatureZero [32] is not de-
signed for novel view synthesis and struggles to produce
realistic results for the input camera trajectory is different
from the training. Besides, InfiniteNatureZero and GVS∗

use 2D CNNs to generate or refine RGB images, which do
not guarantee the inter-view consistency. On the contrary,
our method constructs a continuous neural field to fuse ap-
pearance information from SPADE, so that more realistic
and consistent results can be obtained.

As shown in Table 1, our approach outperforms exist-
ing baselines, achieving the smallest FID and KID. Further-
more, Table 2 indicates that users prefer our method and rate
our videos the most view-consistent and realistic compared
to others.

4.5. Ablation studies

We conduct ablation studies to demonstrate the impor-
tance of each component of our method on one test scene.
Our key idea is decomposing the task of view synthesis
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Methods Consistency↑ Realism↑
SPADE [46]+InfiniteNatureZero [32] 1.31 2.06

SPADE [46]+AdaMPI [17] 3.63 1.75
SPADE [46]+3DPhoto [56] 3.94 2.19

GVS∗ [16] 2.63 2.13
Ours 4.11 3.13

Table 2. Human preference scores. Our method
achieves the highest photo-realism and multi-view consis-
tency scores according to human raters.

Input semantic mask RGB inpainting Ours w/o SF Ours

Figure 6. Qualitative results of ablation studies. “RGB
inpainting” denotes the neural scene representation learned
on multi-view images generated by an image inpainting net-
work. This model fails to produce plausible image con-
tents in disocclusion regions. “Ours w/o SF” denotes the
scene representation learned on images generated from the
(post-inpainting) semantic masks and has the same geome-
try as our full method. The inconsistency of semantic masks
causes large changes in RGB images, resulting in degraded
rendering quality.

from a semantic mask into two simpler steps, which first
generate multi-view semantic masks and then produce RGB
images with SPADE for learning a neural scene represen-
tation. To demonstrate the effectiveness of this idea, we
design a naive baseline where we use a pre-trained RGB in-
painting network to generate multi-view images for recov-
ering the 3D scene. All methods use the same depth map
for a fair comparison. Specifically, We generate RGB im-
ages by SPADE from the given semantic mask and then use
a monocular depth estimation model to predict the depth
maps of the generated image. The generated image is then
warped to novel views. To infill disocclusion regions, we
apply a pretrained RGB inpainting network to images at
novel views, which output the final multi-view RGBD im-
ages. The pretrained RGB and depth inpainting networks
are the official models from AdaMPI [17]. We abbreviate
this baseline as “RGB inpainting”. As shown in Fig. 6, this
model fails to produce photorealistic results under big view-
point changes. This is because it is challenging for an RGB
inpainting network trained on single-view datasets to infill
such large missing areas. In contrast, our approach renders
high-quality images, which indicates that semantic masks
are easier to inpaint than RGB images.

The second important design is our semantic field fusion

Methods NLL↓ VSC↓
Ours 1.60 0.049
GVS 3.33 0.089

Table 3. Comparison with GVS. Our multi-view semantic
masks are more consistent and have better quality.

module, which leverages the semantic field to denoise and
fuse semantic masks generated by the inpainting network.
To illustrate the necessity of this module, we design the
baseline where the infilled semantic masks are directly fed
to SPADE to produce RGB images for learning the scene
representation. For this baseline, we use the same geometry
as our full method. We abbreviate this baseline as “ours w/o
SF”. The result in Fig. 6 indicates that although this model
can synthesize reasonable contents in disocclusion regions,
the rendered images tend to be blurry. The reason is that the
infilled semantic masks are not view-consistent, especially
near semantic edges, resulting in that images generated by
SPADE differing significantly across different viewpoints,
which makes us difficult to reconstruct the 3D scene. Be-
sides, to demonstrate that our generated multi-view seman-
tic masks are better than those generated by GVS [16], we
compare our method with it on the scene used in ablation
studies. Following [49], we utilize the average Negative
Log-Likelihood (NLL) score to measure the quality of gen-
erated semantic masks and the View Semantic Consistency
(VSC) score to evaluate the consistency of generated se-
mantic masks. Tab. 3 shows that the quality and consistency
of our generated semantic masks outperform those of GVS.

5. Conclusion

In this work, we introduce an AI-enabled content cre-
ation tool that uses a single semantic mask to produce a
3D scene, which can be rendered from arbitrary viewpoints.
Our method only requires single-view image collections
for training, without the need for multi-view images. To
achieve this, we propose a novel pipeline that first learns
an inpainting network to generate novel views of the input
semantic mask and then optimizes a 3D semantic field to
render view-consistent semantic masks, which are subse-
quently fed into a 2D generator SPADE to produce RGB
images for learning a neural scene representation. Experi-
ments demonstrate that our method can produce satisfactory
photorealistic and view-consistent results that significantly
outperform baseline methods.
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