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Abstract

The modern machine learning-based technologies have
shown considerable potential in automatic radar scene un-
derstanding. Among these efforts, radar semantic segmen-
tation (RSS) can provide more refined and detailed infor-
mation including the moving objects and background clut-
ters within the effective receptive field of the radar. Moti-
vated by the success of convolutional networks in various
visual computing tasks, these networks have also been in-
troduced to solve RSS task. However, neither the regular
convolution operation nor the modified ones are specific
to interpret radar signals. The receptive fields of existing
convolutions are defined by the object presentation in opti-
cal signals, but these two signals have different perception
mechanisms. In classic radar signal processing, the object
signature is detected according to a local peak response,
i.e., CFAR detection. Inspired by this idea, we redefine the
receptive field of the convolution operation as the peak re-
ceptive field (PRF) and propose the peak convolution oper-
ation (PeakConv) to learn the object signatures in an end-
to-end network. By incorporating the proposed PeakConv
layers into the encoders, our RSS network can achieve bet-
ter segmentation results compared with other SoTA meth-
ods on a multi-view real-measured dataset collected from
an FMCW radar. Our code for PeakConv is available at
https://github.com/z1w9161/PKC.

1. Introduction

Radar is a remote sensor, which usually uses modu-
lated electromagnetic signals to detect the objects of interest
through directional transmitting antennas in a specific effec-
tive working field [22]. As an active detection device, radar
is more robust to extreme weather (e.g., haze, rain or snow)
than other active detection device such as LiDARs [2], and
it is also not susceptible to dim light condition and sun glare,
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as the passive optical sensors are [19]. In addition to the
real-world location information, it can also tell the velocity
of the moving objects thanks to the Doppler effects. Due to
these advantages, radar sensors have played an irreplaceable
role for many automotive security and defense applications,
e.g., autonomous safety driving or UAV early warning.

Conventional radar detection mostly relies on the peak
detection algorithm following constant false alarm rate
(CFAR) [22, 23] principle. Taking frequency modulated
continuous wave (FMCW) radar as example, the raw radar
echos are first converted as multi-domain united frequency
representations, e.g., range-Doppler (RD) and range-angle
(RA) maps, through a series of cascading fast Fourier trans-
formations (FFTs). Then for each cell under test (CUT) in
the input RD/RA map, the CFAR detector will determine
whether it contains moving object information according to
an estimated detection threshold, which fully considers the
characteristics of the radar signal itself. However, to ob-
tain good effect in practical application, it is necessary to
manually fine-tune various hyper-parameters including the
thresholding factor, sizes and shapes of the local scope (i.e.,
the bandwidths of reference and guard units). Beyond that,
conventional radar detection cannot give category informa-
tion of the object. These two inconveniences hinder the con-
ventional detection method from automatic semantic radar
scene understanding.

Encouraged by the success of modern deep learning
techniques in computational perception, especially the ob-
ject detection [8, 15, 20, 21, 29] and semantic segmenta-
tion [5, 11, 16,24, 28] in computer vision, some efforts had
been made recently for better automatic radar scene inter-
pretation. These efforts evolve the target-clutter binary hy-
pothesis of conventional radar testing into target semantic
characterization of modern machine learning, i.e., radar ob-
ject detection (ROD) [10, 17,27] and radar semantic seg-
mentation (RSS) [3, 13, 18]. Most of these methods used
convolution networks as backbone models, which take radar
frequency representations as input, and then make predic-
tions on RA or RD view or both two views. For example,
a multi-view RSS (MVRSS) network [18] was proposed
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Figure 1. An examplar illustration of moving object signa-
tures/presentations in (a) the 2D RD map and the corresponding
(b) RD-amplitude 3D representation of radar signals, and their (c)
synchronized camera image.

to take better advantage of radar localization capability by
making “unit-wise” predictions on both RD and RA fre-
quency domains. To support the sufficient training of these
deep models, a few large-scale radar datasets were also col-
lected and created, e.g., OxfordRobotCar [9], nuScenes [4],
CRUW [26] and CARRADA [19].

However, the electromagnetic object signatures received
by radar are not as intuitively understood as the optical ones
captured by the cameras as shown in Fig. 1. With rich tex-
ture and color information in the image, the convolution op-
eration can learn useful semantic information from a rectan-
gular local spatial receptive field (RF). And by introducing
some intuitive priors of human vision, more efficient learn-
ing mechanisms for convolution had been proposed, e.g.,
multi-scale fusion [12, 15,25], dilation [5,28] and deforma-
tion [8,29]. So far, these mechanisms are also introduced
into radar data processing, such as the inception or pyramid
pooling for multi-scale information, atrous convolution for
larger dilated RF and deformable convolution for irregular
object signature in ROD-Net [27] and MVRSS [18]. De-
spite the multi-scale mechanism, which is more of a modu-
lar idea, i.e., the computation is decoupled from the convo-
lution itself, other variants are actually changing the RF it-
self. One conclusion might be summed up that, the RF sam-
pling/selection manner plays a very important role in convo-
lution. While none of these RF selection manners including
the regular one is proposed specifically for the radar data,
thus they might not fully exploit the potential of convolu-
tional networks in radar scene understanding. This concern
motivates us to rethink the internal relation between convo-
lution and the conventional radar detection mechanism, and
try to find a more efficient and specific convolution mecha-

nism for radar data.

To achieve our goal, we take a look inside of the con-
ventional radar detection method and the convolution op-
eration in deep learning. As aforementioned, the conven-
tional detection method is a kind of CFAR-based peak de-
tection, e.g., commonly used cell averaging-CFAR (CA-
CFAR) [22]. For a CUT, z., of the input RD representation,
CA-CFAR detection can be divided into three steps: (i) av-
eraging aggregation from reference cells {x&z)}ﬁil around
CUT, excluding the guard cells; (ii) threshold computing,
0=¢- % Zi\;l :ci”; (iii) decision-making by comparing
z. and ©. It can be seen that, the decision-making basis
is the difference between CUT and its threshold, i.e., the
weighted summation of {xq(f) 1 | with a shared weight, %
In another word, the key to determine whether the CUT
has object for CA-CFAR is the denoised peak frequency
response from an RF consisted of the CUT and its refer-
ence cells. Yet none of the convolution operators mentioned
above can explicitly possess such property, i.e., each output
unit is actually a weighted summation of the units in a local
dense/dilated rectangular or deformable RF, which does not
strictly follow the guard-reference policy.

Therefore, in this work we redefine the RF of the con-
volution operator as the guard-reference style, and call such
new type RF the peak receptive field (PRF), which consists
of the center unit and its reference neighbors. Then with
some simple computational designs, we present two novel
convolution operations to explicitly learn the peak response
from PRE, i.e., PeakConvs. Compared with other convolu-
tion operations, PeakConvs explicitly possess the advantage
of the conventional radar detection methods. In comparison
with the conventional CA-CFAR, adaptive peak response
with learnable weights and high-level semantic representa-
tion via task-driven learning paradigm can be achieved since
PeakConvs maintain the computational compatibility of the
regular convolution operation. The main contributions are:

* A novel convolution computing paradigm for radar
data processing. Instead of extracting radar signature
directly from RF, we propose learning peak response
from redefined PRF, which is more suitable for learn-
ing tasks related to radar data.

e Two implementations of the proposed PeakConv.
According to the participation of center unit dur-
ing interference (e.g., device noises and background
clutters) estimation, there are two approaches of
PeakConv, including vanilla-PeakConv (PKC), and
response difference aware PeakConv (ReDA-PKC).

¢ Well-performed multi-view RSS frameworks based
on PeakConvs: by introducing PeakConvs into
encoders of the convolutional automatic-encoder-
decoder (CAED) framework, two RSS networks with
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multi-input and multi-output (MIMO) style are pre-
sented. Our networks can achieve SoTA performance
on both RD and RA views.

2. Related works

RF-based convolution improvement. Reasonable adjust-
ment of RF can effectively improve the expressive ability
of convolution in module-level or in operation-level. Multi-
scale information extraction is one of the most commonly
discussed module-level strategies, e.g., capturing rich fea-
tures via convolution layers with different kernel sizes in
a hierarchical pyramid structure [12, 15] or parallel forked
form [25]. Some works focused on directly changing the
shape of the dense rectangular RF of the regular convolution
operation, i.e., changing the sampling manner of the kernel.
Dilation [28] can effectively enlarge the RF via a fixed step
size-based sparse sampling strategy, and by introducing di-
lation into the pyramid structured convolution module, the
parameter scale can be effectively reduced while maintain-
ing the multi-scale characterization ability, e.g., atrous spa-
tial pyramid pooling (ASPP) [5]. Deformation [8,29] is a
much more flexible way of sampling, by learning the posi-
tion offset for the rectangular kernel, irregular RFs can be
obtained to better handle the variety of object shapes and
sizes. These works are mostly motivated by the perspective
of visible light signals. On the side of radar, for now, there
is barely no discussion about suitable convolution mecha-
nisms specifically for radar signal processing.

Radar semantic segmentation. Compared with detection-
based method using bounding boxes with regular shapes,
the segmentation-based models can provide the “pixel” (a
cell/unit) wise predictions for the input radar frequency ten-
sor, including the objects and even the background. This
characteristic makes segmentation-based method more suit-
able for radar scene understanding. The deep radar detec-
tor (DRD) [3] is an early attempt to incorporate a segmen-
tation approach into a two-stage radar detection workflow,
where a UNet [24] style network is treated as an object pro-
posal generator for the angle predictor. Compared with the
conventional CA-CFAR and beam-forming localization [ 1],
DRD can provide more accurate predictions and show bet-
ter robustness. Recently, an end-to-end RSS framework
without any post-processing techniques, RSS-Net [13] was
proposed. By taking the temporal changes of multi-frames
radar input and multi-scale spatial information obtained
by the ASPP [5] into consideration, good RA predictions
for some particular objects can be obtained. More re-
cently, by introducing multi-perspective learning [10] strat-
egy into the end-to-end RSS framework, the MVRSS [ 18]
was proposed. MVRSS uses range-angle-Doppler (RAD)
frequency tensors as input, and makes predictions on both
RA and RD views. Such simultaneous multi-view predic-
tions make MVRSS a good start for radar scene understand-

ing, which is also followed by this work.

To our knowledge, all these previous methods tried to
systematically solve the RSS task via rationally utilizing the
advantages of existing convolutional networks. Although
these existing computational module can help improve the
RSS performance, they are proposed to better characterize
the object from the perspective of visual perception, after
all. Directly using them to process radar data is more or
less computationally redundant and inefficient. To this end,
we stand on the side of radar, and revisit the correlation be-
tween the modern convolution operations and the conven-
tional radar detection method. Then we attempt to propose
a more suitable convolution operator for radar signal pro-
cessing without losing its original advantages, starting from
RF definition to computation designs.

3. Peak Convolution

In this section, the proposed PeakConv will be intro-
duced in details, starting from the PRF definition to the
specific implementations of the PeakConv. Then a global
description of the PeakConv-based RSS network is given.

3.1. Peak Receptive Field

As illustrated in Fig. 1, the object signatures in radar sig-
nals are more like a peak-shaped frequency response in a lo-
cal scope of the radar representation. Without considering
the resolution of the radar itself, coordinates of the anal-
ysis domain (RD or RA) in which the peak valley vertex
is located will be regarded as the state of the object in the
real physical world, such as range, velocity, angle relative
to radar. Such characteristic is utilized by the conventional
detection methods, e.g., CA-CFAR [23].

To capture the peak response as robustly as possible, two
basic principles are followed: (i) local search strategy and
(i1) guard band mechanism. The local search makes sure
the object-related peak response cannot be suppressed by
the interference with stronger energy, which is similar to
the scanning process of the convolution kernel. Further-
more, setting guard band around the center unit (or CUT)
will ensure its energy dose not leak into the interference es-
timation process, so that its response can be captured more
clearly. As intuitively shown in Fig. 2, to determine whether
a unit x, from the input radar frequency representation has
target information, the detector will select reference units
around z., and exclude those units closest to x.. Those ex-
cluded ones are so-called guard units. Then the selected
reference units, {xsf)} lNgl, will be used to calculate the de-
tection threshold, ©, as we analyzed in Sec. 1.

As can be seen from the above analysis, if there has ob-
ject in the center unit, the peak response can be determined
by the response of the center unit and the average response
of its reference neighbors adjusted by a coefficient, . In-
spired by this mechanism, we argue that, it might be more
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Figure 2. The illustration for capturing peak frequency response
in 2D radar representation by CA-CFAR.

efficient to process the radar data, if the convolution oper-
ator in modern deep learning could capture such peak re-
sponse. And as discussed before, the RF selection is a key
factor for convolutions, hence we start from redefining the
RF as PRF following the basic principles of the conven-
tional CFAR method.

Given some feature point x, € R® from the input map
with C channels, its PRF is consisted of x,. itself and its

reference points, {xg) }fv ", where N, is the number of the
(1) _ = (1) (9 )

reference points. Let p. = (p¥, p¥) and p, Pra, Pry
denote the column and row coordinates of x. and x,”, re-
spectively in the input map. Then the PRF, R, for x. can be

defined as follows:

R= {XC’ {Xg)}:}’ (1)

s.t.,|bg| < Ipt” — pe| < |br + bel.

Where, bg = (bg, b%) and b = (b%, b%) respectively
denote the guard bandwidths and reference bandwidths in
column and row as shown in Fig. 3-(a). All the coordinates
and bandwidths are integers, and the number of reference
points can be computed as:

N.= [ Rez+vR)+1- J] @&+1). @
ze{z,y} ze{z,y}
3.2. Learning from PRF

3.2.1 Vanilla-PKC

Using the definition of PRF, we can further define
the learning mechanism of the proposed PeakConv.
As aforementioned, the decision-making basis of CA-
CFAR is the denoised peak frequency response esti-
mated from the CUT and its reference units, which
can also be regarded as the representation of the object
radar signature. Hence to embed such property in the
convolution-based deep models, we define the vanilla-PKC,

-
Reference bandwidths: bo = {b;, bé} Ropr = {-’L‘c- {w, };‘}
. . by . . .

%”% < '///////’//// i
. / ////// M.

Guard bandwidth: bR = {b;,, b;}

(a) Nlustration of guard/reference bandwidths (b) Mlustration of Peak Receptive Field

Figure 3. Guard/reference bandwidths and PRF.
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Figure 4. The the whole process for a PeakConv layer.

PKC (R; W € RO NrxCa) : R — RCou a5 follows,

PKC(R; W) =x,— Vec ({valw( 9 *xp} oml) ,
j_

) C'out) and C'in = Cout-
3
Where, W is the learning weights of the PeakConv
shared by all the x. in the input feature maps; Vec(-)
and * denote the vectorization and convolution operators,
respectively. Compared with the fixed pre-defined global
weight, % in CA-CFAR, the PeakConv can automatically
reweight the reference units in PRF under a task-driven
manner. Therefore, PKC (R; W) can be regarded as the
learnable noise suppression for each unit under test, x., in

which Vec ({El 1 w ) xﬁ)} °“‘) actually estimates the

interference frequency response. The whole process for a
PeakConv layer is shown in Fig. 4, which can be summa-
rized as: (i) sampling PRFs over the input maps, i.e., col-

where, wj(»i) ER (j=1,---

lecting {xgi) }f&l for each x.; (ii) learning interference fre-
quency response from each PRF by a convolution operator
with kernel size of N, ; (iii) denoising each x. by eliminat-
ing its corresponding learned interference response.

3.2.2 ReDA-PKC

The PeakConv essentially attempts to characterize the re-
sponse difference between each unit under test and its inter-
ference response estimated from its neighboring reference
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Figure 5. The the whole process for a ReDA-PKC layer.

units. Moreover, the learning process of PeakConv men-
tioned above is performed under the target-independent as-
sumption, since X, is excluded from the estimation. These
could lead to two limitations for vanilla PKC(+) in Eq. (3):
i) on the interference side, the overall estimation would ig-
nore the individual diversity of interference, e.g., relatively
mild random noise caused by sensor or environmental back-
ground and clutters with strong energy caused by some ob-
jects of no interest, and this makes PeakConv fails to sup-
press noise in a more interference-driven manner; ii) on the
target side, the target-independent assumption would not di-
rectly drive the PeakConv layer to carry out noise suppres-
sion or response difference characterization according to the
target. To alleviate the above two limitations, we further
present another variant, which is called ReDA-PKC.
ReDA-PKC directly learns the response difference be-
tween X, and each of its reference units, xgi). Following
the definition of vanilla-PKC in Eq. (3), the ReDA-PKC,
PKC* (R; W e Rci“XN"'XCO"') : R — RC« for each
given x. can be formalized as follows,
. 3y Cou
PKC*(R; W) = Vec ({Zf\fl W§-Z) * (X, — xi’))} .
j=
where, W](-z) ER (=1, - ,Con)-
“)
It can be seen from Eq. (4) that, PK C*(-) directly per-
forms on the difference between x. and each xﬁl). Such
form of PeakConv would focus directly on the difference in
each center-reference response, so that the diversity of noise
relative to the target can be better handled by the whole
ReDA-PKC layer. The learning process of ReDA-PKC is
shown in Fig. 5. Besides, by encapsulating all the units of
R into the learning part, the constraint C}, = Cqyy, can be
eliminated, thus making ReDA-PKC a more flexible mod-
ule compared with the vanilla version.

3.3. PeakConv-based RSS Network

Both vanilla and ReDA versions of PKC can be eas-
ily embedded in the exiting convolutional networks as reg-
ular convolution blocks. According to different deploy-
ments of PKC layer, we further propose two PKC-based

)

RSS frameworks following the CAED framework used
in[13,18,27], i.e., PKC-Inserted RSS-Net (PKCIn-Net) and
PKC-Only RSS-Net (PKCOn-Net), as illustrated in Fig. 6.
To achieve comprehensive radar scene understanding, both
two RSS networks are designed in the multi-input-multi-
output (MIMO) style, which performs on the RD, RA and
AD (Angle-Doppler) radar frequency tensors and carries
out semantic segmentation on both RD and RA views. Then
each network is consisted of three encoding branches and
two decoding branches. For PKCIn-Net, the main compo-
nents of the encoder are as follows. !

Basic Encoder. For each single-view radar input se-
quence, the basic encoder is used to generate its high-level
representations, and multi-view radar sequence can be han-
dled by performing these encoders in parallel. All three
single-view encoders are designed with the same structure
for simplicity. To utilize temporal information, each en-
coder is mainly composed of two 3D convolution layers
with the same kernel size of 3 x 3 x 3, output channel of 128,
and stride of 1 for spatial and temporal domains. To further
compress the spatial size of feature maps, each convolution
block follows a spatial max-pooling layer. By controlling
kernel size of the pooling layer, the feature map size for
each view can be unified.

Vanilla/ReDA-PKC Block. For learning the important
decision-making basis, i.e., peak frequency response in the
radar data, two PKC layers are inserted in each single-view
encoding branch. The PKC module will take the high-level
representations obtained from the basic encoder as input,
and generate local peak response representation on each
spatial position of the input maps. According to the defi-
nition of PRF in Eq. (1), the kernel size of each PKC layer,
N, is depend on the guard/reference bandwidths, bg /. In
basic frameworks, we set both b and by as {1, 1} by de-
fault. Then NV, is equal to 16 following Eq. (2). The output
channel for each PKC layer is keeping the same with the 3D
convolution in the basic encoder.

Latent Space Encoder (LSE). The MIMO-style net-
work optimization involves multi-perspective/view learning
problem. The common way for addressing such problem
is to learn the joint representation of the information flows
from different views in a common feature space. Thus dif-
ferent encoding branches can interact with each other via
the common feature space during learning, and the repre-
sentations to be decoded can also be further enhanced with
the learned joint feature. For this purpose, a multi-view
shared learner, LSE is added. To form the inputs for LSE,
the output maps of each single-view encoding branch will
be further compressed and transformed by a 2 x 2 max-
pooling layer and a 2D convolution layer with 1 x 1 kernels.
Then the LSE will project those transformed features into a

'In PKCOn-Net, each encoding branch is solely consisted of PKC
layers, see details in Appendix at our code link mentioned in Abstract.
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Figure 6. The overall workflow of PeakConv-based RSS-Net.

common latent space to get a uniform embedding. For re-
ducing the model parameters, two 1 x 1 2D convolution
layers instead of the MLP are chosen to form the LSE.
Besides the above components, ASPP [6] module, which
allows features to be jointly learned at different scales with
no need for larger kernels or additional parameters [5], is
also applied for enhancing the spatial representation in en-
coding part. This module is well suited for RSS task, since
the moving objects’ appearances may vary a lot [13, 18].
The decoders for RD and RA views are designed to be com-
bination of 2D deconvolutions and convolutions like [18].

4. Experiments

The effectiveness of the proposed PeakConvs are verified
under two designed RSS frameworks, i.e., PKCIn-Net with
temporal-style (multi-frames) input and PKCOn-Net with
single-frame input. For simplicity of the tables, PKCOn
and PKCOn* denotes PKCOn-Net with vanilla-PKC and
ReDA-PKC, respectively, so do PKCIn and PKCIn*.

4.1. Datasets and Training Setups
4.1.1 CARRADA Dataset

The CARRADA [19] dataset is a large scale camera-radar
synchronised dataset, which contains multi-view annotated
radar recordings (RAD tensors) collected from a low-cost
FMCW radar in various scenarios under different weath-
ers conditions. So far, this is the only publicly available
radar dataset supporting multi-view RSS task. There are 4
categories of objects: pedestrian, cyclist, vehicle and back-
ground; and multiple same/different types of moving ob-
jects would appear in a single time frame. The dimensions
of RAD tensor are 256, 256 and 64, respectively. The train-
ing, validation and test subsets were split as in [18].

4.1.2 CARRADA Annotation Calibration

The RD and RA annotations of CARRADA were gen-
erated in a semi-automatic way [19]. Its key idea is

to use the Mean-Shift-based tracking method [7] to as-
sociate the object information collected from the camera
images and radar data into a unified physical world do-
main, i.e., a 3D cartesian space combined with DoA (Di-
rectional of Arrival) and Doppler. However, the unreli-
able depth estimation results of the camera data and low
angle resolution of the FMCW radar seriously affect the
Mean-Shift clustering performance in terms of the cen-
troid initialization and candidate search space. Hence,
there is non-negligible deviation between the generated
annotations and the ground truth locations, especially in
the RA view. To this end, we further calibrate the RA
annotations for CARRADA in this work, and provide a
higher quality multi-view radar dataset, RA Annotation
Calibrated CARRADA (CARRADA-RAC)’. The perfor-
mance comparisons of CARRADA and CARRADA-RAC
are in Sec. 4.5.

4.1.3 Training Setup

The training setup for our proposed models and other com-
pared SoTA networks is strictly consistent as follows:

Input form: The raw 3D RAD tensor of each time frame
is first compressed as 2D RA, AD and RD views with
the sizes of 256 x 256, 256 x 256 and 256 x 64, respec-
tively. For the networks without explicitly considering the
temporal information, including RSS-Net [13] and MVA-
Net [18], which use 3 frames for data augmentation, while
our PKCOn-Net only depends on single frame for pre-
diction. For the temporal encoding-based networks, more
frames are used to form the input sequence, e.g., 9 frames
for RAMP-CNN [10], and 5 frames for TMVA-Net [18] as
well as our PKCIn-Net.

Hyper-parameters: All the models were trained with
Adam optimizer [14] using the default setting of hyper-
parameters, 51 = 0.9, S = 0.999 and € = le — 8. The
initial learning rate was le — 4, and decayed exponentially

The details of CARRADA-RAC are in the Appendix, and the code is
available at https://github.com/z1w9161/CARRADA-RAC.
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with the rate of 0.9 every 20 epochs. The training epochs
and mini-batch size were 300 and 6, respectively.

Evaluation metrics: All the models are evaluated with
cell-wise precision/recall, Intersection over Union (IoU),
and Dice score during training/validation phase. And the
mean IoU (mloU) and mean Dice (mDice) over categories
are used as the principle metrics for model performance
comparison. All the reported results were obtained from
the test subset.

4.2. Exploration of Guard Bandwidth Setting

Different sizes of guard bandwidth would make different
effects on the peak response capture. Therefore, we evalu-
ate the RSS performance of our proposed methods under
several guard bandwidth (b in Eq. 1) settings for three in-
put views, i.e., RD, AD and RA, as shown in Tab. 1.

RD View RA View
mloU mDice mlIoU mDice
{0,0,0} 4.5M 572% 689% 369% 44.7%

Frameworks Bg #Params

PKCOn {1, 1,1} 5. M 588% 70.7% 39.0% 47.7%
{2,2,2} 6.9M 588% 705% 39.8% 48.5%
{0,0,0} 4.5M 582% 69.7% 354% 42.5%
PKCOn* {1, 1,1} 5. M 582% 70.1% 37.9% 46.3%
{2,2,2} 6.9M 591% 703% 402% 49.7%
{0,0,0} 5.5M 58.7% 70.6% 40.4% 49.7%
PKCIn {1, 1,1} 6.3M 60.0% 71.9% 42.5% 529%
{2,2,2} 7.1M 603% 723% 4271% 53.4%
{0,0,0} 5.5M 592% 71.0% 41.1% 50.9%
PKCIn* {1,1,1} 6.3M 60.7% 72.5% 429% 53.3%

{2,2,2} 7.1M 611% 729% 433% 53.5%

Table 1. The effectiveness of guard bandwidths. Please note that
Bg = {b?, b, b}, where b, = b, by default. Bold means
the best results and underline is the second best one.

As responses closer to the center unit are more likely to
contain energy leaked from target, it is reasonable to shield
them to estimate a more accurate interference distribution
from reference units outside of the guard bands. Therefore,
the performance of PeakConv-based networks with guard
band mechanism, B¢ = {1,1,1} and B¢ = {2,2,2},
are better than without, i.e., B = {0,0,0}. Compar-
ing with B¢ = {1, 1,1}, PeakConv with B¢ = {2,2,2}
owns a larger PRF. For the center unit with object infor-
mation, larger PRF enables the interference estimation con-
ducted via densely sampling reference units in the field fur-
ther away from the peak response, thus obtains better results
in both PKCOn-Net and PKCIn-Net frameworks. However,
setting B = {1, 1,1} is benefit to the trade-off between
RSS performance and model complexity.

4.3. Exploration of Convolution Mechanism

To further explore the role of PeakConv in RSS perfor-
mance improving, we take the place of it in PKCOn-Net
and PKCIn-Net with regular 2D convolution (Conv), di-
lated convolution (DilConv) [28] and deformable convolu-

tions (DefConv and DefConvV2) [8,29], respectively. Ex-
perimental results shown in Tab. 2 not only reflect the per-
formance diversity caused by different convolution mecha-
nism, including vanilla-PKC, ReDA-PKC and other convo-
lutions mentioned above, but also take the influence of their
RFs into account. Hence convolutions with different kernel
sizes, i.e., 3 X 3 and 5 X 5 are investigated to compare with
our PeakConvs with 16 kernel weights.

Results posted in Tab. 2 present the superiority of pro-
posed PeakConvs among all the convolutions in the control
group. Existing convolution operations attempt to extract
target features from RF directly, so the design of RF is one
of the key affecting model performance. Compared with
regular Conv, DefConvs learn their RFs in an object-shape-
driven way, which can be regarded as object feature aug-
mentation, thus obtaining better results. However, unlike
the optical images, the radar object signatures do not own
clear structures or specific shapes, the advantage in object
representation of DefConvs cannot be fully exerted, result-
ing in limited performance improvement. DilConv enlarges
RF without complicating the computation by inserting dila-
tion into convolution kernels. This sparse sampling manner
indirectly forms a guard field around the center of its RF,
which approximately introduces the guard band mechanism
into the convolutions leading to more satisfied RSS perfor-
mance. Nevertheless, with explicitly estimating and elimi-
nating interference information from the object-interference
mixed features or signals, the proposed PeakConvs yield the
most encouraging RSS performance.

4.4. Comparison with State-of-The-Art (SoTA)

Our proposed RSS networks are further compared with
popular visual segmentation models, including FCN [16],
U-Net [24] and DeepLabv3+ [5], and SoTA RSS mod-
els, i.e., RSS-Net [13], RAMP-CNN [10], MVA-Net and
TMVA-Net [18]. Results in Tab. 3 show that our PeakConv-
based models own the best performance. Specifically,
thanks to taking the center unit into account during the
estimation of interference, ReDA PKC extracts peak re-
sponse in a more efficient way and obtains better perfor-
mance than vanilla-PKC. As for the comparison of two
PeakConv-based frameworks, PKCIn* with multi-frame in-
put additionally providing temporal information achieves
the best segmentation scores, which is significant on RA
view. However, PKCOn-Net using single frame input sur-
passes all the existing RSS models which need to dig effec-
tive information in multi-frame (> 3) input. In addition, the
small amount of parameters further highlights the learning
efficiency of our PeakConv, which could keep a good bal-
ance of RSS effects and model complexity. Related details
are illustrated in Fig. 7. All the points mentioned above val-
idate the rationality and effectiveness of PeakConv, which
learns object signature from PRF instead of adjacent field
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Conv Type

Conv

DefConv

DefConvV2

DilConv

PeakConv

PeakConv*

Kernel Size

3 x3 5x5

3x3

5x5

3x3 5x5

3 x3 5x5

16

16

Frameworks

SF  MF SF  MF

SF  MF

SF  MF

SF  MF SF MF

SF  MF SF  MF

SF MF

SF MF

#Params

47M 5.6M T7.IM 7.2M

49M 5.7M

8.IM 82M

49M 58M 85M 8.6M

47M 56M T7.IM 72M

5M  6.3M

5M  6.3M

RD View| ™V

mDice

54.0%
65.3%

56.1% 55.6% 57.4%
68.0% 67.1% 69.2%

55.5% 58.0%
67.3% 69.8%

55.8%
68.0%

58.3%
70.2%

55.4% 58.8%
67.0% 70.6%

56.1% 59.1%
68.2% 70.8%

57.1% 58.4% 57.9% 59.9%
69.1% 70.4% 69.8% 71.9%

58.8% 60.0%
70.7% 71.9%

59.4% 60.7%
71.2% 72.5%

RA View mloU

mDice

36.4%
43.9%

37.7% 36.4% 37.7%
46.2% 44.0% 46.4%

38.2% 39.1%
472% 48.1%

38.4%
47.6%

39.2%
48.2%

38.3% 39.3%
47.3% 48.6%

38.6% 39.3%
47.8% 48.6%

37.4% 39.1% 37.7% 39.7%
45.6% 48.1% 46.2% 49.3%

39.0% 42.5%
47.7% 52.9%

38.6% 42.9%
473% 53.3%

Table 2. Exploration of various convolutions. SF denotes network with single-frame input, which has the same structure with PKCOn-Net;
MF denotes network with multi-frames input, which has the same structure with PKCIn-Net. Dilation step = 2 for all DilConvs.

defined for optical data processing and is more consistent

RD Performance-VS.-Complexity (mDice) RD Performance-VS.-Complexity (mIoU)

with the characteristics of radar signals. (e ® |0
65 . s .
55 .
#Params RD View RA View s * g
Frameworks g s s
@Frames mloU mDice mloU mDice N i
FCN 1343M@3 547% 663% 345% 40.9% “
U-Net 17.3M@3  554% 68.0% 32.8% 38.2% “
DeepLabv3+ 593M@3  508% 61.6% 327% 38.3% K W Yo
RSS-Net 101M@3  32.1% 369% 32.1% 37.8% ot Taren O ot Taram ()
o RA Performance-VS.-Complexity (mDice) " RA Performance-VS.-Complexity (mloU)
MVA-Net 48M@3  535% 653% 37.1% 44.8% N -
RAMP-CNN  1064M@9 56.6% 68.5% 27.9% 30.5% ol \
TMVA-Net  56M@5  56.1% 68.0% 37.7% 46.2% E o
PKCOn 57M@1  588% 70.7% 39.0% 47.7% o ® | i o
PKCOn* 57M@1  59.4% 712% 38.6% 47.3% E = °
PKCIn 63M@5  60.0% 71.9% 42.5% 52.9% o e PS
PKCIn* 63M@5  60.7% 72.5% 429% 53.3%

Table 3. Comprehensive RSS performance comparison.

Model Dataset RD View - RA View -
mloU mDice mloU mbDice
MVA-Net CARRADA 53.5% 653% 37.1% 44.8%
CARRADR-RAC 543% 66.1% 43.2% 54.8%

0 0

TMVA-Net CARRADA 56.1% 68.0% 37.7% 46.2%
CARRADA-RAC 59.7% 699% 46.6% 57.9%
PKCOR CARRADA 588% 70.7% 39.0% 47.7%
CARRADA-RAC 59.1% 71.0% 46.8% 58.1%
PKCOR* CARRADA 594% T71.2% 38.6% 47.3%
CARRADA-RAC 599% 71.8% 46.5% 57.9%
PKCIn CARRADA 60.0% 71.9% 425% 52.9%
CARRADA-RAC 60.3% 72.0% 484% 60.1%
PKClIn* CARRADA 60.7% 72.5% 429% 53.3%
CARRADA-RAC 61.0% 729% 48.6% 60.3%

Table 4. RSS performance on CARRADR-RAC.

4.5. RSS Performance on CARRADR-RAC

Through the annotation calibration mentioned in
Sec. 4.1.2, we obtain a higher quality RSS dataset,
CARRADR-RAC, and several models are trained and tested
on this dataset. Results in Tab. 4 show that, with more reli-

0 s0 100 500 o s0 100 150
Num. of Model Params. (Millions) Num. of Model Params. (Millions)

® FCN ®U-Net © MVA-Net © RSS-Net ® TMVA-Net ® RAMP-CNN ® DeepLabv3+ © PKCIn (Ours) ® PKCOn (Ours)

Figure 7. Performance v.s. Complexity.

able annotations, the RSS performance of all the mentioned
models have been improved, especially on the RA view.

5. Conclusion

In this paper, we propose a novel convolution opera-
tion, PeakConv, to highlight object signature from interfer-
ence such as clutters/noises. PeakConv is designed specif-
ically for radar data-related learning tasks. According to
the role of center unit in interference estimation, there are
two kinds of implements for PeakConv, vanilla- and ReDA-
PKC. Comparing with existing RSS models, PeakConv-
based networks achieve an outstanding trade-off between
performance and complexity, in which PKCIn-Net achieves
SoTA RSS performance and PKCOn-Net becomes sub-
optimal one without additional temporal clues, i.e., with
single-frame input. It is obvious that the ability of PKCon-
Net to capture peak response would be further improved by
introducing temporal information. Besides, in-depth opti-
mization of PeakConv through auto-adaptive guard band-
width is also one of our future research priorities.
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